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Abstract. We study a central problem of string processing: the compact representation of a string
by its frequently-occurring substrings. In this paper we propose an effective, easily-computed
form of quasi-periodicity in strings, the frequency cover; that is, the longest of those repeating
substrings u of w, |u| > 1, that occurs the maximum number of times in w. The advantage of this
generalization is that it is not only applicable to all strings but also that it is the only generalized
notion of cover yet proposed, which can be computed efficiently in linear time and space. We
describe a simple data structure called the repeating substring frequency array (RSF array) for
the string w, which we show can be constructed in O(n) time and O(n) space, where |w| = n.
We then useRSF to compute all the frequency covers of w in linear time and space. Our research
also allows us to give an alternate algorithm to compute all non-extendible repeating substrings
in w, also in O(n) time and space.
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1. Introduction

In 1990 the idea of a “cover” or “quasiperiodicity” was introduced in [1] and later published in [2]: a
cover of a string w = w[1..n] is a proper substring u of w such that w can be constructed from possibly
overlapping instances of u. For example, the string w = ababaaba has a cover u = aba. Although
strings having covers are succinctly defined by their covers, such strings are rare. To generalize the
notion of covers an enhanced cover of a string was proposed in [3]. An enhanced cover of w = w[1..n]
is a non-empty border of w that covers the maximum number of positions possible by any border of
w. For example, w = abaaabaabaaaaba has an enhanced cover u = aba covering a maximum of
12 positions. Several linear-time algorithms have been proposed to compute covers [4], [5], [6], [7]
(updated in [8]), and enhanced covers [3], [8]. However, the expected maximum length of any border
of any prefix of a string is approximately 1.64 for binary alphabets, and this number decreases with
larger alphabet sizes [8]. Therefore, given a random string it is unusual for a string to have a non-empty
border, and therefore to have an enhanced cover.

Given the need for a generalized notion of covers which is applicable to all strings, in [9] the
α-partial cover was proposed. An α-partial cover of a string w, α ≤ n, is the shortest substring u
of w covering at least α positions in w. For example, given the string w = ccabaacabaacabaaaba
and α = 15, cabaa is the 15-partial cover of w as it covers α = 15 positions in w. The same
paper [9] also shows that computing α-partial covers for all values of α can be done in O(n log n)
time using annotated suffix trees, thereby avoiding the need to guess an appropriate α value. In
this paper we introduce a notion of the cover of a string which is based on its frequently occurring
substrings (Section 3). An advantage of this definition is that it is not only applicable to all strings, but
can be computed efficiently using simple data structures in linear time and space. In fact it is the only
generalized notion of cover that is computable in linear time and space.

The outline of the paper is as follows: in Section 2 we introduce the terminology. Next, in Sec-
tion 3, we define the main concept of the paper, the frequency cover, and the repeating substring
frequency array (RSF) data structure to compute it. We also give a linear time algorithm to compute
RSF , and use it to compute the frequency cover(s) in linear time and space. In Section 4 we sum-
marize the results of the experiments conducted on many sample strings to compute their frequency
covers, and the percentage of positions covered by them. Finally in section 5 we give a linear algo-
rithm using the inverseRSF array (IRSF) to compute all non-extendible repeating substrings in the
given string.

2. Definitions

A string is a finite array w[1..n] whose entries w[i], 1 ≤ i ≤ n, are drawn from a finite set of totally
ordered symbols Σ, called an alphabet. The length of w is written |w| = n. A string w[i..j] is a
substring of w[1..n] if 1 ≤ i ≤ j ≤ n. A substring w[i..j] is a proper substring of w if j − i+ 1 < n.
A prefix of w is a substring w[i..j], where i = 1. A suffix of w is a substring w[i..j], where j = n. The
suffix starting at index i is called suffix i. A suffix array SAw of w is an integer array of length n, where
SAw[i] is the starting position of the i-th lexicographically least suffix in w. The longest common prefix
array LCPw of string w is an integer array of length n, where LCP[i], 1 < i ≤ n, is the length of the
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longest common prefix of suffixes SAw[i−1] and SAw[i]. We assume that LCPw[1] = 0. The inverse
suffix array ISAw of w is an integer array of length n, where ISAw[i] is the lexicographic ranking
of suffix i in w. The inverse longest common prefix array ILCPw of a string w is an integer array
of length n, where ILCPw[i] = LCPw[ISAw[i]], 1 ≤ i ≤ n. We use SA,LCP, ISA and ILCP
(without the subscript w) when there is no ambiguity. Similarly for other arrays defined below.

