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ABSTRACT
A cover of a string x = x[1..n] is a proper substring u of x such that x can be
constructed from possibly overlapping instances of u. A recent paper [12] relaxes this
definition — an enhanced cover u of x is a border of x (that is, a proper prefix that
is also a suffix) that covers a maximum number of positions in x (not necessarily all)
— and proposes efficient algorithms for the computation of enhanced covers. These
algorithms depend on the prior computation of the border array β[1..n], where β[i] is
the length of the longest border of x[1..i], 1 ≤ i ≤ n. In this paper, we first show how
to compute enhanced covers using instead the prefix table: an array π[1..n] such that
π[i] is the length of the longest substring of x beginning at position i that matches
a prefix of x. Unlike the border array, the prefix table is robust: its properties hold
also for indeterminate strings — that is, strings defined on subsets of the alphabet
Σ rather than individual elements of Σ. Thus, our algorithms, in addition to being
more space-efficient than those of [12], allow us to easily extend the computation of
enhanced covers to indeterminate strings. Both for regular and indeterminate strings,
our algorithms execute in expected linear time and our experimental results suggest
that they are faster than those of [12] in practice. Along the way we establish an
important theoretical result: that the expected maximum length of any border of any
prefix of a regular string x is approximately 1.64 for binary alphabets, less for larger
ones.
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1. Introduction

The concept of periodicity is fundamental to combinatorics on words and related
algorithms: it is difficult to imagine a research contribution that does not somehow
involve periods of strings. But periodicity alone may not be the best descriptor
of a string; for example, x = abaababab, a string of length n = 9, has period 7
and corresponding generator1 abaabab, but it could well be more interesting that
every position but one in x lies within an occurrence of ab. In 1990 Apostolico &
Ehrenfeucht [3] introduced the idea of quasiperiodicity: a quasiperiod or cover of
a string x is a proper substring u of x such that any position in x is contained in an
occurrence of u; u is then said to cover x, which is said to be quasiperiodic. Thus,
for example, u = aba is a cover of x = ababaaba. Several linear-time algorithms were
proposed for the computation of covers [4, 8, 19, 20], culminating in an algorithm [18]
to compute the cover array γ, where γ[i] gives the length j of the longest cover of
x[1..i]. Since the longest cover of x[1..j] is also a cover of x[1..i], γ implicitly specifies
all the covers of every prefix of x. A recent paper [2] extends the computation of γ
to “indeterminate strings” (see below for definition).

Even though the cover of a string can provide useful information, quasiperiodic
strings are on the other hand infrequent among strings in general. Another approach
to string covering was therefore proposed in [15]: a set Uk = Uk(x) of strings, each
of length k, is said to be a minimum k-cover of x if every position in x lies within
some occurrence of an element of Uk, and no smaller set of k-strings has this property.
Thus U2(abaababab) = U2(ababaaba) = {ab, ba}. In [10] the computation of Uk was
shown to be NP-complete, though an approximate polynomial-time algorithm was
presented in [14].

Recall that a border of x is a possibly empty proper prefix of x that is also a
suffix: every nonempty string has a border of length zero. Recently the promising
idea of an enhanced cover was introduced [12]; that is, a border u of x = x[1..n]
that covers a maximum number m ≤ n of positions in x. Then the minimum
enhanced cover mec(x) is the shortest border u that covers m positions, and [12]
presented an algorithm to compute mec(x) in Θ(n) time. Thus for x = abaababab,
mec(x) = ab. Further, on the analogy of the cover array defined above, the au-
thors proposed the minimum enhanced cover array MECx — for every i ∈ 1..n,
MECx[i] = |mec(x[1..i])|, the length of the minimum enhanced cover of x[1..i] — and
showed how to compute it in O(n logn) time. In this paper we introduce in addi-
tion the CMEC array, where CMEC[i] specifies the number of positions in x[1..i] covered
by the border of length MEC[i]. Thus, for example, MECabaababab = 001123232 and
CMECabaababab = 002346688. Note that, extending the idea of enhanced cover further,
the notions of partial covers and seeds have recently been introduced and investigated
in the literature [17, 16].

