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Abstract: A partial cover of a string or sequence of length n,

which we model as an array x = x[1..n], is a repeating substring u

of x such that “many” positions in x lie within occurrences of u. A

maximal cover u* — introduced in (Mhaskar and Smyth, 2018b)

as optimal cover — is a partial cover that, over all partial covers

u, maximizes the positions covered. Applying data structures intro-

duced in (Mhaskar and Smyth, 2018b), our software MAXCOVER

for the first time enables efficient computation of u* for any x – in

particular, as described here, for protein sequences of Arabidopsis,
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2 1 INTRODUCTION

C. elegans, D. melanogaster and humans. In this protein context,

we also compare an extended version of MAXCOVER to existing

software (MUMmer’s repeat-match) for the closely related task of

computing non-extendible repeating substrings (a.k.a. maximal re-

peats). In practice, MAXCOVER is an order-of-magnitude faster

than MUMmer, with much lower space requirements, while produc-

ing more compact output that nevertheless yields a more exact and

user-friendly specification of the repeats.

1 Introduction

As introduced in (Apostolico and Ehrenfeucht, 1990, 1993), a cover of a given

string x = x[1..n] is a proper substring u of x such that every position of

x lies within an occurrence of u. For example, u = aba is a cover of x =

ababaaba. Even though all the covers of every prefix of x are computable in

O(n) time (Li and Smyth, 2002), nevertheless, since very few strings possess

a cover, related generalizations of cover have been proposed that also yield a

compressed representation of x and are more useful in practice: such as the

k-cover (Iliopoulos and Smyth, 1998), α-partial cover (Kociumaka et al., 2015),

frequency cover (Mhaskar and Smyth, 2018a), and enhanced cover (Flouri et al.,

2013, Alatabbi et al., 2016). The survey (Mhaskar and Smyth, 2021) provides

further detail.

We are particularly interested in a maximal cover (a.k.a. optimal cover)

(Mhaskar and Smyth, 2018b), a substring u of x that occurs at least twice and

that, over all such substrings, covers a maximum number of positions — this

computation requires O(n log n) time and Θ(n) space.

Thus, in general, covers provide more information about a string and its

structure than repeats. We can therefore use covers to study sequence structures
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and compression, while requiring less storage/processing. However, covers are

hard to compute. Hence, genome-wide analyses of repeats have been limited

largely due to the difficulty of identifying maximal covers on a large scale. In this

paper we implement and describe MAXCOVER, the first software to compute

maximal covers for a given string, then apply it to compression of numerous

protein sequences.

Section 2 of this paper introduces the required terminology and symbolism.

In Section 3 we present a simple outline of the Maximal Cover (MC) algorithm1,

describing its implementation on arbitrary strings. Section 4 describes the appli-

cation of MC to protein sequences, in particular those in which very long covers

are identified. Then in Section 5 we display the efficiency and adaptability of

our software by comparing a modified version of MAXCOVER that computes

non-extendible repeating substrings with existing software (MUMmer)

for the same task. Along with other advantages, MAXCOVER executes an

order-of-magnitude (typically 20+ times) faster. Section 6 outlines future work.

2 Preliminaries

A string is a finite array x = x[1..n] of letters chosen from a totally ordered

set Σ, called an alphabet, of cardinality σ = |Σ|. The length of x is |x| = n.

The empty string ε is a string of length zero. The string x[i..j] is a substring

of x[1..n] iff 1 ≤ i ≤ j ≤ n, a proper substring iff j − i+ 1 < n, a prefix of x

for i = 1, a suffix for j = n. The suffix starting at index i is called suffix i. A

border of x is a proper substring of x that is both prefix and suffix; thus, every

string has the empty border ε. For example, x = ababaaba has borders aba, a

and ε.

1The only algorithm currently implemented to compute the maximal cover of given x.
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The frequency fx,u of a substring u in x is the number of times u occurs in

x; if fx,u > 1, then u is said to be a repeating substring in x. Let u1 and u2

be occurrences of u in x ; if u has one or more nonempty borders, then it may

happen that u1 and u2 overlap. For example, abcabcab is an overlap of 2 for

u1 = u2 = abcab resulting from the border ab of length 2.