We define the frequency fw,u of a non-empty substring u in a string w, to be the number of times
the substring u occurs in the string w. For example, in the string w = abababa, the substrings ab, ba
and aba all occur three times in w, and their frequencies are fw,ab = 3, fw,ba = 3 and fw,aba = 3,
respectively. A repeating substring u in a string w is a substring u of w that occurs more than once;
that is, fw,u ≥ 2. A repeating substring of w is left (right) extendible if every instance of its occurrence
in w is preceded (followed) by the same symbol, otherwise it is non-left (non-right) extendible, NLE
(NRE) for short. For example, in the string w = ccabaacabaacabaaab, the repeating string aba is both
left and right extendible because its every occurrence is preceded by c and followed by a. A repeating
substring of w is said to be non-extendible (NE) if and only if it is not left or right extendible. For
example in the string w = ccabaacabaacabaaab, the repeating substring cabaa is non-extendible. In
this paper, whenever we speak of a repeating substring, we mean an NRE repeating substring.

3. Frequency Cover in Strings

We now define the main concept of this paper. A frequency cover of w is the longest of those repeating
substrings u of w, |u| > 1, that occurs the maximum number of times in w.

For example in w = abababa, the substring aba is the frequency cover of w, occurring three
times, as do the shorter substrings ab and ba. Note that a frequency cover is not unique. Consider
the string w = ababcdcd. It has two frequency covers ab and cd. Moreover, not all strings have a
frequency cover. For example w = abcdefgh does not have a frequency cover. Note that we require
the frequency covers of a string to be of length greater than one, as computing frequencies of each
distinct letter in the string is quick and easy, at least on an ordered alphabet of reasonable size (simply
scan the string from left to right and count the number of occurrences of each distinct letter).

Our definition of frequency cover requires that the repeating substring be longest; that is, we are
interested in the longest frequency cover. We can define the shortest frequency cover as the shortest of
those repeating substrings u of w, |u| > 1, that occurs the maximum number of times in w. However,
from Lemma 3.1 the longest frequency cover always covers more number of positions than the shortest
frequency cover. Since we are interested in covers covering more number of positions, we are always
interested in the longest frequency cover.

Lemma 3.1. Suppose x and y are the longest and shortest frequency covers of w respectively. Then x
always covers more positions in w than y does.

Proof:
Since both x and y are frequency covers, fw,x = fw,y. Observe that the shortest frequency cover y will
always be of size two; that is, |y| = 2. For if |y| > 2, any substring of y of length two would have the
same frequency as that of y in w and be shorter than y, thus contradicting the assumption that y is the
shortest frequency cover.



4 Neerja Mhaskar & W. F. Smyth / Frequency Covers for Strings

For x to cover fewer positions than y does, some occurrences of x in w must overlap. Note that
the overlap between any two instances of x cannot be greater than b x

2c as it would create a repetition
in x which leads to x not being the frequency cover – a contradiction. Therefore, x = vav (where a is
a symbol). Additionally a is non-empty as otherwise it would create a repetition in x which leads to x
not being the frequency cover – a contradiction. If |v| > 1, then v would be the frequency cover and
not x. Therefore, |x| = 3. Note that the least positions covered by x is when all occurrences of x in
w overlap. However, assuming this worst case, x, where |x| = 3, still covers one more position in w
than y does. Therefore, it is not possible for a shortest frequency cover to cover more positions than
the positions covered by the longest frequency cover. ut

3.1. Computing theRSF array

We propose a new data structure in order to efficiently compute frequency covers:

Definition 3.2. (RSF array)
The “repeating substring frequency array”RSF of w is an integer array of length n, whereRSF [i]
is the frequency of the repeating substring of length LCP[i] starting at index SA[i] in w; that is, the
repeating substring w[SA[i] . . .SA[i] + LCP[i]− 1].

