
Fundamenta Informaticae 189(3) : 229–257 (2022) 229
Available at IOS Press through:
https://doi.org/10.3233/FI-222160

String Covering: A Survey

Neerja Mhaskar∗

Department of Computing and Software

McMaster University

1280 Main Street West, Hamilton, ON L8S 4L8, Canada

pophlin@mcmaster.ca

W.F. Smyth†

Department of Computing and Software

McMaster University

1280 Main Street West, Hamilton, ON L8S 4L8, Canada

smyth@mcmaster.ca

Abstract. The study of strings is an important combinatorial field that precedes the digital com-
puter. Strings can be very long, trillions of letters, so it is important to find compact representa-
tions. Here we first survey various forms of one potential compaction methodology, the cover of
a given string x, initially proposed in a simple form in 1990, but increasingly of interest as more
sophisticated variants have been discovered. We then consider covering by a seed; that is, a cover
of a superstring of x. We conclude with many proposals for research directions that could make
significant contributions to string processing in future.

Keywords: strings, quasiperiodicity, covers, seeds

∗Address for correspondence: Department of Computing and Software, McMaster University, 1280 Main Street West,
Hamilton, ON L8S 4L8, Canada.
†This research was funded by NSERC [Grant No. 10536797].

Received Novemver 2022; accepted September 2023.

230 N. Mhaskar and W.F. Smyth / String Covering: A Survey

1. Introduction

A string (as computer scientists call it) or word (as mathematicians call it) is just a sequence x =
x[1..n] of n ≥ 0 entries drawn from a finite set of letters called an alphabet, usually denoted by Σ.
Stringology — or combinatorics on words — has existed as a field of scientific enquiry for more than
a century, dating back to Axel Thue’s foundational paper in 1906 [1]. Thue showed that infinitely
long strings could be constructed, even on a small alphabet, so as to avoid certain simple patterns.
This suggests that it could be difficult, at least in some cases, to extract meaning (represented for
example by recurring patterns) from a given text. Indeed, from its inception, stringology has been
deeply concerned with the presence or absence of patterns in strings [2, 3].

In particular, the recognition [4] that the DNA of all organisms is to a first approximation a string
on an alphabet Σ = {a, c, g, t} has over the last 70 years led to a huge and exponentially increas-
ing bioinformatics literature that deals essentially with the application of stringology to fundamental
biological research — the search for biologically significant patterns.

In this survey we follow the study of one of these patterns — the “cover” u of a string x — from
its initial definition [5] as a “quasiperiodicity” (every position in x lies within an occurrence of u) to
more flexible concepts, 30 years later, defined in terms of a repeating substring u whose occurrences
maximize, over all repeating substrings of x, the positions covered — and which, moreover, can
be efficiently computed. More generally, we also discuss methods to find a “seed” of x — that
is, a repeating substring u of x that covers a string w which contains x as a substring [6, 7] —
a more general computation that nevertheless, can often be competitive in terms of execution time.
Thus, potentially, the covers/seeds of a string x could provide a comprehensive, compact and usefully
organized representation of x that would assist in its interpretation and processing.

For those not familiar with the terminology of strings, Section 2 provides basic definitions. Then
Section 3 gives an overview of the advances (and occasional retreats) in the various extensions of the
idea of a “cover” and their application to some kind of canonical representation of a string. Section 4
goes on to deal with the often non-trivial generalization of covering algorithms to seeds. Finally,
Section 5 outlines future research directions that may lead to more useful and precise characterizations
of the representative “patterns” contained in a given text.

2. Preliminaries

We consider strings x = x[1..n], where each entry x[i] consists of one or more distinct symbols
(letters) chosen from a set Σ = {λ1, λ2, ..., λσ} of finite size σ = |Σ|, called an alphabet. It is often
convenient to suppose that the elements of Σ are ordered. Every entry x[i] that consists of a single
letter from Σ is said to be regular; if every position in x is regular, then so is x. However, if any x[i]
consists of a set of two or more letters from Σ, such as {a, c, t} or {1, 3}, then both x[i] and x are said
to be indeterminate. A partial word is a commonly-occurring special case of an indeterminate string
whose entries are either single letters or Σ itself (usually termed a hole and denoted as ∗). Strings
whose indeterminate entries also specify a likelihood that each symbol will occur are called weighted
— these typically occur in bioinformatics applications. For example, a single letter {a, 30; c, 40; t, 30}
would indicate that a/c/t is expected to occur 30/40/30 % of the time, respectively.