A repeating substring u of w is left (right) extendible if every instance

of u in w is preceded (followed) by the same symbol, otherwise it is non-left

(non-right) extendible. For example, in the string w = ccabaacabaac, the

repeating string aba is both left and right extendible because its every occurrence

is preceded by c and followed by a. A repeating substring of w is said to be

non-extendible (NE, a.k.a. maximal repeat)2 if and only if it is non-left and

non-right extendible . For example inw = ccabaacabaac, the repeating substring

cabaac is non-extendible.

A repetition is a string of the form x = ue, where e ≥ 2. For example,

x = abaaba = (aba)2 is a repetition. If w is not a repetition, it is said to be

primitive.

A string x is an overlapping string if x = utv, and ut = tv, and u, t, v ̸= ε.

Each position in x that occurs within a repeating substring u of x is said

to be covered by u. Hence:

• Let M denote the maximum number of positions in w covered by any re-

peating substring of w. Then a longest (shortest) maximal cover u is a

longest (shortest) repeating substring of w that covers M positions.

This definition identifies both a longest and a shortest substring because

both may be of interest: the longest could provide more information about the

structure of w, while the shortest is more compact. In this paper we consider

2This definition is commonly referred to in literature as ‘maximal repeat’ (Gusfield et al.,
1997), but for the sake of clarity we use the term ‘NE repeat’ (Smyth, 2003), to avoid confusion
with ‘maximal cover’.
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the longest throughout; as noted in Section 3, the change to shortest is trivial.

Algorithm MC depends on several important integer arrays of length n com-

puted from the given string x[1..n], of which the first two, both computable in

O(n) time, are well known:

• In the suffix array SAx, SAx[i] is the starting position of the i-th lexico-

graphically least suffix (that is, i-th in dictionary order) in x.

• In the longest common prefix array LCPx, LCPx[1] = 0 and LCPx[i],

1 < i ≤ n, is the length of the longest common prefix of the suffixes of x

starting at SAx[i− 1] and SAx[i].

Three others, the first and last also computable in linear time, the second,

OLP, in time O(n log n)3, were more recently introduced:

• In the repeating substring frequency array RSFx (Mhaskar and Smyth,

2018a), RSF [i] is the frequency in x of the substring of length LCP[i]

starting at index SA[i] in x; that is, the substring x[SA[i] . . .SA[i] +

LCP[i]− 1]. Note that for LCP[i] = 0, RSF [i] = 0.

• In the overlapping positions array OLPx (Mhaskar and Smyth, 2018b),

OLP[i] is the total number of positions that are overlapping (‘total over-

lap’ ) over all occurrences of the substring u = x[SA[i]..SA[i]+LCP[i]−1]

in x. Note that for LCP[i] = 0, OLP[i] = 0.

• In the repeating substring positions covered array RSPCx (Mhaskar

and Smyth, 2018b), RSPC[i] is the number of positions covered by the

repeating substring u of length LCP[i] that occurs at SA[i]; zero other-

wise. Note that the value of RSPC[i] depends upon prior computation of

OLP[i].
3See the discussion of algorithmic complexity vs. execution time at the end of Section 3.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

x A D A Q A D A D A Q A D A Q A D A

SA 17 15 5 11 1 7 13 3 9 16 6 12 2 8 14 4 10

LCP 0 1 3 3 7 7 1 5 5 0 2 2 6 6 0 4 4

RSF∗ 0 9 5 0 3 0 0 3 0 0 5 0 3 0 0 3 0

OLP∗ 0 6 1 0 4 0 0 1 0 0 0 0 2 0 0 0 0

RSPC 0 9 14 0 17 0 0 14 0 0 10 0 16 0 0 12 0

Figure 1: SA, LCP, RSF∗, OLP∗ and RSPC arrays computed for the string
x = ADAQADADAQADAQADA.

We illustrate these arrays in Figure 1 using the invented protein

x = ADAQADADAQADAQADA, identical in structure to the example

abacababacabacaba in (Mhaskar and Smyth, 2018b).

To understand this better, consider position i = 3:

• SA[2] = 15, refers to the suffix x[15..17] = ADA

• SA[3] = 5, refers to the suffix x[5..17] = ADADAQADAQADA.

• LCP[3] = 3, tells us that the longest common prefix of x [15..17] and x [5..17]

is of length 3, thus ADA.

• RSF [3] = 5, the number of occurrences of ADA in x.

• OLP[3] = 1, the total overlap among all 5 occurrences of ADA in x.