To compute the RSF array, we use the next smaller value of the LCP array NSVLCP , and the
next smaller value of the reverse LCP array NSVLCPR , defined by LCPR[i] = LCP[n − i + 1],
1 ≤ i ≤ n.

Definition 3.3. (Next smaller value of an array A (NSVA))
Given a non-negative integer array A[1..n], the next smaller value of A (NSVA) is an integer array of
length n, where NSVA[i], 1 ≤ i ≤ n, is defined as follows:

1. if A[i] = 0 then NSVA[i] = 0

2. otherwise, NSVA[i] = j, where

(a) for every h ∈ [1..j − 1], A[i] ≤ A[i+ h], and

(b) either i+ j = n+ 1 or A[i] > A[i+ j].

This definition differs from the standard definition of NSV [10] in its handling of zero values in
A. For various approaches to compute the standardNSV array see [11]. See Figure 1 for an example.

In a suffix array all suffixes having identical prefixes are grouped together (appear contiguously),
and as a result they are grouped together in the LCP array. In this group when there is an increase in
the LCP value going from index i to i + 1, the longest common prefix at index SA[i] and of length
LCP[i] also occurs at SA[i + 1]. In fact, this holds for any substring identified by the LCP array
before index i in this group. For example, in Figure 1 when the LCP value increases going from index
four to five, the longest common prefix at SA[4]; that is, aba also occurs at SA[5]. Similarly, the
substring ‘a’ occurring at SA[2] and length 1 < LCP[5] also occurs at SA[5].

When there is a drop in the LCP value between index i and i + 1, all the substrings of length
greater than LCP[i + 1] no longer appear in the subsequent suffixes in the suffix array; therefore
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

w a b a c a b a b a c a b a c a b a

SA 17 15 5 11 1 7 13 3 9 16 6 12 2 8 14 4 10

LCP 0 1 3 3 7 7 1 5 5 0 2 2 6 6 0 4 4

NSVLCP 0 8 4 3 2 1 3 2 1 0 4 3 2 1 0 2 1

LCPR 4 4 0 6 6 2 2 0 5 5 1 7 7 3 3 1 0

NSVLCPR 2 1 0 2 1 2 1 0 2 1 6 2 1 2 1 1 0

RSF 0 9 5 5 3 3 9 3 3 0 5 5 3 3 0 3 3

Figure 1. NSVLCP , NSVLCPR and RSF array (computed using Algorithm 1) values computed for w =
abacababacabacaba.

we can safely stop counting the occurrences of these repeating substrings. For example, in Figure 1
LCP[7] = 1 implies that the repeating substrings aba and abacaba no longer appear in the subsequent
suffixes in the suffix array, and therefore we no longer need to count their occurrences.

Recall that NSV[i] is the number of positions after index i where the value of LCP first drops.
As seen above, it also marks the index past which the repeating substring at SA[i] does not occur.
Therefore, NSV[i] is the total number of following occurrences of the substring starting at index
SA[i] and length LCP[i].

Note that NSV[i] is not equal to the frequency of the repeating substring occurring at SA[i] in
w. To compute its frequency, we need to compute the total number of its previous occurrences in
the suffix array before index i. By simply counting its following occurrences there is a possibility
of missing its previous occurrences. This could happen when the repeating substring is followed by
a subword having smaller lexicographical rank and at other times followed by symbols with higher
lexicographical rank.

Counting the previous occurrences is the same as counting the occurrences of this repeating sub-
string forward inLCPR. Therefore, we computeNSVLCPR analogous to computingNSVLCP . Since
by definition LCP[i] = LCPR[n − i + 1], NSVLCPR [n − i + 1] is equal to the number of previous
occurrences of the substring w[SA[i]..SA[i]+LCP[i]−1]. Hence, adding the valuesNSVLCP [i] and
NSVLCPR [n− i+ 1] gives the frequency of the repeating substring w[SA[i]..SA[i] + LCP[i]− 1],
and this value is recorded in RSF [i] as seen in Algorithm 1. In view of this discussion, we claim the
correctness of Algorithm 1, as stated in Lemma 3.4. Figure 1 shows the NSVLCP , NSVLCPR and
RSF array values computed for w = abacababacabacaba.