N. Mhaskar and W.F. Smyth / String Covering: A Survey 231

Thus any English-language text is a regular string on some Σ consisting of 52 upper and lower
case letters, 10 numeric digits, space, and a variety of special symbols — and so, for English, σ may
be as much as 90. On the other hand, an indeterminate string could be a DNA fragment such as
x = {a, c}g{g, t}c on alphabet Σ = {a, c, g, t}, some of whose entries ({a, c}, {g, t}) are not well
defined or somehow optional. The results presented in this survey, unless otherwise indicated, are
restricted to regular strings.

The length of x[1..n] is |x| = n. Two regular strings x and y of length n are said to match if
x[i] = y[i], 1 ≤ i ≤ n1. The empty string ε is a string of length n = 0. A string x[i..j] is a substring
(or factor) of x[1..n] if 1 ≤ i ≤ j ≤ n, a proper substring if moreover j − i + 1 < n; when x is
regular, x[i..j] is said to be a repeating substring if it matches another substring of x— that is, if there
exists i′ 6= i and j′ ≤ n such that x[i′..j′] = x[i..j]. A repeating substring u is said to be extendible
if all occurrences of u in x are followed or preceded by the same letter; otherwise, nonextendible. If
x is a proper substring of a string w, then we say that w is a superstring of x. A prefix (suffix) of
nonempty x is a substring x[i..j], where i = 1 (j = n) — it is moreover convenient to suppose that
every nonempty x has the empty string as both prefix and suffix. The suffix starting at position i is
sometimes called suffix i. If x = uv for nonempty u, v, then x′ = vu is said to be a rotation of x.

Given x = x[1..n] on alphabet Σ, the Parikh vector P = Px[1..σ] of x is an integer array such
that, for 1 ≤ ` ≤ σ, P [`] is the number of occurrences of letter λ` in x. A string x consisting of r ≥ 1
concatenated copies of a string u is denoted by ur. Then x is said to be periodic with period |u| if it
can be represented as x = uru′, where u′ is a (possibly empty) prefix of u, and either r ≥ 2 and or
else r = 1 and u′ is not empty. In the former case (r ≥ 2), ur is said to be a repetition; any string
that is not a repetition is said to be primitive. A border of x is a proper prefix u′ of x that matches a
suffix of x; thus every nonempty string has an empty border. Note that if x has a nonempty border u′,
then x is necessarily periodic with period |x| − |u′|. Furthermore, if u′ is a border of x, then every
border of u′ is also a border of x. For example, the string x = ababaaba has borders aba, a and ε,
hence periods 8 − 3 = 5 and 8 − 1 = 7; and note that the shorter border a must also be a border of
the longer border aba.

The frequency fx,u of a substring u in a string x is the number of occurrences of u in x. In
the preceding example, choosing u to be the border aba, we see that fababaaba,aba = 3. In fact, we
observe that every position in x lies within an occurrence of u = aba. We formalize this idea with the
definition of a cover of x; that is, a repeating substring u in x such that every position in x lies within
an occurrence of u. In such a case we say that x is quasiperiodic. From the example x = ababababa,
we discover that a string may have more than one cover — in this case, u1 = aba, u2 = ababa,
u3 = abababa — such that, moreover, every longer cover ui is covered by every shorter one ui−1,
ui−2, . . . , u1. It is easy to see that every cover of x must also be a border of x; thus the set of covers
is a subset of the set of borders, and so contains at mostO(n) elements. The maximum is achieved by
x = an, which has n− 1 covers ai, 1 ≤ i ≤ n− 1; more generally, every repetition x = uk has k− 1
covers ui, 1 ≤ i < k.

As noted in the Introduction, it turns out to be useful to generalize the idea of a cover to that of
a seed; that is, a proper substring of x which is a cover of a superstring w of x [6, 7]. Then, for

1When at least one of x, y is indeterminate, we require for a match only that the intersection x[i] ∩ y[i] be nonempty.

232 N. Mhaskar and W.F. Smyth / String Covering: A Survey

example, the substring u1 = aba is a seed of x′ = abababab since, as we have just seen, it is a cover
of x = ababababa = x′a, a superstring of x′. An important difference between covers and seeds is
that the number of seeds of x may be Θ(n2): [8] gives the example x = ambambambam of length
n = 4m + 3, whose seeds include the Θ(m2) distinct substrings aibaj determined by the rule that i
and j assume all values 0 ≤ i, j ≤ m such that i+ j ≥ m.