In order to compute MECx, the authors of [12] made use of a variant of the border
array — that is, an integer array β[1..n] in which for every i ∈ 1..n, β[i] is the length
of the longest border of x[1..i]. In this paper we adopt a different approach to the

1Notation and terminology generally follow [21].
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computation of MECx, using, instead of a border array, the prefix table π = π[1..n],
where for every i ∈ 1..n, π[i] is the length of the longest substring at position i of x
that equals a prefix of x. It has long been folklore that β and π are “equivalent”, but
it has only recently been made explicit [6] that each can be computed from the other
in linear time. However, this equivalence holds only for regular strings x in which
each entry x[i] is constrained to be a single element of the underlying alphabet Σ.

We say that a letter λ is indeterminate if it is any nonempty subset of Σ, and
thus a string x is said to be indeterminate if some constituent letter x[i] is inde-
terminate. The idea of an indeterminate string was first introduced in [11] — with
letters constrained to be either regular (single elements of Σ) or Σ itself — and the
properties of these strings have been much studied by Blanchet-Sadri [7] and her col-
laborators as “partial words” or “strings with holes”. Indeterminate strings can model
DNA sequences on Σ = {A,C,G, T} when ambiguities arise in determining individual
nucleotides (letters).

Two indeterminate letters λ and µ are said to match (written λ ≈ µ) whenever
λ∩µ 6= ∅, a relation that is in general nontransitive [13, 24]: a ≈ {a, b} and {a, b} ≈ b,
but a 6≈ b. An important consequence of this nontransitivity is that the border array
no longer correctly describes all of the borders of x: it is no longer necessarily true,
as for regular strings, that if u is the longest border of v, in turn the longest border
of x, then u is a border of x. On the other hand, the prefix array retains all its
properties for indeterminate strings x and, in particular, correctly identifies all the
borders of every prefix of x [6]. [22] describes algorithms to compute the prefix table
of an indeterminate string; conversely, [9] proves that there exists an indeterminate
string corresponding to every feasible prefix table, while [1] describes an algorithm
to compute the lexicographically least indeterminate string determined by any given
feasible prefix table. There is thus a many-many relationship between the set of
all indeterminate strings and the set of all prefix tables. Consequently, computing
MECx (or simply MEC when there is no ambiguity) from the prefix table π = πx
rather than from a variant of the border array allows us to extend the computation
to indeterminate strings.

In Section 2 we outline the basic methodology and data structures used to compute
the minimum enhanced cover array from the prefix table, while illustrating the ideas
with an example. Then Section 3 provides a proof of the algorithm’s correctness,
as well as an analysis of its complexity, both worst and average case. Section 4
describes extensions of the basic MEC algorithm to enhanced left covers and enhanced
left seeds. In Section 5 we discuss the practical application of our algorithms, in
terms of time and space requirements, and compare our prefix-based implementation
with the border-based implementation of [12]. Section 6 shows how to extend the
various enhanced cover array algorithms to indeteterminate strings, while Section 7
summarizes our results and suggests future research directions.

2. Methodology

In this section we describe the computation of MECx, the enhanced cover array of x,
based on the prefix array π. Since every minimum enhanced cover of x is also a border
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of x, we are initially interested in the covers of prefixes of x. For this purpose we need
arrays whose size is B, the maximum length of any border of any prefix of x. Noting
that B must be the maximum entry in the prefix array π, we write B = max2≤i≤n π[i].

Definition 1. In themaximum no cover array MNC = MNC[1..B], for every q ∈ 1..B,
MNC[q] = q′, where q′ is the maximum integer in 1..q such that the prefix x[1..q′] has
no cover — that is, such that γ[q′] = 0.