• RSPC[3] = (3 ∗ 5)− 1 = 15− 1 = 14, the total number of positions covered

by all occurrences of ADA in x.
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3 Computing Maximal Covers with MAXCOVER

In this section we present the very simple pseudocode of MAXCOVER: Algo-

rithm MC operating on a given string x — in fact, this algorithm processes only

the SA, LCP and RSPC arrays that have already been computed from x in a

preprocessing phase. It computes all of the maximal covers: there may in an

extreme (and uninteresting) case be O(n) of them.

Algorithm 1: Computing all Maximal Covers of a String
(Based on Algorithm 4 from (Mhaskar and Smyth, 2018b))

max pc← 1;
max cover length← 0;
i← 1;
MCList← Empty;
while i ≤ n do

if (RSPC[i] > 1) then
if (RSPC[i] > max pc) then

max pc = RSPC[i];
max cover length = LCP[i];
MCList← Empty;
Add i to MCList;

end
if (RSPC[i] = max pc) then

if (max cover length = LCP[i]) then
Add i to MCList;

end
if (max cover length < LCP[i]) then

max cover length← LCP[i];
MCList← Empty;
Add i to MCList;

end

end

end
i← i+ 1;

end
Output MCList ;

The algorithm scans the RSPC array from left to right. During this scan it

maintains local maximal covers in a list called MCList. At the end of the scan
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all the maximal covers for x are stored in MCList, which can in constant time

be updated by a new entry or emptied entirely using an integer pointer. Thus

the while loop executes n times with constant time for each execution, and so

Algorithm 1 runs in O(n) time. Since it uses only the SA,LCP,RSPC and

MCList arrays, altogether occupying 16n bytes, it also requires O(n) space.

Therefore, we state:

Theorem 1 ( (Mhaskar and Smyth, 2018b)). All maximal covers of a string

w = w[1..n] can be computed in O(n) time and space given the precomputed

RSPC array.

Based on the analysis given in (Mhaskar and Smyth, 2018b), we have claimed

above that OLP is computable in O(n log n) time, hence RSPC and maximal

covers also require O(n log n) time. However, the version of MAXCOVER tested

here is based on an O(n2) implementation. The reasons for this are as follows:

• The O(n log n) implementation of OLP is complex and difficult.

• Over randomly-generated strings, the worst-case quadratic MAXCOVER

executes in linear time on average.

• Moreover, we anticipate that, due to its avoidance of complex data struc-

tures, the quadratic version will in fact execute faster on average than the

O(n log n) version.

These results are in preparation for future publication.

Note, the shortest maximal cover for a given string w can be computed

by trivially modifying Algorithm 1 to store the shortest substring (instead of

the longest substring) covering the maximum number M of positions. To our

knowledge, MAXCOVER is the only software currently available to compute

the maximal cover of given x.
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4 Applying MAXCOVER to Protein Sequences

In this section we describe the application of MAXCOVER (Algorithm 1) to

the identification of repeats in protein sequences.

4.1 Repeats in Proteins

Repeating amino acids in protein sequences are a common cause of variations in

protein length. These repeats are often functional domain repeats that provide

organisms with the opportunity to develop and adapt new functions within the

domain. Knowledge of such repeats are necessary for computing alignments, to

understand diseases, and for an understanding of protein function and evolution.

Alignments of protein sequences are extremely difficult to do correctly across

repeats since an accurate alignment can only be determined when the repeats

differ in some substitutions. Some repeats are the cause of human diseases.

For example, Huntington’s disease is caused by the expansion of CAG repeats.

Repeats are also critically important for protein evolution. Most large proteins

are caused by the duplication of smaller segments. The duplication often copies

a functional domain, creating two copies of this domain. While one copy carries

out the original function, the second copy is free to adapt to a new altered

function.

In large proteins such as Titin (see below), the protein has evolved by the

hierarchical duplication of repeats, by sequence divergence of these repeats and

then followed by more cycles of duplication and divergence. Finding the maxi-

mal cover within such proteins is challenging.
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Figure 2: MAXCOVER output to compute the maximal cover of protein x =
ADAQADADAQADAQADA.

4.2 MAXCOVER computing Maximal Covers

While computing the maximal covers, MAXCOVER outputs the length of the

string, a maximal cover u*, the length of u*, the number of positions u* covers

in x, the percentage of positions u* covers in x, and the time elapsed to compute

u*. See Figure 2 for a simple example.