Based on the above discussion, we propose Algorithm 1 to computeRSF as follows:

1. First we compute NSVLCP [i], thus counting the number of following occurrences of the sub-
string of w starting at SA[i] and of length LCP[i] in the LCP array.

2. We then computeNSVLCPR [n− i+1], thus counting the previous occurrences of the substring
of w starting at SA[i] and of length LCP[i] in the LCP array.
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3. The total number of occurrences RSF [i] of the substring starting at SA[i] and length LCP[i]
equals the total number of following and previous occurrences of the substring in w, as shown
in Algorithm 1.

Algorithm 1 Algorithm for computingRSF Array
procedure COMPUTE RSF ARRAY() . Precomputed NSVLCP and NSVLCPR

i← 1
while i ≤ n do
RSF [i] = NSVLCP [i] +NSVLCPR [n− i+ 1]
i← i+ 1

Lemma 3.4. Algorithm 1 correctly computes the frequency of all NRE repeating substrings in w.

Lemma 3.5. Algorithm 1 executes in linear time and space in the length of the string.

Proof:
From [11],NSVLCP andNSVLCPR can both be computed inO(n) time and space. Since computing
RSF does simple addition and has a single while loop, it also executes in linear time and space. ut

3.2. Algorithm to computeRSF optimized for space (RSF∗)

By Lemma 3.5, Algorithm 1 executes in O(n) space. To be precise, the space required for computing
Algorithm 1 is 9n bytes for storing w,LCP andNSVLCP , 8n bytes for storingLCPR andNSVLCPR ;
in addition, storing these results in RSF array requires an additional 4n bytes, thus summing to 21n
bytes. Each entry in stack is 4 bytes, and the largest number of entries in stack is the maximum depth
of the suffix tree – thus O(n) in the worst case.

However, expected depth on an alphabet of size α > 1 is 2 logα n [12]. Thus even for α = 4 (DNA
alphabet size), expected space for stack is 4 log4 n bytes — if n = 420, the expected stack space would
be 80 bytes. Thus in practice, the stack space requirement is negligible. Therefore, the expected space
requirement for Algorithm 1 is 21n bytes. This can be significantly and easily reduced to 9n bytes,
by simply not explicitly storing the LCPR,NSVLCP and NSVLCPR arrays. In particular, we can
store the computed NSVLCP values directly in RSF , then compute NSVLCPR values and add it to
an appropriate element in RSF . Furthermore, to avoid unnecessary duplication, we set RSF [i] = 0
whenever there exists i′ < i such that LCP[i′] = LCP[i] and w[SA[i′]..SA[i′] + LCP[i′] − 1] =
w[SA[i]..SA[i]+LCP[i]−1]. For the sake of clarity from this point on we denote theRSF optimized
for space and time as discussed above asRSF∗.

We propose Algorithm 2 to compute NSVLCP optimized for space for RSF∗. It is similar to
the algorithm proposed to compute NSV using a stack [11], with a few minor modifications: instead
of storing the values in a separate NSVLCP array, we store these values directly in RSF∗ array.
Furthermore, to avoid unnecessary duplication, when the identified substring at SA[i] is identical to a
substring previously identified by the LCP array, we set RSF∗[i] = 0. Note that after Algorithm 2



Neerja Mhaskar & W. F. Smyth / Frequency Covers for Strings 7

Algorithm 2 Algorithm to compute NSVLCP RSF∗

procedure COMPUTE NSVLCP RSF∗() . Precompute LCP array
i← 1
top← 0
Empty stack
while (i ≤ n) do

if (stack.isempty()) then stack.push(i)
else

top← stack.top()
if (LCP[top] < LCP[i]) then stack.push(i)
else if (LCP[top] == LCP[i]) thenRSF∗[i]← 0
else

while LCP[top] > LCP[i] do
RSF∗[i]← i− top
stack.pop()
top← stack.top()

if (LCP [top] == LCP [i] and LCP [i] 6= 0) thenRSF∗[i]← 0
else

stack.push(i)

i← i+ 1

Compute NSV stack RSF∗

procedure COMPUTE NSV STACK RSF∗()
while (!stack.isempty()) do

top← stack.top()
if (LCP[top] == 0) thenRSF∗[top]← 0
else
RSF∗[top]← n+ 1− top

stack.pop()