As shown in Figure 1, once B is computed in Θ(n) time from the prefix array π,
MNC can be easily computed in Θ(B) time using the cover array γ[1..B] of x[1..B]. Note
that the entries in MNC are monotone nondecreasing with 1 ≤ MNC[q] ≤ q for every
q ∈ 1..B. The following is fundamental to the execution of our main algorithm:

Observation 2. If a prefix v = x[1..q] of x has a cover u, then v 6= mec(x) (since
|u| < q and u covers every position covered by v).

procedure Compute_MNC(n,π; B,γ, MNC)
B← π[2]
for i← 3 to n do

B← max(B,π[i])
. Compute γ[1..B] of x[1..B] using
. the algorithm Compute_PCR of [2].
Compute_PCR(B,π; γ)
. Note that MNC can overwrite γ.
for q ← 1 to B do

if γ[q] = 0 then MNC[q]← q
else MNC[q]← MNC[q−1]

Figure 1: Computing MNC from the prefix array π[1..n] and the cover array γ[1..B].

Thus MNC[q] specifies an upper bound q′ ∈ 1..q on the length of a minimum en-
hanced is contained in a sequencecover of x. Two other arrays are required for the
computation, both of length B:

Definition 3. For every q ∈ 1..B:
• PR[q] is the rightmost position in x at which the prefix x[1..q] occurs;
• CPR[q] is the number of positions in x covered by occurrences of x[1..q].

An example of the arrays introduced thus far is given in Figure 2. Note that for
x[1..9] and x[1..10], there are actually two borders that cover a maximum number of
positions; in each case the border of minimum length is identified in MEC.

The algorithm Compute_MEC is shown in Figure 3. In the first stage, B and MNC
are computed and the arrays CMEC, PR and CPR are initialized. Then every position
i > 1 such that q = π[i] > 0 is considered. Using MNC, the longest prefix Q′ = x[1..q′]
of x[1..q] that does not have a cover is identified; for prefixes of x[1..q] that do have a
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1 2 3 4 5 6 7 8 9 10

x = a b a b a a b a b a
π = 10 0 3 0 1 5 0 3 0 1
γ = 0 0 0 2 3

MNC = 1 2 3 3 3
PR = 10 8 8 6 6

CPR = 6 8 10 8 10
MEC = 0 0 1 2 3 1 2 3 2 3

CMEC = 0 0 2 4 5 4 6 8 8 10
Figure 2: All the arrays required to compute MEC and CMEC arrays

procedure Compute_MEC(π; MEC, CMEC)
n← |π|
Compute_MNC(n,π; B,γ, MNC)
MEC← 0n; CMEC← 0n; PR← 1B

for q ← 1 to B do CPR[q]← q
for i← 2 to n do

q ← π[i]
. x[i..i+q−1] = x[1..q].

while q > 0 do
. x[1..q′] is the longest prefix of x[1..q] without a cover.

q′ ← MNC[q]
. x[1..q′] also occurs at i: update CPR[q′] & PR[q′].

if i−PR[q′] < q′ then
CPR[q′]← CPR[q′]+i−PR[q′]

else
CPR[q′]← CPR[q′]+q′

PR[q′]← i
. Update MEC & CMEC accordingly for interval i..i+q′−1.

if CPR[q′] ≥ CMEC[i+q′−1] then
MEC[i+q′−1]← q′

if CPR[q′] > CMEC[i+q′−1] then
CMEC[i+q′−1]← CPR[q′]

q ← q′−1
Figure 3: Computing MEC and CMEC from the prefix array π.

cover, there is no need to compute the PR and CPR values. There are two main steps
in the processing of Q′:
• Since i has now become the rightmost occurrence of Q′ in x[1..i], we must set

PR[q′]← i and increment the corresponding number CPR[q′] of positions covered.
• If the number CPR[q′] of positions covered by occurrences of Q′ exceeds CMEC[i+
q′−1], then CMEC and MEC must be updated accordingly.
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These steps are repeated recursively for the longest proper prefix of Q′ that does not
have a cover.