4.3 Data

We acquired protein data from the NCBI (National Center for Biotechnology

Information) databases. We chose proteins from four taxonomically distinct

model organisms and collected the entire complement of proteins from these

organisms. We used FASTA files of the protein sequences for four species:

Arabidopsis thaliana (48,265 protein sequences), Caenorhabditis elegans (28,350

protein sequences), Drosophila melanogaster (30,717 protein sequences), and

Homo sapiens (116,263 protein sequences). To ensure good quality sequences,

proteins that contained unknown amino acids (X’s) were removed from the

dataset. The proteins processed ranged in size from 20 to 100,000 amino acids.

To provide a good representative sample and to avoid excessive run times,

we sampled 10,000 protein sequences per species, thus altogether 40,000. This

ensured that the time required for testing was less than thirty minutes. The

sequences were chosen randomly using the Python random.sample function4.

4https://docs.python.org/3/library/random.html
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4.4 Experimental Results

Representative examples of maximal covers for each of the four taxa are shown

in Tables 1 – 4 (see Appendix 6), which use amino acids (aa) as the unit

of measure for the length of the strings. As expected C. elegans had the least

extensive repetitive proteome while Homo sapiens had the most extensive repet-

itive proteome. Nevertheless, a maximal cover of length 33 is a highly repeated

substring within the C. elegans proteome, being repeated 83 times. It can be

seen that within C. elegans the maximum number of positions covered occurs

at an intermediate cover length (30-39aa) and the maximum percent coverage is

also at an intermediate length (30-39aa). With Arabidopsis again the maximum

number of positions covered occurs at an intermediate cover length (20-29aa)

and the maximum percent coverage at 70-79aa. For D. melanogaster the max-

imum number of positions covered is for a cover of 50-59aa and the maximum

percent coverage is at 400-699. For humans, both of these occur with large cov-

ers of length 700-799aa and 600-699aa. A possible reason for this discrepancy

is that with the large population size of C. elegans only smaller protein repeats

can exist before mutations destroy their similarity but within the historically

much smaller human population large repeats can survive due to higher amounts

of random genetic drift fixing the repeats before mutations can disrupt them.

This hypothesis could be tested by more extensive applications of MAXCOVER

and carefully chosen data. For instance, a comparative data sampling could be

chosen where the population genetics is better understood.
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5 Performance Evaluation of MAXCOVER

Since, as noted above, MAXCOVER is currently the only software available

for the computation of maximal covers, we needed to find another basis for

evaluating its efficiency. To do this, we made use of the fact that NE repeats

and maximal covers are both computed using identical data structures: we

made minor extensions to MAXCOVER so that it also computed NE repeating

substrings.

We were thus able to test MAXCOVER against an existing alignment tool

MUMmer (Marcais et al., 2018), that computes NE repeats in order to iden-

tify a minimum match length for a given genome. Although the primary soft-

ware functions are different — MAXCOVER computes maximal covers whereas

MUMmer is an alignment tool — we can assess MAXCOVER’s performance by

comparing its computation of NE repeats to that of MUMmer.

5.1 Machine Specifications

The MAXCOVER software was developed in C++ and run on a Microsoft

Windows 10 Pro (10.0.19042 Build 19042) machine with Intel(R) Core(TM)

i9-10980XE CPU @3.00GHz (3000 Mhz, 18 Cores, 36 Logical Processors) and

CORSAIR Vengeance RGB PRO 128GB (4x32GB) DDR4 3600 (PC4-28800)

RAM. Testing was performed on an Ubuntu Virtual Machine (Oracle VM Vir-

tualBox Manager) with 81804MB Base Memory and 18 CPUs. The implemen-

tation used for SA array is by Yuta Mori5 (Nong et al., 2011), LCP array by

Simon Puglisi (Puglisi and Turpin, 2008), and RSF array by Neerja Mhaskar

(Mhaskar and Smyth, 2018a). The software was made available on Github6 as

an open-source software.

5https://sites.google.com/site/yuta256/
6https://github.com/hollykoponen/MAXCOVER
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Figure 3: MUMmer’s repeat-match output to compute the NE repeat of x=
ADAQADADAQADAQADA.

5.2 MUMmer’s repeat-match

The program repeat-match fromMUMmer uses suffix-trees to identify maximal

exact repeat regions of a given minimum match length for a given genome. (See

Figure 3.) The output of repeat-match has three columns: Start1 and Start2

specify the starting positions of exact matching region pairs, while the last

column gives the length of the region. Note that if the given minimum match

length was ‘2’ then only lines 1-9 would be returned.

