Computing Periodicities in Strings — A New Approach

Bill Smyth*[†]

The most efficient methods for computing repetitions or repeats in a string x = x[1..n] all depend on the prior computation of a suffix tree/array ST_x/SA_x . Although these data structures can be computed in asymptotic $\Theta(n)$ time, nevertheless in practice they involve significant overhead, both in time and space. Since the number of repetitions/repeats in x can be reported in a way that is at most linear in string length, it should therefore be possible to devise less roundabout means of computing repetitions/repeats that take advantage of their infrequent occurrence. This talk provides background for these ideas and explores the possibilities for more efficient computation of periodicities in strings.

* Algorithms Research Group, Department of Computing & Software, McMaster University

[†] Department of Computing, Curtin University

Why are Periodicities Interesting?

- Often long sections of DNA are copied, exactly or approximately, from one section of the genome to another; it is important to identify these copies and their context in a gene or chromosome.
- Many data compression algorithms depend on identifying repeating sections of text that are either long or frequent or both; these can be coded into shorter substrings that allow the text to be compressed.
- Repeating substrings, exact or approximate, may be of interest in decryption.
- Repeating motifs/phrases, exact or approximate, are studied by musicologists.

Kinds of Periodicity

In this talk, we confine ourselves to substrings that repeat **exactly**:

- repetitions (adjacent repeating substrings);
- runs ("super-repetitions");
- **repeats** (repeating substrings, not necessarily adjacent).

Computing approximate repetitions is much harder: the best algorithm is a stringological *tour de force* that requires $O(n^2 \log n)$ time.

Even exact repetitions require a lot of work; all the algorithms use **suffix trees/arrays**.

What is a Suffix Tree/Array?

4

Repetitions

Suppose a string x = x[1..n] is given:

repetition:	a substring $x[ii+pe-1] = u^e$,
	$ oldsymbol{u} =p$ and $e\geq 2.$
u^e irreducible:	$m{u}$ itself is not a repetition.
u^e maximal:	neither $x[i\!-\!pi\!-\!1]$ nor
	x[i+pei+p(e+1)-1] = u.

All repetitions discussed are both irreducible and maximal; they are fully specified by the triple (i, p, e).

generator:uperiod:pexponent:e

Repetitions $(1,3,2) = (aba)^2$, $(3,1,2) = a^2$, $(4,2,2) = (ab)^2$, and $(5,2,2) = (ba)^2$, all squares.

Repetitions (continued)

A naïve reporting of all the squares in a string would require $\Theta(n^2)$ time in the worst case — reporting all squares in $x = a^6$ necessitates $\lfloor 6^2/4 \rfloor$ outputs:

 $x[i]^2, 1 \le i \le 5; \ x[i..i+1]^2, 1 \le i \le 3; \ x[1..3]^2.$

There are three "classical" $O(n \log n)$ algorithms [Crochemore (1981), Apostolico & Preparata (1983), Main & Lorentz (1984)] for computing all repetitions in the (i, p, e) encoding. [C81] & [AP83] essentially use suffix trees, [ML84] is divide-&-conquer. All are (in a sense) asymptotically optimal because the Fibostring f_K

 $f_0 = b, f_1 = a; f_k = f_{k-1}f_{k-2}, k = 2, 3, \dots, K$ actually contains $\Theta(|f_K| \log |f_K|)$ repetitions.

<u>Runs</u>

Consider

$$x = \cdots b$$
 abaabaab b \cdots

We report repetitions (i, 3, 2), (i+1, 3, 2), (i+2, 3, 2). But (i, 3, 2) implies the other two because $(aba)^2ab$ is followed by ab, a prefix of the generator aba.

Given a (maximal, irreducible) repetition (i, p, e):

- (*i*, *p*, *e*) is left-extendible (LE) if (*i*−1, *p*, 2) is a square; otherwise NLE.
- The **tail** is the greatest integer t satisfying $\forall j \in 0..t$, (i+j, p, e) is a repetition.

Then a **run** (maximal periodicity) [Main 1989] is a 4-tuple (i, p, e, t) where (i, p, e) is an NLE repetition of tail t. **<u>Runs</u>** (continued)

Let $\rho(n)$ be the maximum number of runs that can occur in any string of length n. Then [Kolpakov & Kucherov (2000)]

$$\rho(n) \leq k_1 n - k_2 \sqrt{n} \log_2 n,$$

where $k_1 \& k_2$ are universal positive constants of unknown size. K&K show that all runs in xcan be computed in linear time (on an **indexed** (integer) alphabet):

- compute the suffix tree T_x [Farach (1997)];
- compute the LZ-factorization [Lempel-Ziv (1976)];
- compute the leftmost runs [Main (1989)];
- compute the remaining runs [K&K (2000)].