Figure 2. Compute NSV stack RSF∗ procedure to compute NSV for elements remaining in the stack
after scanning LCP from left to right in Algorithm 2.

executes, the RSF∗ array contains only partial values, as we still need to compute the NSVLCPR

values and add these to the appropriate element in theRSF∗ array.
Note that Algorithm 2 with its modifications does not compute NSVLCPR correctly. To address

this, we propose Algorithm 3. Algorithm 3 computes the NSVLCPR similar to [11], but has the
following differences:

1. Since we are interested in computingNSV for LCPR we scan the LCP array from right to left.
Therefore we begin with i = n instead of i = 1.
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Algorithm 3 Algorithm to computeRSF∗

procedure COMPUTE RSF∗() . Precompute LCP array
COMPUTE NSVLCP RSF∗()
Empty stack
i← n
top← 0
while (i ≥ 1) do

if (stack.isempty()) then stack.push(i)
else

top← stack.top()
if (LCP[top] ≤ LCP[i]) then stack.push(i)
else

top← stack.top()
while (!stack.isempty() and (LCP[top] > LCP[i]) do

ifRSF∗[top] 6= 0 then
RSF∗[top]← RSF∗[top] + top− i

stack.pop()
top← stack.top()

stack.push(i)

i← i− 1

2. After Algorithm 3 executes, the LCP values and consequently the RSF∗ values of all the
indices in the stack are zero. Since Algorithm 2 already computes these RSF∗ values, and to
avoid duplication, we do not compute these values again.

3. Since Algorithm 3 is primarily for computing the RSF∗ array, the computed NSVLCPR [top],
1 ≤ i ≤ n, value (top−i) is added toRSF∗[top] to get the frequency of the repeating substring
w[SA[top]..SA[top] + LCP[top]− 1].

Figure 3 shows the NSVLCP , NSVLCPR , and RSF∗ array values computed for the string w =
abacababacabacaba after executing Algorithms 2 and 3. From the discussion above and because the
modifications to theNSV algorithm in [11] are minor we claim the correctness of Algorithms 2 and 3,
and we get the following lemmas.

Lemma 3.6. Algorithms 2 and 3 correctly compute the frequencies of all NRE repeating substrings
in w.

Lemma 3.7. Algorithms 2 and 3 execute in O(n) time and require a total of 9n bytes of space.

3.3. Computing frequency covers usingRSF∗ array

We propose Algorithm 4 to compute the frequency cover of w using the RSF∗ array. The outline of
Algorithm 4 is as follows: firstly, we assume that SA, LCP , and RSF∗ arrays are precomputed. We
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

w a b a c a b a b a c a b a c a b a

SA 17 15 5 11 1 7 13 3 9 16 6 12 2 8 14 4 10

LCP 0 1 3 3 7 7 1 5 5 0 2 2 6 6 0 4 4

NSVLCP 0 8 4 0 2 0 0 2 0 0 4 0 2 0 0 2 0

NSVLCPR 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0

RSF∗ 0 9 5 0 3 0 0 3 0 0 5 0 3 0 0 3 0

Figure 3. NSVLCP , NSVLCPR and RSF∗ array values computed for w = abacababacabacaba by Algo-
rithms 2 and 3. Note that, NSVLCP values are stored in RSF∗. And, NSVLCPR [i] values are computed and
added to the existingRSF∗[i].

do a left to right scan of the RSF∗ array, and while doing so we maintain an integer array of length
n, called FC, which stores the starting index of all the local frequency covers. By the end of the scan,
FC stores the starting indices of all the frequency covers of w. In the example shown in Figure 3, the
string w has just one frequency cover aba covering 14 of 17 positions in w.

procedure OUTPUT FREQUENCY COVERS(k)
i← 1
index← 1
while (i ≤ k) do

index = FC[i]
Output Frequency cover pairs: (SA[index],SA[index] + LCP[index]− 1])
i← i+ 1

Figure 4. Algorithm to output frequency covers. The FC array is assumed to be precomputed and available.