We discovered that repeat-match does not report redundancies consistently.

In Figure 3 lines 3-4 report the start positions {1, 7, 11} of length 7, while in

line 5, positions {1, 7} are redundantly repeated. However, when we look at

lines 6-9, the pair (5, 15) is not redundantly reported. Similarly, we know that

at x [11..17] = ADAQADA, so we know x [11..13] = ADA, but position 11 is

not reported between lines 6-9. Therefore, repeat-match does not consistently

report redundancies and/or all repeat-matches.
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Figure 4: MAXCOVER output to compute the NE repeat of the string x =
ADAQADADAQADAQADA.

5.3 MAXCOVER computing NE repeating substrings

Figure 4 shows the corresponding output from MAXCOVER. It has a more

condensed format: ‘NE Substring Repeat #’ is a label for the non-extendible

substring region to differentiate between matching regions of the same length;

‘Length’ is the length of the substring region; and ‘Position’ is a list of the

start positions of the substring regions in x. This format consistently reports

all occurrences and uses a condensed tabular format.

Titin is the longest protein known. It is composed of 363 exons which are

joined together to form the complete protein. (Bang et al., 2001) It is a struc-

tural protein used in the formation of muscles. We applied MAXCOVER to

identify the top ten longest non-extendable repeats in this protein. Despite

being the longest protein and a highly repetitive protein, there are only a maxi-

mum of four repeats of length 37 amino acids within the top ten longest. There

are more numerous repeats in much smaller proteins within C. elegans (see ta-

ble 1). Given the highly repetitive nature of titin, the small number of repeats

might indicate that sequence divergence has occurred among the repeats. This

suggests that a future variant of the current software that includes approximate

matches would be useful. The software might then identify many more long

repeats within this protein.
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Substring Repeat Length Position

1 138 12529, 12780
2 110 12418, 12669
3 108 12220, 12471
4 88 12329, 12580
5 87 12329, 12580, 12831
6 48 12171, 12422, 12673
7 37 12175, 12426, 12677, 13040
8 33 12411, 12997
9 29 12917, 12973
10 28 12417, 12919

Figure 5: MAXCOVER output to compute the top ten longest NE repeating
substrings of NP 001254479.2 titin isoform IC [Homo sapiens].

5.4 Comparing MAXCOVER & MUMmer’s repeat-match

We compare the output of MUMmer’s repeat-match and of MAXCOVER in

Table 5. Repeat-match took 29.5 minutes to compute the NE substring regions,

whereas MAXCOVER required only 1.25 minutes – faster by a factor of more

than 20. This difference in speed is no doubt largely due to the use of suffix

trees by repeat-match, whereas MAXCOVER uses suffix arrays. In terms

of accuracy, repeat-match does not report every pair of start positions for

matching regions, whereas MAXCOVER reports all start positions for matching

regions. As we have seen, the output of repeat-match is lengthy and makes

it difficult to recognize useful information, whereas MAXCOVER is condensed

and it is clear which set of positions refer to the same region.
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6 Conclusions & Future Work

MAXCOVER is the only software that we are aware of that computes a maximal

cover. We show that the MAXCOVER software, when compared to MUMmer’s

repeat-match, is an order-of-magnitude faster and has much lower space re-

quirements (largely due to the construction of simpler data structures such as

suffix arrays), produces a more compact output, and yields a more exact and

user-friendly specification of the repeats.

Future development and application of MAXCOVER include the following:

• Improve the complexity of a maximal cover computation from O(n2) to

O(n log n) based on the analysis in (Mhaskar and Smyth, 2018b);

• Extend MAXCOVER to accommodate approximate matching under edit

distance, so as to consider approximate alignments in two or more se-

quences;

• Apply MAXCOVER to strings arising in contexts other than bioinformat-

ics, such as information security or image analysis.
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Appendix

Tables

Table 1: Examples of maximal covers for C. elegans proteins within a particular
range of maximal cover lengths computed using MAXCOVER.

