Computing Periodicities in Strings — A New
Approach

Bill Smyth*t

The most efficient methods for computing rep-
etitions or repeats in a string x = x[1..n] all
depend on the prior computation of a suffix
tree/array STx/SAx. Although these data struc-
tures can be computed in asymptotic ©(n)
time, nevertheless in practice they involve sig-
nificant overhead, both in time and space. Since
the number of repetitions/repeats in & can be
reported in a way that is at most linear in
string length, it should therefore be possible
to devise less roundabout means of comput-
ing repetitions/repeats that take advantage of
their infrequent occurrence. This talk provides
background for these ideas and explores the
possibilities for more efficient computation of
periodicities in strings.

* Algorithms Research Group, Department of Comput-

ing & Software, McMaster University
i Department of Computing, Curtin University

Why are Periodicities Interesting?

e Often long sections of DNA are copied, ex-
actly or approximately, from one section of
the genome to another; it is important to
identify these copies and their context in a
gene or chromosome.

e Many data compression algorithms depend
on identifying repeating sections of text
that are either long or frequent or both;
these can be coded into shorter substrings
that allow the text to be compressed.

e Repeating substrings, exact or approximate,
may be of interest in decryption.

e Repeating motifs/phrases, exact or approx-
imate, are studied by musicologists.

Kinds of Periodicity

In this talk, we confine ourselves to substrings
that repeat exactly:

e repetitions (adjacent repeating substrings);

e runs (“super-repetitions”);

e repeats (repeating substrings, not neces-
sarily adjacent).

Computing approximate repetitions is much harder:
the best algorithm is a stringological tour de
force that requires O(n?logn) time.

Even exact repetitions require a lot of work;
all the algorithms use suffix trees/arrays.

3

What is a Suffix Tree/Array?

1 2 3 4 5 6 7 8

r=a b a a b a b a

SAg
ICP

3 3 6147 25

113 3 0 2 2

ba

Repetitions

Suppose a string * = x[1..n] is given:

repetition: a substring x[i..i+pe—1] = u®,
lu| =p and e > 2.

u® irreducible: w itself is not a repetition.

u® maximal: neither x[i—p..i—1] nor
x[i+pe..i+ple+1)—1] = wu.

All repetitions discussed are both irreducible
and maximal; they are fully specified by the

triple (i,p,e).

generator: wu
period: D
exponent: e

{ W
L
S O
Q O
S N
{

Repetitions (1,3,2) = (aba)?, (3,1,2) = a2
(4,2,2) = (ab)?, and (5,2,2) = (ba)?, all squares.
5

Repetitions (continued)

A nailve reporting of all the squares in a string
would require ©(n?) time in the worst case
— reporting all squares in € = a® necessitates
|62/4] outputs:

z[i]?,1 <i<5; x[i.i+1]%,1<i<3; z[1..3]°.

There are three “classical” O(nlogn) algorithms
[Crochemore (1981), Apostolico & Preparata
(1983), Main & Lorentz (1984)] for computing
all repetitions in the (7,p,e) encoding. [C81] &
[AP83] essentially use suffix trees, [ML84] is
divide-&-conquer. All are (in a sense) asymp-
totically optimal because the Fibostring fg

fo=0b fi=a fx=J k-1Tk-2,k=23,..., K
actually contains @<|fK| log |fK|) repetitions.

Runs

Consider
i
x =---b abaabaab b---
We report repetitions (4,3,2), (1+1,3,2), (i+
2,3,2). But (4,3,2) implies the other two be-
cause (aba)?ab is followed by ab, a prefix of the
generator aba.

Given a (maximal, irreducible) repetition (i, p, e):

e (i,p,e) is left-extendible (LE) if (i—1,p,2)
IS a square; otherwise NLE.

e The tail is the greatest integer ¢t satisfying
V 5 €0..t (i+74,p,e) is a repetition.

Then a run (maximal periodicity) [Main 1989]
is a 4-tuple (i,p,e, t) where (i,p,e) is an NLE
repetition of tail t.