In Section 3 we discuss the various (and successively more sophisticated) kinds of cover for strings
x that have been proposed over the last 30 years and outline the methodology for their computation. In
Section 4 we then go on to discuss the (often surprisingly different) methods proposed for computing
seeds. Many of these methods depend heavily on the data structures surveyed below.

We first explain an important extension of the idea of periodicity. A nonempty substring v =
x[i..j] = uru′ of x is said to be a run of period p = |u| in x if r ≥ 2, u′ is a possibly empty proper
prefix of u, and there exist no integers i′ ≤ i, j′ ≥ j such that

(1) x[i..j] is a proper substring of x[i′..j′]; and

(2) x[i′..j′] has period p.

Thus a run, denoted (i, j, p), is maximal: any extension left or right of v in x yields a substring that
is not a run of period p.

For example, the string x = abacababacabacaba contains runs x[5..9] = ababa = (ab)2a of
period 2, x[7..17] = abacabacaba = (abac)2aba of period 4, and x[1..13] = abacababacaba =
(abacab)2a of period 6. These runs represented as triples are r1 = (5, 9, 2), r2 = (7, 17, 4) and
r3 = (1, 13, 6), respectively. Note however that x[7..16] = (abac)2ab and x[10..17] = (caba)2 are
not runs because they are not maximal.

A suffix array SAx of x [9, 10, 11, 12] is an integer array of length n, where SAx[i] is the
starting position of the i-th lexicographically least (lexleast) suffix in x. (Thus an ordering of the
alphabet is required.) The longest common prefix array LCPx of x [9, 10, 13] is an integer array of
length n, where LCPx[1] = 0 and LCPx[i], 1 < i ≤ n, is the length of the longest common prefix
of suffixes starting at positions SAx[i − 1] and SAx[i]. Over the last quarter-century these data
structures, both of them now recognized [13, 11, 12, 14] to be efficiently computable in O(n) time,
have come to be used extensively in a wide variety of string algorithms: taken together they permit
equal substrings of x to be identified (since those substrings will naturally occur close together in the
sorted suffix array). For example, in Figure 1 the three occurrences of substring aba in x = abaababa
— starting at positions 1, 4 and 6 — occur conveniently close together in SA = SAx, identified by
SA[3..6] = 614. Furthermore, since LCP = LCPx is keyed to SA, the value LCP[4] = 3 tells us
that there are equal substrings of length 3 beginning at x[SA[3]] = x[6] and x[SA[4]] = x[1]. Thus
these two integer arrays of length n are powerful computational tools for the analysis of strings — for,
in a sense, determining their “meaning”.

The SA/LCP arrays provide compact storage for a more general structure, called the suffix tree of
x, denoted by ST = ST x. As shown in Figure 1, ST is a search tree with n leaf nodes representing
the n nonempty suffixes of x; each edge descending from each internal node represents a distinct letter
or substring, which are available in ascending lexicographic order. For example, the edges descending

N. Mhaskar and W.F. Smyth / String Covering: A Survey 233

1 2 3 4 5 6 7 8

x = a b a a b a b a

SAx = 8 3 6 1 4 7 2 5

LCPx = 0 1 1 3 3 0 2 2

RSFx = 0 5 5 3 3 0 3 3

OLPx = 0 0 0 1 0 0 0 0

0

1 2

a ba

7

ε

2

ababa

5

ba

8

ε

3

ababa

3
ba

6

ε

1
ababa

4

ba

Figure 1: Suffix array, LCP/RSF/OLP arrays and corresponding suffix tree for x = abaababa —
adapted from [14].

from node 0 in Figure 1 correspond to a and ba, the only possible prefixes of any suffix of x. At node 1,
the only possible continuations from a are ε, corresponding to position 8 in x, ababa, corresponding
to position 3, and ba, corresponding to one of positions 6, 1, 4. Thus a preorder traversal of ST x
yields the suffixes of x in ascending lexorder (exactly the entries referenced by SAx), while the path
from the root of the tree to each node spells out the common prefix to all of that node’s descendants in
ST x (exactly the entries in LCPx).

