
A Taxonomy of Suffix Array Construction
Algorithms

Simon Puglisi∗, Bill Smyth†∗

& Andrew Turpin‡

In 1990 Manber & Myers proposed suffix arrays
as a space-saving alternative to suffix trees and
described the first algorithms for suffix array
construction and use. Since that time there
have been many new suffix array construction
algorithms. This talk gives simple high-level
descriptions of these algorithms that highlight
both distinctive features and commonalities,
while avoiding as much as possible the details
of implementation. We also provide compar-
isons of the algorithms’ worst-case time com-
plexity and use of additional space, together
with results of recent experimental test runs
on many of their implementations.
∗ Department of Computing, Curtin University
† Algorithms Research Group, Department of Comput-
ing & Software, McMaster University
‡ School of Computer Science & Information Technol-
ogy, RMIT University

1

What is a Suffix Array?

1 2 3 4 5 6 7 8

x = a b a a b a b a
SAx = 8 3 6 1 4 7 2 5
lcpx = − 1 1 3 3 0 2 2

"!

��
���

���
���

��

HH
HHH

HHH
HHH

HH

0

"!

�
�

�
��

@
@

@
@@

1 "!

�
�

�
��

@
@

@
@@

2

a ba

7 2

a · · ·

5

ba

8 3

a · · ·

"!

�

�
�

�
�

�

A
A
A
A
A
A

3

ba

6 1

a · · ·

4

ba

2

Why is an SA Important?

• does everything an ST can do with identi-

cal asymptotic time complexity:

– pattern-matching in time proportional

to pattern length;

– find all repetitions/repeats in time linear

in string length n;

• requires only 4n bytes of storage (ST per-

haps 12–20n).

3

Brief History of STs & SAs

1968 Morrison Patricia (compacted) trie
1973 Weiner invents ST & first STCA
1976 McCreight faster STCA
1981 Crochemore STCA in disguise
1985 Apostolico “myriad virtues” of STs
1990 Manber & Myers invent SA & first SACA
1992 Ukkonen on-line STCA
1997 Farach linear-time STCA
2003 KA/KS/KSPP three linear-time SACAs!
2005 many researchers 14 SACAs + variants
2006 Maniscalco/Puglisi blow them away!

4

Vocabulary

suffix i: x[i..n]
SACA: suffix array construction algorithm
indexed letters x[i] in x can be radix-sorted
alphabet: in Θ(n) time
inverse SA: ISA[i] = j ⇔ SA[j] = i

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SAx = 12 11 8 1 4 6 9 2 5 7 10 3
ISAx = 4 8 12 5 9 6 10 3 7 11 2 1

rank: ISA[i] = j ⇔ suffix i has rank j
in lexorder

h-sort: ordering of suffixes i based on prefixes
x[i..i+h−1] or x[i..n], whichever is shorter

Hence h-order, h-ordering, h-rank, h-group,

h-equal.

5

Vocabulary (continued)

Then an approximate SAh/ISAh can be formed:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA1 = 12 (1 4 6 8 11) (2 9) 5 7 (3 10)
ISA1 = 2 7 11 2 9 2 10 2 7 11 2 1

or 6 8 12 6 9 6 10 6 8 12 6 1
or 2 3 6 2 4 2 5 2 3 6 2 1

The h-rank in ISAh may be expressed in various
ways:

• the leftmost position j in the h-group. called
the head of the h-group;

• the rightmost position j in the h-group,
called the tail of the h-group;

• the ordinal left-to-right counter of the h-
group.

6

Three Genera of SACAs

(1) Prefix-Doubling First a fast 1-sort yields

SA1/ISA1. Then for every h = 1,2, . . .,

SA2h/ISA2h are computed in Θ(n) time

from SAh/ISAh The time required is there-

fore O(n logn).

(2) Recursive Form strings x′ and y from x,

then show that if SAx′ is computed, there-

fore SAy and finally SAx can be computed

in O(n) time. Hence the problem of com-

puting SAx′ recursively replaces the com-

putation of SAx. Since |x′| is always cho-

sen so as to be less than 2|x|/3, the over-

all time requirement of these algorithms is

Θ(n).

7

Three Genera of SACAs (continued)

(3) Induced Copying The idea is the same
as for the recursive algorithms — a com-
plete sort of a selected subset of suffixes
can be used to “induce” a complete sort of
other subsets of suffixes. But the approach
is nonrecursive: an efficient suffix sorting
technique is invoked for the selected sub-
set of suffixes. These methods are very
efficient in practice, but worst-case com-
plexity may be as high as O(n2 logn).

The goal is to design SACAs that

• have minimal asymptotic complexity Θ(n);
• are fast “in practice”;
• are lightweight — that is, use a small amount

of working storage in addition to the 5n bytes
required by x and SAx.

None of the 14 SACAs satisfy all these criteria!

8

9

Performance Summary of SACAs
Speed is relative to MF; memory is in bytes,
including space for SA and x.