Repeats

A **repeat** in x is a tuple

 $M_{x,u} = (p; i_1, i_2, ..., i_e),$ where $e \ge 2$, $1 \le i_1 < i_2 < \cdots < i_e \le n$, and $u = x[i_1..i_1+p-1] = x[i_2..i_2+p-1] = \cdots = x[i_e..i_e+p-1],$ with generator u, period p, exponent e.

Note that possibly, for some $j \in 1..e-1$, $i_{j+1}-i_j = p$ (repetition) or $i_{j+1}-i_j < p$ (overlap).

• $M_{\boldsymbol{x},\boldsymbol{u}}$ is **maximal** if for every

 $i \in 1..n$ and $i \notin \{i_1, i_2, \dots, i_e\}$, we are assured that $x[i..i+p-1] \neq u$.

• $M_{\boldsymbol{x},\boldsymbol{u}}$ is left-extendible (LE) if

 $(p; i_1 - 1, i_2 - 1, \dots, i_e - 1)$

is a repeat.

• $M_{\boldsymbol{x},\boldsymbol{u}}$ is **right-extendible** (RE) if

$$(p; i_1+1, i_2+1, \ldots, i_e+1)$$

is a repeat.

BUT:

• maybe $k_1 = 10^{10}$ — the K&K proof is nonconstructive;

• K&K provide convincing experimental evidence that in fact $\rho(n) < n$;

• the algorithm is complicated and not spaceefficient (though better using suffix arrays).

Recall:

If $\sigma(n)$ is the maximum number of *distinct* squares that can occur in a string of length n, then [Fraenkel & Simpson (1998), Ilie (2005)]: $\sigma(n) < 2n$.

So here is the problem: $\sigma(n) \leq \rho(n) < ???$

Hope:

By resolving the fundamental theoretical problem, we will (finally) understand periodicity better and therefore be able to design a simple direct all-runs algorithm.

In order that $\rho(n) > n$, it is necessary that two runs (squares) occur at some positions i — we therefore suppose that two squares occur at iand seek to restrict the squares that can occur in a neighbourhood of i. There seems to be only one result of this kind:

Lemma 1 [Lothaire (2002)] Let u^2 be a repetition, and suppose $w \neq u^k$ for any $k \geq 1$. If u^2 is a prefix of w^2 , in turn a proper prefix of v^2 , then $w \leq v-u$.

(We use x for the string, x for its length.)

Definition 2 A square u^2 is said to be irreducible if u is not a repetition.

Definition 3 A square u^2 is said to be regular if no prefix of u is a square.

Definition 4 A square u^2 is said to be minimal if no proper prefix of u^2 is a square.

Lemma 5 If u^2 is minimal, then u^2 is regular; if u^2 is regular, then u^2 is irreducible.

Lemma 6 If v^2 is irreducible with regular proper prefix u^2 , then

$$v > \max\{u+1, 3u/2\}.$$

Lemma 7 If $x = v^2$ is irreducible with regular proper prefix u^2 , v < 2u, then

 $x = u_1 u_2 u_1 u_1 u_2 u_1 u_2 u_1 u_1 u_2,$

where $u_1 = 2u - v, u_2 = 2v - 3u$.

Pièce de Résistance:

Lemma 8 (NPL) If x has regular prefix u^2 and irreducible prefix v^2 , u < v < 2u, then for every $w \in u+1..v-1$ and for every $k \in 0..v-u-1$, x[k+1..k+2w] is not a square.

Case I (easy case: k small):

<u>Notes</u>

• Lemma 8 extends in an obvious way to runs.

• Lemma 8 applies only trivially to the cases u = 1 and u = 2: for u = 1, $v \ge 3 > 2u$, while for u = 2, $v \ge 5 > 2u$, contrary to the requirement of the lemmas that v < 2u.

• For all $u \ge 3$, the hypothesis of the lemma can be satisfied — for example, if u = aba of length 3, v may be abaab of length $5 < 2 \times 3$.

• Thus Lemma 8 can be thought of as restricting the occurrences of squares when the second square at some position is small.

• We have extended to cases where $w \in v - u + 1...u - 1$.

• Our next project is to apply the NPL!