Like SAx and LCPx, ST x can be computed in O(n) time [2, Ch. 5.2], but nevertheless, as a
practical matter, its construction is much slower. Moreover, the tree structure, due to the requirement
for pointers and other auxiliary information, normally consumes much more space in computer mem-
ory. However, suffix trees are still used in many applications because the basic tree can be “annotated”
in various ways with information useful for processing. See however [15].

The suffix tree was first proposed and computed almost half a century ago [16], the suffix array 30
years ago [9]. Surveys of their computation and use are available in [14, 17, 18].

For definitions of the RSFx (Repeating Substring Frequency) and OLPx (Overlapping Posi-
tions) arrays, see Subsection 3.4.

3. Covers in strings

Before discussing the various forms of cover of a string, we pause to say a little more about the
border and the period. Given x[1..n], the array βx[1..n] is said to be the border array of x if βx[i]
is the length of the longest border of x[1..i], 1 ≤ i ≤ n. Thus for the example x = ababaaba,
βx = 00123123. We see that in this case βx provides quite a bit of information about x — in

234 N. Mhaskar and W.F. Smyth / String Covering: A Survey

fact, with a bit of logic, we can determine the exact structure of x from 00123123, which we could
characterize using two arbitrary letters λ1 and λ2: λ1λ2λ1λ2λ1λ1λ2λ1. Similarly, the period array
Px of x [19] is an integer array where Px[i] is the length of the shortest period of x[1..i], and its
dual the suffix period array Px,suf is defined such that Px,suf [i] is the length of the shortest period
of x[i..n]. For the above example x = ababaaba, Px = 12222555, Px,suf = 55333221.

Furthermore, β can be elegantly computed in Θ(n) time using a famous early (1974) string al-
gorithm [20], giving rise to the tantalizing idea that strings might somehow be organized into useful
equivalence classes according to some structural analysis. Of course, a little reflection tells us that,
alas, the border array will not satisfy this requirement: 000000000 is the border array of cabaababa,
caaaaaaaa, abcdefghi, and many other very diverse strings! In fact, as shown in [21], the expected
maximum length of the border of a string on a binary alphabet is only 1.64 letters — and this value of
course decreases precipitously as alphabet size increases.

Closely related to the border array is the prefix array of x; that is, an array π = π[1..n], where
πx[i] is the length of the longest substring at position i of x that matches a prefix of x. Thus, in the
above example x = ababaaba, πx = 80301301. It was shown in [22] that, on regular strings, the
border array and the prefix array are equivalent in the sense that each can be computed from the other.
However, on indeterminate strings, the prefix array retains its properties — in particular, identifying
all the borders of every prefix — whereas the border array does not [23].

A recent paper [24] by Iliopoulos & Radoszewski discusses subquadratic solutions to compute
both the quantum and deterministic border arrays (see Section 3.9) and the prefix array of partial
and indeterminate strings. They describe O(n

√
n log n)-time algorithms to compute these arrays

on partial words. Then they propose O(n
√
n)-time algorithms to compute the prefix array and the

quantum border array of an indeterminate string over a constant-sized alphabet. They also go on to
show that, provided the Strong Exponential Time Hypothesis (SETH) holds, no efficient algorithms
exist to compute both the quantum and deterministic border arrays, and prefix array of an arbitrary
indeterminate string over a general alphabet. As we discover below (Section 3.9), the cover array
computation is even more restricted. These results have recently been put to use in [25, 26], where the
prefix array, rather than the border array, has been introduced into the Knuth-Morris-Pratt (KMP, [27])
and Boyer-Moore (BM, [28]) pattern-matching algorithms, in order to do efficient pattern-matching
on indeterminate strings: for text of length n, pattern of length m, both indeterminate, KMP and BM
execute in O(m

√
mn) time.

3.1. Covers & cover arrays

In 1990 Apostolico and Ehrenfeucht [5, 29] introduced the idea of a cover of a string, defined in
Section 2, as a means of providing a description of some strings, at once more succinct and more
expressive: aba as a kind of abbreviation of ababaaba. They described an O(n log2 n) algorithm
to compute all the maximal quasiperiodic substrings of x, in particular x itself if quasiperiodic, a
result later improved by Iliopoulos and Mouchard [30], also Brodal and Pedersen [31], to O(n log n).
In 1991 Apostolico, Farach and Iliopoulos [32] described a linear-time algorithm to determine the
shortest cover of quasiperiodic x. Then Breslauer [33] published an on-line linear-time algorithm
to compute the minimum cover of each prefix of x, while Moore and Smyth [34, 35] described a

N. Mhaskar and W.F. Smyth / String Covering: A Survey 235

linear-time algorithm to compute all the covers of x itself. A recent paper [36] compares the run-
time of these latter three algorithms (AFI [32], B [33], MS [34, 35]), along with implementations of
several other generalizations of cover algorithms. Further, in [37] Iliopoulos and Park presented an
O(log log n)-time parallel algorithm to compute all the covers of x.