3. Correctness & Complexity of Compute_MEC

We begin by proving the correctness of Compute_MEC, which depends on the prior
computation of π = πx [6]. Consider first procedure Compute_MNC, where B is
computed, followed by the cover array γ[1..B]. Then for every q ∈ 1..B, MNC[q] ← q
whenever there is no cover of x[1..q], with MNC[q] ← MNC[q−1] otherwise, an easy and
straightforward calculation.

Compute_MEC then independently considers positions i = 2, 3, . . . , n for which
π[i] > 0; that is, such that a border of x[1..i + q − 1] of length q = π[i] begins at
i. The internal while loop then processes in decreasing order of length the prefixes
Q′ = x[1..q′] of x[1..q] that have no cover — and that therefore, by Observation 2, can
possibly be minimum enhanced covers of x[1..i+q′−1]. Thus, for every i ∈ 2..n, all
such borders x[1..q] = x[i..i+q−1] are considered and, for each one, all such prefixes
Q′. For each q′:
• the number CPR[q′] of positions covered by Q′ is updated, as well as the position

PR[q′] = i of rightmost occurrence of Q′;
• MEC[i+q′−1] and CMEC[i+q′−1] are updated accordingly for sufficiently large

CPR[q′].
We claim therefore that

Theorem 4. For a given string x, Compute_MEC correctly computes the minimum
enhanced cover array MECx and the number CMECx of positions covered by it, based
solely on the prefix array πx.

We have seen that in aggregate Compute_MEC processes a subset of the nonempty
borders of every prefix x[1..i], devoting O(1) time to each one. As we have seen, each
border Q′ in each such subset is constrained to have no cover. We say that a string v
is strongly periodic if it has a border u such that |u| ≥ |v|/2; otherwise v is said
to be weakly periodic. Observe that the borders Q′ must all be weakly periodic; if
not, then they would have a cover u with |u| ≥ |v|/2. In [12] the following result is
proved:

Lemma 5. [12] There are at most log2 n weakly periodic borders of a string of length
n.

It follows then that for each i ∈ 2..n, there are at most log2 i borders considered, thus
overall requiring O(n logn) time.

The space requirement of Compute_MEC, apart from the π, MEC and CMEC arrays,
each of length n, consists of three integer arrays (MNC (overwriting γ), PR, CPR), each
of length B< n. Thus

Theorem 6. In the worst case, Compute_MEC computes MEC and CMEC from π
using
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(a) O(n logn) time;
(b) three additional arrays 1..B of integers 1..n, thus Θ(B logn) bits of space.

Now we would like to analyze the expected (average) case behaviour of Com-
pute_MEC. To do this, we prove and make use of a combinatorial result of indepen-
dent interest. We first discuss this new interesting result in Section 3.1 and then we
use it to complete the average case analysis in Section 3.2.

3.1. Combinatorics on the border length

Here we show that the expected length of the longest border of a string x approaches
a limit as |x| tends to infinity, the limit depending on the alphabet size. For a binary
alphabet it is approximately 1.64. We use the following notation: σ = |Σ| is the
alphabet size, B(w) is the length of the longest border of string w, and Bk(w) is the
length of the longest border of string w which has length at most k (so ignoring any
borders longer than k). Thus if x = babaabababbabaabab, then B(x) = 8, since x
has longest border babaabab, and B4(x) = 3, since the longest border of x which has
length at most 4 is aba. Let Wn be the set of all strings of length n on an alphabet
of size σ. Since W0 contains only the empty string, we have |W0| = 1.

Lemma 7. The number of strings of length n on an alphabet of size σ which have a
border of length k (not necessarily the longest border) is σn−k.
Proof. A string with border of length k is periodic with period n − k and so is
determined by its length n− k prefix. This prefix can be chosen in σn−k ways.

We also need the following formula (obtainable using a computer algebra system):

Lemma 8.
∑n
m=k+1 mσ

n−m = σn−k+1k−σn−kk+σn−k+1−σ n+n−σ
(σ−1)2 .