Runs (continued)

Let p(n) be the maximum number of runs that
can occur in any string of length n. Then [Kol-
pakov & Kucherov (2000)]

p(n) < kin—kov/nlogon,

where k1 & ko are universal positive constants
of unknown size. K&K show that all runs in x
can be computed in linear time (on an indexed
(integer) alphabet):

e compute the suffix tree Ty [Farach (1997)];

e compute the LZ-factorization [Lempel-Ziv
(1976)];

e compute the leftmost runs [Main (1989)];

e compute the remaining runs [K&K (2000)].

Repeats

A repeat in ¢ is a tuple

MCL','U/ — (pv 7:177:27) ie))
wheree>2, 1 <11 <1< - <1 <mn, and
u = x[i1..i1+p—1] = x[is..ir+p—1] = - - - = x[te..te+p—1],
with generator u, period p, exponent e.

Note that possibly, for some 5 € 1..e—1, b1~
i; = p (repetition) or i,41—1i; < p (overlap).

o Mg u is maximal if for every

1 €1.n and ¢ ¢ {i1,ip,...,%e},
we are assured that x[i..i4+p—1] # wu.
o My y is left-extendible (LE) if
(pii1—1,i0—1,...,i¢—1)
IS a repeat.
o My .y is right-extendible (RE) if
(pii1+1,i0+1,...,5c+1)
IS a repeat.

BUT:

e maybe k1 = 1019 — the K&K proof is non-
constructive;

o K&K provide convincing experimental evi-
dence that in fact p(n) < n;

e the algorithm is complicated and not space-
efficient (though better using suffix arrays).

Recall:
If o(n) is the maximum number of distinct

squares that can occur in a string of length n,
then [Fraenkel & Simpson (1998), Ilie (2005)]:
o(n) < 2n.

So here is the problem: o(n) < p(n) < 7277

Hope:

By resolving the fundamental theoretical prob-
lem, we will (finally) understand periodicity bet-
ter and therefore be able to design a simple
direct all-runs algorithm.

10

In order that p(n) > n, it is necessary that two
runs (squares) occur at some positions i — we
therefore suppose that two squares occur at ¢
and seek to restrict the squares that can occur
in @ neighbourhood of 2. There seems to be
only one result of this kind:

Lemma 1 [Lothaire (2002)] Let u? be a rep-
etition, and suppose w # u* for any k > 1. If

u? is a prefix of w2, in turn a proper prefix of

v2, then w < v—u.

(We use x for the string, = for its length.)

11

Definition 2 A square u? is said to be irre-
ducible if uw is not a repetition.

Definition 3 A square u? is said to be regular
if no prefix of w is a square.

Definition 4 A square u? is said to be mini-
mal if no proper prefix of u? is a square.

Lemma 5 Ifu? is minimal, then u? is regular;

if u? is reqular, then u? is irreducible.

Lemma 6 Ifv? isirreducible with regular proper
prefix u?, then

v > max{u+1,3u/2}.
Lemma 7 If x = v2 is irreducible with regular
proper prefix u?, v < 2u, then
T = UTU2UTUIU2UTULU] U U2,

where u1 = 2u—uv, uy = 2v—3u.
12

Piece de Reésistance:

Lemma 8 (NPL) Ifx has regular prefix u? and
irreducible prefix v2, u < v < 2u, then for every
w € u+1l.v—1 and for every k € O.v—u—1,
x[k+ 1. k+2w] is not a square.

Case I (easy case: k small):

(7 ——
ull ug [ujlui] ug [uy| ug [uilui| us

13

Notes

e Lemma 8 extends in an obvious way to runs.
e Lemma 8 applies only trivially to the cases
u=1and u=2: foru=1, v >3 > 2u, while
for u =2, v > 5 > 2u, contrary to the require-
ment of the lemmas that v < 2u.

e For all u> 3, the hypothesis of the lemma
can be satisfied — for example, if u = aba of
length 3, v may be abaab of length 5 < 2 x 3.

e Thus Lemma 8 can be thought of as re-
stricting the occurrences of squares when the
second square at some position is small.

e \We have extended to cases where w € v—
u+1..u—1.

e Our next project is to apply the NPL!

14