As part of proving the correctness of algorithm 4, we state and prove Lemmas 3.8 – 3.10.

Lemma 3.8. If for some i ∈ [1..n], LCP[i] > 0, then the substring w[SA[i]..SA[i] + LCP[i]− 1] is
an NRE repeating substring of w.

Proof:
The proof is by contradiction. Suppose LCP[i] > 0 and the substring w[SA[i]..SA[i] + LCP[i]− 1]
is right extendible. Then by definition every occurrence of w[SA[i]..SA[i] +LCP[i]− 1] is followed
by the same symbol. Since w[SA[i]..SA[i] + LCP[i] − 1] is a substring of w all its occurrences
are prefixes of distinct suffixes. Since SA orders the suffixes of w lexicographically, all suffixes
with w[SA[i]..SA[i] + LCP[i] − 1] as the prefix appear contiguously in SA. By definition LCP
identifies the longest common prefix between two adjacent suffixes in SA, in which case it would
identify w[SA[i]..SA[i] + LCP[i]] as the repeating substring. This contradicts our assumption that
w[SA[i]..SA[i] + LCP[i]− 1] is a repeating substring identified by LCP and is right extendible. ut
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Algorithm 4 Algorithm for computing all frequency covers of a string
procedure COMPUTE FREQUENCY COVERS() . Precompute, SA, LCP ,RSF∗

max frequency ← 1
max cover length← 1
next pointer ← 0 . Stores the total no. of frequency covers at i-th iteration
i← 1
while i ≤ n do

if (RSF∗[i] > 1 and LCP[i] > 1) then
if (RSF ∗[i] > max frequency) then

max frequency = RSF∗[i]
max cover length = LCP [i]
next pointer ← 1
FC[next pointer]← i

else if (RSF∗[i] == max frequency) then
if (max cover length == LCP [i]) then

next pointer ← next pointer + 1
FC[next pointer]← i

else if (max cover length < LCP [i]) then
max cover length← LCP [i]
next pointer ← 1
FC[next pointer] = i

i← i+ 1

Output Frequency Covers(next pointer)

Let M be the maximum of the frequencies of all substrings in w. Let the substrings that occur M
times; that is, having frequency M , be S = {S1, S2, . . . , Sk}. Let L be the maximum length of any
substring in S . Recall that for a string w to have a frequency cover, M > 1 and L > 1, which we
therefore assume.

Lemma 3.9. Suppose V is the set of all NRE repeating substrings of w. If u ∈ V, where fw,u = M
and |u| = L, then u is an NE repeating substring of w.

Proof:
The proof is by contradiction. Suppose u is a left extendible repeating substring of w. Then every
occurrence of u in w is preceded by the same symbol (say a ∈ Σ). Then by definition, fw,u = fw,au =
M . Since u is an NRE repeating substring, au is also an NRE repeating substring, and au ∈ V, where
|au| > L. But this contradicts our assumption that |u| = L, where L is the maximum length of a
substring occurring M times in w. Therefore u is an NE repeating substring. ut
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Lemma 3.10. u is a frequency cover of w⇔ u is an NE repeating substring of w, where |u| = L and
fw,u = M .

Proof:
(⇐) Proof of this direction follows from the definition of frequency cover.
(⇒) Proof of this direction is by contradiction. Let u be a frequency cover of w. Then |u| = L and
fw,u = M by definition. Suppose u is right extendible (or left extendible). This means that every
occurrence of u is succeeded (or preceded) by the same symbol (say a ∈ Σ). But then, ua (or au) of
length > L is the frequency cover and not u – a contradiction. ut

Theorem 3.11. Algorithm 4 correctly computes all frequency covers in the given string w.

Proof:

By Lemma 3.8 and 3.9, Algorithm 4 stores only those NE repeating substrings of length L and
frequency M in w. By Lemma 3.10, these NE repeating substrings represent all the frequency covers
of the string w. Therefore Algorithm 4 correctly computes all the frequency covers in w. ut

Theorem 3.12. Algorithm 4 computes all the frequency covers in the given string w inO(n) time and
space.