Clearly |Wn| = σn. The expected size of the longest border of a string of length n
on an alphabet of size σ is therefore

B(n) = 1
σn

∑
w∈Wn

B(w). (1)

Similarly, the expected size of the longest border not exceeding k is

Bk(n) = 1
σn

∑
w∈Wn

Bk(w). (2)

Clearly B(w) ≥ Bk(w) so

B(n) ≥ Bk(n). (3)
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Note that if n ≥ 2k then Wn = {uxv : u ∈Wk, x ∈Wn−2k, v ∈Wk} and so

Bk(n) = 1
σn

∑
u∈Wk

∑
x∈Wn−2k

∑
v∈Wk

Bk(uxv). (4)

Now Bk(uxv) = Bk(uv) so if n ≥ 2k,

Bk(n) = 1
σn

∑
u∈Wk

∑
v∈Wk

Bk(uv)
∑

x∈Wn−2k

1 (5)

= σn−2k

σn

∑
u∈Wk

∑
v∈Wk

Bk(uv)

= 1
σ2k

∑
w∈W2k

Bk(w)

= Bk(2k).
With (3) we then have, for n ≥ 2k,

B(n) ≥ Bk(2k). (6)

Now any border that is counted in the right hand side of (1) but not counted on
the right hand side of (2) has length at least k + 1. The sum of the lengths of such
borders is, by Lemma 7,

n∑
m=k+1

mσn−m.

So, by Lemma 8 and (5),

B(n) ≤ 1
σn

(
∑
w∈Wn

Bk(w) +
n∑

m=k+1
mσn−m) (7)

= Bk(n) + 1
σn

(σ
n−k+1k + σn−k+1 − σn−kk − σ n− σ + n

(σ − 1)2 )

< B̄k(2k) + σ−k+1k + σ−k+1 − σ−kk
(σ − 1)2

= Bk(2k) +O(kσ−k).
Thus for all n ≥ 2k,

Bk(2k) ≤ B(n) ≤ Bk(2k) +O(kσ−k),

so B(n) is contained in a sequence of nested intervals whose lengths have limit 0. By
the Nested Intervals Theorem this means the limit of B(n) exists.

Using (3) and (7) with k = 11 we find that limn→∞B(n) lies in the interval
(1.6356, 1.6420) for binary alphabets. For ternary alphabets using k = 6 the limit lies
in (0.6811, 0.6864).
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3.2. Average case analysis

With the combinatorics of Section 3.1 at our disposal, we can easily complete the
average case analysis of Compute_MEC. Clearly, this depends critically on the ex-
pected length of the maximum border of x[1..n]; that is, the expected value of B.
Now, from Section 3.1 we know that for a given alphabet size, B approaches a limit
as n goes to infinity. The limit is approximately 1.64 for binary alphabets, 0.69 for
ternary alphabets, and monotone decreasing in alphabet size. Thus

Theorem 9. In the average case, Compute_MEC requires O(n) time and Θ(logn)
additional bits of space.

4. Enhanced Left Covers and Left Seeds

In [12] the authors extended the concept of the enhanced cover to the notion of
enhanced left covers and enhanced left seeds as follows. A proper prefix u of x =
x[1..n] is an enhanced left cover (respectively, enhanced left seed) of x if u
has at least two occurrences in x and the number of positions in x that lie within
occurrences of u in x (respectively, a right extension of x) is the maximum over all
such prefixes. For example, x = abaabab has enhanced left covers u = ab and aba,
both covering six positions in x, with both occurring twice in x; but its only enhanced
left seed is u = aba, which lies three times in the right extension xa and so covers all
seven positions of x.

Thus, like the minimum enhanced cover array, we can analogously consider the min-
imum enhanced left cover (MELC) array and the minimum enhanced left seed (MELS)
array. In fact, [12] provides an O(n logn) algorithm for computing the MELC array
and an O(n2) algorithm for computing the MELS array. Both of these algorithms
are extended from the border-based algorithm of [12] that computes MEC. In this
section, we discuss how we can extend our (prefix-based) Compute_MEC algorithm
to compute the MELC and MELS arrays.