Finally, Li and Smyth [38] published an on-line linear-time algorithm to compute the cover array
γx[1..n] of x, specifying the longest cover of each prefix x[1..i] of x, zero for no cover. Since for
every cover u of x, any cover of u is also a cover of x, the cover array γ turns out to be an exact
analogy to the border array β, specifying all the covers of every prefix of x:

1 2 3 4 5 6 7 8 9 10 11 12 13

x = a b a a b a b a a b a a b

β = 0 0 1 1 2 3 2 3 4 5 6 1 5

γ = 0 0 0 0 0 3 0 3 0 5 6 0 5

Thus the cover array, even more precisely than the border array, can describe the structure of certain
strings x.

This observation suggests the possibility of inferring a string that corresponds to a given cover
array, first stated and solved in [39]: given a valid cover array γ of length n, find in linear time a
corresponding string x on an alphabet of minimum size whose cover array is γ. Then three years
later, in [40, 41], a remarkable linear-time algorithm was described that, for every valid γ, computes a
corresponding string on a two-letter alphabet.

In this context, a recent paper [42] shows that x, though not necessarily on a minimum alphabet,
can be determined in linear time from different kinds of repetitions or symmetries present in the string
— in particular, corresponding to a given valid border array, prefix array, or other features.

Unfortunately, far fewer strings have covers than have nonempty borders [21], so that the range of
application of the cover array is correspondingly limited. Even short strings on a small alphabet rarely
have a cover — for n = 4 and σ = 2, only four of 16 distinct nonempty strings have a cover — so
that for longer strings on a larger alphabet, almost always γx[i] = 0.

Nevertheless, almost 20 years after the publication of the cover array algorithm, two recent papers
have refocussed attention on cover computation by describing algorithms to compute covers, first of
every rotation, then of every substring, of a given string x:

• In [43, 44] Crochemore et al. first describe anO(n log n)-time algorithm to compute the shortest
cover of every rotation of x, then an O(n)-time algorithm to compute the shortest among these
covers. This result is further improved by the same authors in [45] where they propose an
O(n)-time algorithm for the same problem.

• In [46] the same authors preprocess x in O(n log n) time and space in order to be able to
compute, for any selected substring u = x[i..j] of x, both the shortest cover (in time
O(log n log logn)) and in addition all the covers (in time O(log n(log log n)2)).

These algorithms are complex, requiring not only computation of STx, but also of all the seeds of x.
For this latter calculation, they make use of a linear-time algorithm [8], discussed in Section 4, that

236 N. Mhaskar and W.F. Smyth / String Covering: A Survey

computes a linear encoding (a package representation) of the seeds — even though, as we have seen,
their occurrences may be quadratic in number.

Another recent development has also inspired renewed interest in forms of quasiperiodicity: the
generalization of pattern matching and periodicity under a Substring Consistent Equivalence Relation
(SCER) denoted by ≈. For strings x and y, [47] defines x ≈ y iff |x| = |y| and x[i..j] ≈ y[i..j]
for every 1 ≤ i ≤ j ≤ |x|. The authors then describe efficient pattern-matching using ≈ as well as
an analogue of Fine & Wilf’s periodicity lemma [48]. This work is followed up in [49], where the
cover array is defined for SCERs and existing shortest/longest cover array algorithms are appropriately
generalized.

On the other hand, another recent theoretical result provides a basis for understanding that quasiperi-
odic strings must be in some sense rare: Amir et al. [50] show that any two distinct quasiperiodic
strings of the same length must differ at more than one position (Hamming distance greater than one).

No doubt due to the scarcity of exact covers in strings, research in this area has for the last quarter
century focused on various forms of multiple or approximate cover, as discussed below.