MC-length
range

protein ID
protein
length

MC-length
positions
covered

% coverage
time to
compute

1 NP 001254049.1 3963 117 1 14 11 % 0.311 ms
2 NP 001024113.1 1693 73 2 16 21 % 0.244 ms
3 NP 001255514.1 4822 43 3 6 13 % 0.267 ms
4 NP 001368117.1 12245 76 4 8 10 % 0.26 ms
5 NP 001309530.1 8612 98 5 10 10 % 0.292 ms
6 NP 496365.2 17882 98 6 18 18 % 0.362 ms
7 NP 001334228.1 8988 351 7 114 32 % 0.595 ms
8 NP 494447.1 16558 604 8 256 42 % 1.561 ms
9 NP 001337314.1 9082 80 9 18 22 % 0.283 ms

10 - 19 NP 506718.2 24803 74 13 26 35 % 0.381 ms
20 - 29 NP 001257068.1 6103 223 24 96 43 % 0.454 ms
30 - 39 NP 001350976.1 9553 3317 33 2739 82 % 16.846 ms
40 - 49 NP 001368148.1 12271 826 41 160 19 % 1.46 ms
50 - 59 NP 503527.1 22569 274 57 145 52 % 0.624 ms
60 - 69 NP 493059.2 15693 468 64 74 15 % 0.74 ms
70 - 79 NP 001033466.2 2263 257 75 95 36 % 0.511 ms
80 - 89 - - - - - -
90 - 99 - - - - - -
100 - 199 NP 494641.2 16683 677 105 168 24 % 1.341 ms
200 - 299 NP 494430.2 16543 626 219 339 54 % 1.299 ms
300 - 399 NP 493601.2 16025 4647 378 1134 24 % 12.724 ms
400 - 499 - - - - - -
500 - 599 - - - - - -
600 - 699 - - - - - -
700 - 799 NP 001366805.1 11196 13083 768 1536 11 % 54.72 ms

aa Length of protein sequences and maximal covers are measured in amino acids (aa).
ms Time to compute measured in milliseconds (ms).
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Table 2: Examples of maximal covers for D. melanogaster proteins within a
particular range of maximal cover lengths computed using MAXCOVER.

MC-length
range

protein ID
protein
length

MC-length
positions
covered

% coverage
time to
compute

1 NP 001260924.1 8063 369 1 38 10 % 0.687 ms
2 NP 001285973.1 11292 43 2 6 13 % 0.252 ms
3 NP 001261881.2 8903 51 3 6 11 % 0.245 ms
4 NP 524256.1 15218 62 4 28 45 % 0.351 ms
5 NP 001285816.1 11135 66 5 10 15 % 0.25 ms
6 NP 001262537.1 9508 126 6 60 47 % 0.424 ms
7 NP 523815.2 14812 1334 7 172 12 % 2.876 ms
8 NP 609716.2 18399 78 8 24 30 % 0.361 ms
9 NP 572939.1 16848 185 9 59 31 % 0.488 ms

10 - 19 NP 729001.2 26993 241 14 92 38 % 0.458 ms
20 - 29 NP 476941.2 13802 111 25 33 29 % 0.421 ms
30 - 39 NP 650373.1 22567 173 33 66 38 % 0.478 ms
40 - 49 NP 572186.1 16259 407 44 176 43 % 0.75 ms
50 - 59 NP 610937.4 19403 4011 52 1404 35 % 11.068 ms
60 - 69 - - - - - -
70 - 79 NP 729000.2 26992 414 79 158 38 % 0.742 ms
80 - 89 NP 647938.1 20661 431 88 221 51 % 0.75 ms
90 - 99 NP 572306.1 16355 300 97 173 57 % 0.592 ms

100 - 199 NP 996410.1 30113 1583 184 318 20 % 3.744 ms
200 - 299 - - - - - -
300 - 399 - - - - - -
400 - 499 NP 727078.1 26214 533 456 532 99 % 0.821 ms
500 - 599 - - - - - -
600 - 699 NP 995994.1 29765 762 684 760 99 % 1.579 ms

aa Length of protein sequences and maximal covers are measured in amino acids (aa).
ms Time to compute measured in milliseconds (ms).

Table 3: Examples of maximal covers for Arabidopsis proteins within a
particular range of maximal cover lengths computed using MAXCOVER.