4.1. Minimum Enhanced Left Cover Array (MELC)

We first consider the computation of the MELC array. As before, we also compute
an associated array CMELC, analogous to the CMEC array; that is, CMELC[i] counts the
number of positions in x covered by the prefix of length MELC[i]. Here, for clarity
of presentation, we describe the algorithm assuming that the MEC and CMEC arrays
are already computed. However, in practice we will compute MELC and CMELC on the
fly as part of the computation of MEC and CMEC in Compute_MEC. The essential
thing to note is that for MELC we only need to consider a prefix rather than a border
of x. The central argument for the computation of the MELC array from the MEC
and CMEC arrays is presented in Proposition 10 below. For this purpose, we need to
define two functions, MaxCount and CorLen, that work in tandem on a prefix of CMEC,
with MaxCount returning the maximum value in the prefix and CorLen returning the
corresponding value in the MEC array. Importantly, in case of a tie for the maximum
value, CorLen will return the value from the MEC array that is lower. For example,
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consider Figure 2 and suppose that we are considering CMEC[1..6]. Then MaxCount
will return CMEC[3] = 5 and CorLen will return MEC[3] = 3. Notice that we have
CMEC[8] = CMEC[9] = 8. So, if we consider CMEC[1..9], then MaxCount will return 8 and
CorLen will return 2, because MEC[9] = 2 is lower than MEC[8] = 3.

Proposition 10. Suppose MEC and CMEC have been computed for x. Then MELC and
CMELC are computed according to the following equations:

CMELC[i] = MaxCount(CMEC[1..i]), (8)
MELC[i] = CorLen(CMEC[1..i]). (9)

To see that Proposition 10 is correct, we only need to recall that now the cover
need not be a border and hence its last occurrence may end before the (prefix of the)
string under consideration. Clearly this extra work does not change the asymptotic
behaviour of the algorithm: Theorems 6 and 9 hold also for the computation of MELC.

4.2. Minimum Enhanced Left Seed Array (MELS)

The computation of the MELS array is more complicated. The complication arises
because now not only are we looking at the prefix (as opposed to a border) but also
considering a superstring to cover rather than the original string. To comprehend
the new setting let us recall how Compute_MEC actually works: the heart of this
algorithm is the while loop where we fix on a prefix q, then consider prefixes q′ of
q that might possibly cover it. Note that during this while loop we remain on a
particular index i and we only update index i + q′ − 1 of the MEC and CMEC arrays,
where q′ is the length of the prefix we are considering. This works fine when the prefix
under consideration also has to be a border, because then we know that it must occur
at the end aligning with the end of the prefix of the string under consideration. But
for a left seed, more work is required. Now we are interested in the interval i..i+q′−1.
Clearly, for the index i+q′−1 — that is, for the string x[1..i+q′−1] — the occurrence
of the prefix under consideration — that is, the prefix of length q′ — is also a border.
But for x[1..i+ `− 1] with q′ < ` ≤ B, x[1..i+ `− 1] is a superstring and the prefix
of length ` is an enhanced left seed. Therefore, we need to update MELS and CMELS
for i+ q′ − 1 based on which prefix covers most, whereas in Compute_MEC we only
need to update the index i+ q′ − 1 with only one prefix.

The correctness of Compute_MELS (Figure 4) readily follows from the above
discussion. However, its running time is increased due to the newly introduced inner
while loop within the outer while loop. Recalling the time complexity analysis of
Compute_MEC, we realize that the only change between the two algorithms is that
in Compute_MEC for each prefix considered we need to do the update on only one
index (that is, index i + q′ − 1) with one prefix q′; whereas in Compute_MELS, we
need to update one index while considering all the prefixes larger than q′ (while
mpf > q′). Notice that each prefix of length ` for a particular substring x[1..i+ `−1]
is considered ` times, since the substring can be a superstring of ` − 1 substrings of
x. There are O(logn) of weakly periodic prefixes of a string each of which can at
most be equal to B. Therefore, a straightforward analysis gives us a running time of
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O(nB logn) for Compute_MELS. This ensures that the running time remains linear
in the average case:

Theorem 11. In the average case, Compute_MELS requires O(n) time and
Θ(logn) additional bits of space.