3.2. k/λ-covers

In 1998 Iliopoulos and Smyth [51] introduced the k-cover problem: for given x and k > 1, determine
a covering set Ut,k = {u1,u2, . . . ,ut} of t substrings of x, each of length k, such that every position
of x lies within some element of Ut,k. For given k, let τk denote the minimum value of t (if it exists)
for which Ut,k is a covering set; in this case Uτk,k is said to be a minimum k-cover of x. For example,
given x = abaabbaaab and k = 2, U3,2 = {ab, aa, bb} and {ab, ba, aa} are minimum 2-covers of x
with τ2 = 3, while U3,3 = {aba, aab, baa} and {aba, aab, bba} are minimum 3-covers with τ3 = 3.
Observe that every k-cover must include the suffix and the prefix of length k; thus, whenever x has no
border of length k, τk ≥ 2 (if it exists). Of course of particular interest is the smallest value of k that
yields a minimum k-cover corresponding to the smallest τk. Thus in the above example, we would
prefer U3,2 to U3,3.

Also in [51] it was “proved” that, for given x, the minimum τk could be computed in polynomial
time, a result later found to be incorrect: in 2005 Cole et al. [52] showed that the problem of deter-
mining the cardinality τk of a minimum k-cover is NP-complete for every k ≥ 2. Nevertheless, in the
same paper [52], the authors described two O(n log n) algorithms that approximated the minimum
k-cover Uτk,k to within a logarithmic (log n) factor. Then in 2011 (Iliopoulos et al. [53]) presented
a polynomial-time algorithm to approximate Uτk,k to within a factor k. For more on this topic see
below, Section 3.6.

In [54, 55], summarized in [56], Guo et al. introduced the λ-covers problem, a parameterized
version of k-covers: for given positive integers k and λ, find if possible a set S = Sk,λ containing
exactly λ substrings of x, each of length k, such that the entries in S cover x. For an alphabet of size σ,
the authors presented anO(σkn2) algorithm that solved the problem for values 1, 2, . . . , k and fixed λ.
To facilitate an efficient solution, rather than suffix trees, the authors made use of the Equivalence Class
and Reversed Equivalence Class Trees (ECT, RECT), introduced in [57], to compute Sk,λ whenever
possible, still in O(n2) time. However, unfortunately, these results turn out to be incorrect, to an
extent that has not yet been made fully precise: in [36, p. 26] Czajka & Radoszewski describe a

N. Mhaskar and W.F. Smyth / String Covering: A Survey 237

counterexample which makes clear that the λ-covers, as defined in these papers, cannot be computed
in O(n2) time.

In [58] Radoszewski & Straszyński consider the special case λ = 2 of parameterized k-covers:
they describe an algorithm requiring O(n log1+o(1) n) time that, over all k, specifies all the pairs of
strings of length k that cover x[1..n]. Their algorithm generalizes to λ > 2, but with an order n
multiplicative increase in complexity for each increase in λ.

3.3. α-partial cover

In [59] Kociumaka et al. introduce the cover index C = C(x,u) of a string u within x; that is, the
number of positions in x covered by a repeating substring u, which is therefore called a partial cover
of x. For example, given x = abaababaabaab of length n = 13, C(x, aba) = 11 and C(x, ab) = 10
are the cover indices for partial covers aba and ab, respectively. For a given integer α ∈ 1..n, the
authors describe an algorithm, executing in O(n log n) time and Θ(n) space, to compute all shortest
substrings u of x such that C(x,u) ≥ α. Thus for the same example x and α = 10, the α-partial-
cover algorithm would return ab, the shortest substring covering at least 10 positions. For α = 11, it
would return aba. Only for the choice α = 15 would it return the full cover abaab of x.

However, to correct this deficiency, [59] goes on to describe the all-partial-covers algorithm, with
the same asymptotic time and space requirements, which computes the α-partial cover for all α ∈ 1..n.

This approach was the first to enable computation of a cover of x that is in some sense optimal
without requiring that it also be a border. The price paid for this achievement is that the algorithm
requires the use of the cover suffix tree – a suffix tree augmented with additional nodes and additional
values at each node – thus increasing both time and space requirements. This algorithm, among
others, was implemented in [36]. More recently, Radoszewski in [60] proposes a remarkable linear
time construction of the cover suffix tree data structure - thus showing that the all-partial-covers of a
given string can be computed in O(n)-time.