Algorithm Worst Case Speed Memory
Prefix-Doubling

MM O(n logn) 16 8n
LS O(n logn) 1.7 8n

Recursive
KA O(n) 2.2 13-14n
KS O(n) 2.8 10-13n
KSPP O(n) - –
HSS O(n) - –
KJP O(n log logn) 2.1 13-16n

Induced Copying
IT O(n2 logn) 4 5n

S O(n2 logn) 2.1 5n
BK O(n logn) 2.1 5-6n

MF O(n2 logn) 1 5n

SS O(n2) 1 9-10n

M O(n2 logn) 1 5-7n
Suffix Tree

K O(n logσ) 4 15-20n

10

Prefix-Doubling Algorithms: O(n logn)

These algorithms refine an h-order SAh into a
2h-order SA2h. After a bucket sort computes
SA1, the algorithms employ

Lemma 1 (Karp et al. 1972) Given SAh and
ISAh, h > 0, where i = SAh[j] is the jth suffix
in h-order and h-rank[i] = ISAh[i], a sort of the
integer pairs (

ISAh[i], ISAh[i+h]
)
,

i+h ≤ n, computes a 2h-order of the suffixes
i. (Suffixes i > n−h are already fully ordered.)

MM does an implicit 2h-sort by performing a
left-to-right scan of SAh that induces the 2h-
rank of SAh[j]−h. MM uses the head of each
h-group as h-rank.

LS explicitly sorts each h-group using the ternary-
split quicksort [Bentley & McIlroy 1993]. LS
uses the tail of each h-group as h-rank.

11

Prototype of a Prefix-Doubling Algorithm (MM)

h← 1
initialize SA1, ISA1
while some h-group not a singleton

for j ← 1 to n do
i← SAh[j]−h
if i > 0 then

q ← head
[
h-group[i]

]
SA2h[q]← i

head
[
h-group[i]

]
← q+1

compute ISA2h — update 2h-groups

h← 2h

12

Recursive Algorithms: Θ(n)

These are based on the ST construction al-
gorithm of Farach [1997]: separate the suf-
fixes of x into two or more classes based on
a type, then split them into disjoint strings
(subsequences) x(1) and y(1), chosen so that,
if SA

x(1) is (recursively) computed, then in lin-
ear time

• SA
x(1) can be used to induce construction

of SA
y(1), and furthermore

• SAx = SA
x(0) can then also be computed

by a merge of SA
x(1) and SA

y(1).

Thus the computation of SA
x(0) (in general,

SA
x(i)) is reduced to the computation of SA

x(1)

(in general, SA
x(i+1)).

13

Recursive Algorithms (continued)

To achieve linear time:

1. At each recursive step, ensure that

|x(i+1)|
/
|x(i)| ≤ f < 1,

so that the sum of the lengths processed

by all recursive steps is at most |x|/
(
1−f).

2. Devise a linear-time approximate suffix-sorting

procedure, semisort say, that for some suf-

ficiently short string x(i+1) will yield a com-

plete sort of its suffixes and thus termi-

nate the recursion, allowing the suffixes of

x(i), x(i−1), . . . , x(0) all to be sorted in turn.

14

The Generalized Recursive Algorithm

procedure construct(x; SA)
split(x; x′, y)
semisort(x′; ISA′)
if ISA′ contains duplicate ranks then

construct(ISA′; SAx′ = SA′)
else

invert(ISAx′ = ISA′; SAx′)
induce(SAx′, ISAx′; SAy)

merge(SAx′,SAy; SAx)

15

Induced Copying Algorithms: O(n2 logn)

These algorithms are based on an idea origi-

nally put forward by Burrows & Wheeler [1994]:

use a complete sort of a selected subset of suf-

fixes to induce a fast sort of the remaining

suffixes. Perhaps mainly because they avoid

recursion, these algorithms are both fast and

lightweight:

IT Itoh & Tanaka select suffixes i of “type B”

— those satisfying x[i] ≤ x[i+1] — for

complete sorting, thus inducing a sort of

the remaining suffixes.

S Seward sorts certain 1-groups, using the re-

sults to induce sorts of corresponding 2-

groups, an approach that also forms the

basis of Algorithms MF & SS.

16

Induced Copying Algorithms (continued)

BK Burkhardt & Kärkkäinen use a small inte-

ger h to form a “sample” S of suffixes that

is then h-sorted; using a technique remi-

niscent of the recursive algorithms, the re-

sulting h-ranks are then used to induce a

complete sort of all the suffixes.

M The as-yet-unpublished algorithm of Man-

iscalco computes ISAx using an iterative

technique that, beginning with 1-groups,

uses h-groups to induce the formation of

(h+1)-groups.

17

Prototype of an Induced Copying Algorithm (IT)

initialize SA← SA1
— head[1..σ] and tail[1..σ] mark 1-group boundaries

— part[1..σ] marks A/B partition of each 1-group

for h← 1 to σ do

suffixsort
(
SA

[
part[h]

]
,SA

[
part[h]+1

]
, . . . ,

SA
[
tail[h]

])
for j ← 1 to n do

i← SA[j]
if type[i−1] = A then

λ← x[i−1]

SA
[
head[λ]

]
← i−1

head[λ]← head[λ]+1

18

Experimental Results

19

Future Directions

The profusion of SACAs discovered in a rela-
tively short period of time is a tribute to the
ingenuity of stringologists!

But there still remain interesting questions:

(1) Is it possible to devise an algorithm (proba-
bly nonrecursive) that satisfies all three criteria
(fast, lightweight, linear)?

(2) The calculation of repetitions and repeats
in strings does not require an SA/ST that sat-
isfies lexorder. Can faster algorithms be found
for these valid suffix arrays?

(3) The number ρ(n) of maximal periodici-
ties in any string of length n probably satisfies
ρ(n) < n and almost certainly decreases sharply
as alphabet size increases. Can algorithms be
found to compute maximal periodicities that
are more direct and that avoid the calculation
of suffix arrays altogether?

20