MC-length
range

protein ID
protein
length

MC-length
positions
covered

% coverage
time to
compute

1 NP 001031361.2 685 653 1 67 10 % 1.182 ms
2 NP 001332341.1 20487 26 2 4 15 % 0.232 ms
3 NP 850977.1 46441 58 3 6 10 % 0.325 ms
4 NP 001031813.1 1106 35 4 7 20 % 0.279 ms
5 NP 001329516.1 17663 66 5 10 15 % 0.334 ms
6 NP 172240.1 21498 44 6 12 27 % 0.304 ms
7 NP 189459.1 30049 111 7 14 12 % 0.377 ms
8 NP 001322312.1 10459 124 8 24 19 % 0.31 ms
9 NP 001321372.1 9520 68 9 15 22 % 0.353 ms

10 - 19 NP 568552.1 43794 321 19 57 17 % 0.543 ms
20 - 29 NP 001323842.1 11989 564 24 360 63 % 1.64 ms
30 - 39 NP 174445.1 23044 463 31 53 11 % 0.801 ms
40 - 49 NP 195887.2 34639 371 48 96 25 % 0.536 ms
50 - 59 NP 001154390.2 4083 744 57 114 15 % 1.278 ms
60 - 69 NP 176714.4 24533 318 61 122 38 % 0.72 ms
70 - 79 NP 001328999.1 17146 152 76 152 100 % 0.408 ms
80 - 89 NP 001325858.1 14005 411 89 159 38 % 0.695 ms
90 - 99 - - - - - -

100 - 199 NP 849291.1 44918 228 152 228 100 % 0.425 ms
200 - 299 NP 851029.1 46486 305 228 304 99 % 0.643 ms
300 - 399 NP 173553.1 22430 430 304 332 77 % 1.026 ms

aa Length of protein sequences and maximal covers are measured in amino acids (aa).
ms Time to compute measured in milliseconds (ms).
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Table 4: Examples of maximal covers for human proteins within a particular
range of maximal cover lengths computed using MAXCOVER.

MC-length
range

protein ID
protein
length

MC-length
positions
covered

% coverage
time to
compute

1 XP 006716126.1 69540 707 1 79 11 % 1.304
2 NP 001341932.1 30631 70 2 22 31 % 0.326
3 NP 006266.2 48075 343 3 77 22 % 0.512
4 NP 001135954.1 6750 67 4 8 11 % 0.318
5 XP 011524892.1 80014 474 5 50 10 % 0.744
6 NP 009048.1 48830 241 6 36 14 % 0.427
7 XP 016882728.1 107042 389 7 42 10 % 0.633
8 NP 001340727.1 29802 403 8 64 15 % 0.718
9 XP 016882449.1 106829 602 9 63 10 % 0.936

10 - 19 NP 001334947.1 25817 515 18 108 20 % 1.047
20 - 29 XP 005255792.1 64442 395 27 54 13 % 0.55
30 - 39 NP 001159711.1 8644 317 33 50 15 % 0.541
40 - 49 NP 001123991.1 5873 605 44 88 14 % 1.179
50 - 59 XP 011521003.1 78175 893 55 110 12 % 1.671
60 - 69 NP 031372.2 49017 676 64 124 18 % 1.041
70 - 79 XP 016883383.1 107510 557 78 139 24 % 1.118
80 - 89 XP 016878127.1 103859 533 85 170 31 % 0.787
90 - 99 NP 001375298.1 41921 1110 94 188 16 % 1.81
100 - 199 XP 011529785.1 82360 528 116 232 43 % 0.841
200 - 299 XP 011514536.1 75210 597 292 365 61 % 0.958
300 - 399 XP 011537716.1 86000 1782 327 456 25 % 4.41
400 - 499 XP 011509528.1 72895 7795 485 970 12 % 22.539
500 - 599 - - - - - -
600 - 699 NP 066289.3 53510 684 608 684 100 % 1.46
700 - 799 NP 001289300.1 18913 3794 724 1692 44 % 13.823
800 - 899 NP 056198.2 50743 2818 893 1137 40 % 8.226

aa Length of protein sequences and maximal covers are measured in amino acids (aa).
ms Time to compute measured in milliseconds (ms).

Table 5: Comparison between MUMmer’s repeat-match and MAXCOVER
software to compute NE substrings on a random sample of 40,000 protein
sequences.

MUMmer repeat-match MAXCOVER
Data

Structure
Suffix Trees Suffix Arrays

Time Slower (29 min. 28 sec.) Faster (1 min. 15 sec.)

Accuracy
Does not report every pair of start
positions for matching regions

Reports ALL start positions for
matching regions

Output
Format

Lengthy; Hard to decipher useful
information

Condensed; Clear which set of
positions refer to the same region
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