Proof:
By Lemma 3.5 it is clear that Algorithm 4 can be computed in O(n) time. The space required for
Algorithm 4 is 17n bytes for storing w,SA,LCP,RSF∗ and FC arrays. This can be easily reduced
to 13n bytes by merging Algorithms 3 and 4 and not storingRSF∗ explicitly. ut

Furthermore, the space required by FC array is rarely n for large strings over small alphabet (e.g.,
DNA Sequences). Therefore this reduces the space requirement further; for all practical purposes
computing frequency covers takes 9n bytes.

4. Experimental results

In order to get some idea of the effectiveness/utility of frequency covers, we computed the frequency
covers of sample strings found at

http://www.cas.mcmaster.ca/~bill/strings/.

The results are summarized in Table 5. In the table the % of positions covered by the frequency cover
is based on the assumption that no two instances of the frequency cover in the string overlap. When
the % of positions covered by a frequency cover is more than 100, it implies that the frequency cover,
covers the entire string and also some of its occurrences overlap. For example, the frequency cover
ata for some of the Fibonacci strings seen in Table 5 cover the entire string. In fact it is observed that
when the Fibonacci string ends with a t the frequency cover is at and covers a certain percent of the
string. However, when the the Fibonacci string ends with an a the frequency cover of the string is ata
which covers the entire Fibonacci string. Note that in the table, the sample run-rich strings are highly
periodic string and are explained in [13].

http://www.cas.mcmaster.ca/~bill/strings/
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Text Type Description No. of
letters (n) σ

Frequency
Cover occ

% PC
(computed

based on
no overlap) ≤

DNA Chromosome
19

63,811,650 4 TT 4,762,324 14.93

Chromosome
22

34,553,757 4 CA 2,646,891 15.32

Escherichia coli
genome (E.coil)

4,638,689 4 gc 383,734 16.54

Protein Protein
sequences

1,048,575 20 LL 11,829 2.26

2,097,151 20 LL 24,046 2.29
4,194,303 20 LL 45,471 2.17
8,388,607 20 XX 204,436 4.87
16,777,215 20 XX 204787 2.44
33,554,431 20 AA 357107 2.13

Highly
Periodic

Fibonacci
strings

2,178,308 2 ata 832,040 114.6

3,524,577 2 at 1,346,269 76.4
5,702,886 2 ata 2,178,309 114.6
9,227,464 2 at 3,524,578 76.4
14,930,351 2 ata 5,702,887 114.6

Run-rich
strings [13]

2,851,442 2 at & ta 2,851,443 76.4

12,078,907 2 at & ta 4,613,732 76.4

Random 4,194,303 2 aa 1,049,423 50.04
8,388,607 2 at & ta 2,097,319 50
4,194,303 21 in 9814 0.47
8,388,607 21 om 19,424 0.46

English King James
bible

4,047,391 63 th 148,979 7.36

LINUX howto
files

39,422,104 197 (two
contigu-
ous spaces)

2,881,448 14.62

Figure 5. Experimental results – FC denotes frequency cover, occ denotes no. of occurrences of the frequency
cover in the string, and % PC denotes the percentage of positions covered computed based on no overlap.
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5. Computing non-extendible repeating substrings in strings usingRSF

It turns out thatRSF can be used to compute all the non-extendible repeating substrings in w. These
data structures are important in bioinformatics applications; algorithms to compute them were de-
scribed in [14, 15, 16] using suffix trees or suffix arrays. We introduce the inverseRSF array IRSF
to compute all non-extendible repeating substrings in w.

Definition 5.1. (IRSF array)
The “inverse repeating substring frequency array” IRSF of w of length n is an integer array of
length n, where IRSF [i] = RSF [ISA[i]].