However, a more careful analysis of the worst case running time of Compute_MELS
can be performed as follows. We have already used the fact from [12] that there are at
most log2 n weakly periodic borders of a string of length n (Lemma 5). However, this
is a consequence of the fact that a weakly periodic border of a string of length n can be
of size at most n/2. Now recall that we are only handling weakly periodic prefixes in
Compute_MELS in the inner while loop. And the number of superstrings involved
with each weekly periodic prefix is the length of the current prefix under consideration.
Summing the lengths of these prefixes yields a geometric series up to logn that adds
up to O(n). This implies that the total work done by the for loop within the while
loop during the complete execution of the algorithm remains O(n). Hence:

Theorem 12. In the worst case, Compute_MELS computes MELS and CMELS from
π using O(n2) time and Θ(B logn) bits of space.

5. Comparing Border-Based and Prefix-Based Algorithms

As mentioned above, in order to compute MECx, the authors of [12] made use of the
border array. On the other hand Compute_MEC is based on the prefix table. As
we have seen, Compute_MEC requires only three additional arrays 1..B of integers,
compared to 4n for the algorithm of [12]. In the next section we will see how use of
the prefix table enables Compute_MEC to be extended to indeterminate strings, not
a possibility for a border-based algorithm. Here we compare the time requirements
of the two algorithms, referring to our algorithm as ECP and to the border-based
algorithm as ECB.

We implemented ECP in C# using Visual Studio 2010. We got the implementation
of ECB from the authors of [12]. However, ECB was implemented in C. To ensure a
level playing ground, we re-implemented ECB in C# following their implementation.
Then we ran both the algorithms on all binary strings of lengths 2 to 30. The experi-
ments were carried out on a Windows Server 2008 R2 64-bit Operating System, with
Intel(R) Core(TM) i7 2600 processor @ 3.40GHz having an installed memory (RAM)
of 8.00 GB. The results are illustrated in Figures 5 and 6.

Figure 5 shows the maximum number of operations (assignment, comparison, etc.)
carried out by each algorithm. Figure 6 shows the ratio of the total number of
operations performed by ECB and ECP to the length n of the string, over all strings
on the binary alphabet. As is evident from the figures, ECP outperforms ECB and
in fact it shows linear behaviour, verifying the claim in Theorem 9 above.
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6. Indeterminate Strings

In Sections 2 and 3 we describe an algorithm to compute the minimum enhanced
cover array MECx of a given string x, based only on the prefix array πx. Then we
have extended this algorithm for minimum enhanced left cover array and minimum
enhanced left seed array in Section 4. As noted in the Introduction, since the prefix
array can be computed also for indeterminate strings [22], this immediately raises the
possibility of extending the MEC calculation to indeterminate strings.

In [2] two definitions of “cover” for an indeterminate string are proposed: a sliding
cover where adjacent or overlapping covering substrings of x must match, and a
rooted cover where each covering substring is constrained only to match a prefix of
x. The nontransitivity of matching (see Section 1) inhibits implementation of a sliding
cover, but [2] shows how to compute all the rooted covers of indeterminate x from
its prefix array in O(n2) worst case time, Θ(n) in the average case. Thus it becomes
possible to execute Compute_MNC for rooted covers, simply by replacing the function
call to Compute_PCR by a function call to PCInd of [2]; that is, to compute the
rooted cover array γR [1..B], hence MNC[1..B] and thus MECx, all for indeterminate
strings. Let us call this new algorithm Compute_MEC_Ind. We recall now a lemma
from [5] stating that the expected number of borders in an indeterminate string is
bounded above by a constant, approximately 29. Therefore, also for indeterminate
strings, B can be treated as a constant, and we have the following remarkable result:

Theorem 13. In the average case, Compute_MEC_Ind requires O(n) time and
Θ(logn) additional bits of space.

Clearly, these results can be similarly extended for the MELC and MELS arrays to
indeterminate strings.

7. Conclusion

In this paper we have described prefix array based algorithms to compute minimum
enhanced cover arrays, minimum enhanced left cover arrays and minimum enhanced
left seed arrays. The advantages of our prefix array based algorithms are threefold.
Firstly, our prefix-array based algorithms exhibit the same worst case running time
as the border-based algorithms of [12] but our experimental results suggest that the
former are faster in practice. Secondly, our algorithms exhibit superior space effi-
ciency. And finally, because of the robustness of the prefix array, our algorithms, in
addition to being potentially faster in practice and more space-efficient than those of
[12], allow us to easily extend the computation of enhanced covers to indeterminate
strings. Additionally, both for regular and indeterminate strings, our algorithms exe-
cute in expected linear time. We have also established an important theoretical result
which we believe is of independent interest: that the expected maximum length of any
border of any prefix of a regular string x is approximately 1.64 for binary alphabets,
less for larger ones.

We note further that the prefix array can be efficiently computed in a compressed
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form [22], taking advantage of the fact that for i ∈ 1..n, π[i] 6= 0 if and only if
x[i] = x[1]. Thus we can use two arrays POS and LEN to store nonzero positions in
π and the values at those positions, respectively, thus saving much space in cases
that arise in practice. We plan to design a POS/LEN version of Compute_MEC as an
immediate future work. Another natural question of course is to investigate whether
the MEC array can be computed in worst-case linear time.
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procedure Compute_MELS(π; MELS, CMELS)
n← |π|
Compute_MNC(n,π; B,γ, MNC)
MEC← 0n; CMEC← 0n; PR← 1B

for q ← 1 to B do CPR[q]← q
for i← 2 to n do

q ← π[i]
. x[i..i+q−1] = x[1..q].

while q > 0 do
. x[1..q′] is the longest prefix of x[1..q] without a cover.

q′ ← MNC[q]
. x[1..q′] also occurs at i: update CPR[q′] & PR[q′].

if q′ = q then
if i− PR[q′] < q′ then

CPR[q′]← CPR[q′] + i− PR[q′]
else

CPR[q′]← CPR[q′] + q′

else
q′ ← q

mpf ← B
while mpf > q′ do

mp←MNC[mpf ]
if mp = q′ then

break
if PRS[mp] > 1 && i+ q′ > PRS[mp] +mp then

if i− PR[mp] < mp then
S1 ← CPR[mp]−mp+ i− PR[mp] + q′

else
S1 ← CPR[mp]+q′

if S1 ≥ Sp then
maxp← mp
Sp ← S1

mpf ← mp− 1
. Update S2 and q′′ depending on Maximum of Sp and CPR[q′]

S2 ← Sp or CPR[q′]
q′′ ← maxp or q′

. Update CMELS & MELS accordingly.
if S2 ≥ CMELS[i+q′−1] then

MELS[i+q′−1]← q′′

if S2 > CMELS[i+q′−1] then
CMELS[i+q′−1]← S2

if PR[q′] = 1 then
PRS[q′]← i

PR[q′]← i
q ← q−1

Figure 4: Computing MELS and CMELS from the prefix array π.
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Figure 5: The maximum number of operations performed by the Border-Based (ECB)
[12] and Prefix-Based (ECP) algorithm (i.e., Compute_MEC) to compute the Mini-
mum Enhanced Cover array, for all strings on the binary alphabet.
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Figure 6: Ratio of the total number of operations performed by the Border-Based
(ECB) [12] and Prefix-Based (ECP) algorithms to the length n of the string, for all
strings on the binary alphabet. Note the linear behaviour of ECP compared to the
supralinear behaviour of ECB.
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