To compute all non-extendible repeating substrings in w we need the ILCP and IRSF arrays pre-
computed; these can be easily computed from the ISA, LCP andRSF arrays, respectively, in linear
time and space. We propose Algorithm 5 to compute all non-extendible repeating substrings in w

Algorithm 5 Algorithm to compute NE repeating substrings in a string w
procedure COMPUTE NE() . Precompute ILCP and IRSF arrays

if IRSF [1] 6= 0 then
Output NE repeating substring pair: (1, ILCP[1])

i← 2
while (i ≤ n) do

if IRSF [i] 6= 0 then
if !(IRSF [i] == IRSF [i− 1] && ILCP[i] + 1 == ILCP[i− 1]) then

Output NE repeating substring pair: (i, i+ ILCP[i]− 1)

i← i+ 1

outlined as follows:

1. We scan the IRSF array from left to right.

2. If IRSF [1] 6= 0, then it implies that the prefix of w of length ILCP[1] is an NRE repeating
substring. From Lemma 5.2, it is also an NE repeating substring. Therefore we output the
integer pair corresponding to this substring. The first and second integers of this pair correspond
to the starting and ending index of the NE repeating substring.

3. For all IRSF [i] > 0, 2 ≤ i ≤ n, we check if the substring at i is left extendible. If it is not left
extendible we output the starting and ending indices of the repeating substring in w.

Lemma 5.2. Suppose u is an NRE repeating substring of w. If u is a prefix of w then u is an NE
repeating substring.

Proof:
The proof is by contradiction. Suppose u is left extendible. Then, by definition each occurrence of
u in w is preceded by the same symbol. However, u is a prefix of w, and this occurrence of u has
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no preceding symbol. This contradicts our assumption that u is a left extendible repeating substring.
Since u is both an NRE and NLE repeating substring, it follows that u is an NE repeating substring.

ut

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

w a b a c a b a b a c a b a c a b a

SA 17 15 5 11 1 7 13 3 9 16 6 12 2 8 14 4 10

LCP 0 1 3 3 7 7 1 5 5 0 2 2 6 6 0 4 4

RSF 0 9 5 5 3 3 9 3 3 0 5 5 3 3 0 3 3

ISA 5 13 8 16 3 11 6 14 9 17 4 12 7 15 2 10 1

ILCP 7 6 5 4 3 2 7 6 5 4 3 2 1 0 1 0 0

IRSF 3 3 3 3 5 5 3 3 3 3 5 5 9 0 9 0 0

NE X X X NE X NE X X X NE X NE X NE X X

Figure 6. ISA, ILCP and IRSF array values computed for w = abacababacabacaba. ‘NE’ stands for
non-extendible repeating substring and ‘X’ stands for left-extendible repeating substrings.

Lemma 5.3. Suppose u = w[i..j] and u′ = w[i− 1..j], 2 ≤ i < n, are two NRE repeating substrings
of w. If fw,u = fw,u′ , then u is left extendible.

Proof:
The proof is by contradiction. Suppose u is an NLE repeating substring. Then by definition there
is at least one occurrence of u which is not preceded by the symbol u′[1]. But this contradicts our
assumption that fw,u = fw,u′ . Therefore, u is left extendible. ut

The correctness of Algorithm 5 follows from Lemmas 3.8, 5.2 and 5.3. It is easy to see that Algo-
rithm 5 can be computed in O(n) time and space. Consequently, we get Theorems 5.4 and 5.5.

Theorem 5.4. Algorithm 5 correctly computes all NE repeating substrings of w.

Theorem 5.5. Algorithm 5 computes all NE repeating substrings of w in O(n) time and space.

Note that there are other linear time algorithms proposed to compute non-extendible repeating sub-
strings in a string that are more space efficient [16]. We present this algorithm to show the usefulness
of theRSF data structure.
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6. Conclusions

The advantage of the frequency cover introduced in the paper is that it is applicable to all strings and
can be computed in linear time as opposed to the other generalized notion of cover — the α-partial
cover [9] which can be computed in O(n log n) time. Additionally, its computation does not make
use of space consuming annotated suffix trees. However, the frequency cover has a drawback. The
frequency cover does not always cover the maximum number of positions possibly covered by any
repeating substring. For example, in w = abacababacabacaba, the frequency cover of w is aba which
covers 14 of 17 positions in w. However, the substring abacaba covers a total of 17 positions in w, thus
covering the entire string. Although [9] shows that computing the α−partial cover of a given string for
all values of α can be computed in O(n log n) time, it has the disadvantage of using annotated suffix
trees. Therefore there still remains a need for a notion of an “optimal cover” that not only is applicable
to all strings but that also is a substring covering a maximum number of positions in the given string,
and that can be computed efficiently.
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