In [61] Flouri et al. introduced a restricted version of the partial cover called the enhanced cover:
that is, a border (rather than a repeating substring) of x that, over all borders, covers a maximum
number of positions in x. The authors showed that the enhanced cover could be computed in Θ(n)
time on regular strings. Alatabbi et al. [21] extended this idea to the minimum enhanced cover
(MEC); that is, the shortest border yielding maximum coverage. For example, the borders aba and
ababa are both enhanced covers of x = ababaaabababa, covering all but one position, but aba is
the MEC. In [21] an algorithm was proposed that, according to tests, performed somewhat faster in
practice, and that moreover, by using the prefix array rather than the border array for computation,
extended the cover calculation to indeterminate strings — resulting in an average-case O(n log n),
worst-case O(n2) algorithm. See also Section 4.1 for a discussion of the enhanced seed.

3.4. Maximal cover

Let M = Mx denote the maximum number of positions in x covered by any repeating substring
of x. Similar to the α-partial cover described in Section 3.3, [62] computes a maximal cover2 uM ,

2There called “optimal” cover.

238 N. Mhaskar and W.F. Smyth / String Covering: A Survey

a repeating substring of x that covers Mx positions. Since uM may not be unique, the algorithm
can return the longest or shortest uM , as required. Thus, if C(x,u) denotes the number of positions
covered by u, then Mx = C(x,uM). Note that M and uM can also be identified by the O(n log n)
all-partial-covers algorithm of Kociumaka et al. [59], described in the previous subsection.

The methodology of [62] avoids the use of suffix trees, employing instead only simple sorting and
runs. Central to this approach are theRSF andOLP arrays, introduced in [63] and [62], respectively.

TheRSFx (Repeating Substring Frequency) array is defined as follows: for 1 ≤ i ≤ n,RSF [i]
is the frequency in x[1..n] of the repeating substring of length LCP[i] that occurs (at least) at the two
positions SA[i− 1] and SA[i]; that is, the repeating substring

x[SA[i], ...,SA[i] + LCP[i]− 1].

Thus, in Figure 1,RSF [4] = RSF [5] = 3, together withRSF [[3] < 3 andRSF [6] < 3, tells us that
the substring, say u, of length LCP[4] = LCP[5] = 3 occurs exactly RSF [4] = 3 times altogether
in x at positions SA[3] = 3,SA[4] = 6,SA[5] = 1. In [63] a simple algorithm is described that
computesRSFx in Θ(n) time and space.

Consider a repeating substring u = x[SA[i]..SA[i] +LCP[i]− 1] in x of length ` = LCP[i] > 1
that occurs k > 1 times as identified by the maximal sequence LCP[i−1],LCP[i], ...,LCP[i+k−1].
Then the Overlapping Positions array OLP = OLPx[1..n] specifies, in entry OLP[i], the total
number of overlapping positions (overlaps) between consecutive occurrences of u in x — where
positions SA[i − 1],SA[i], ...,SA[i + k − 1] are not in general in ascending sequence and so must
somehow be ordered. For example, in Figure 1,OLP[4] = 1 tells us that theRSF [4] = 3 occurrences
of the substring u at positions SA[3..5] = 6, 1, 4 of length ` = LCP[4] = LCP[5] = 3 — that is, aba
— have exactly one position (i = 6) of overlap in x.

In [62] two algorithms are described to computeOLPx, one requiringO(n log n) time, which has
proved to be incorrect [64], and another requiringO(n2) time. In [64] two additionalOLP algorithms
are described, both requiring O(n2) time in the worst case, but both shown, based on experimental
evidence, to execute in linear time in the average case. Apart from OLP , all other computations
needed to compute the maximal cover require worst-case linear time.

In [65] Golding et al. apply an early O(n2) implementation MAXCOVER of the maximal cover
algorithm to protein sequences; surprisingly, they find significant compression in certain cases. Fur-
ther, a version of MAXCOVER, slightly modified to compute nonextendible repeating substrings, is
compared to existing software for this purpose, again in the context of protein sequences, and shown
to be an order-of-magnitude faster.

3.5. Frequency cover

In [63] a similar, slightly less general, approach to the definition of cover was taken, yielding an
algorithm with linear requirements for usage of both time and space.

First identify in x the set U = Ux of repeating substrings that are not single letters, that occur a
maximum number M of times in x, and that cannot be extended to left or right. Then the frequency
cover u of x is defined to be the longest of the entries in U . Thus, for x = abaababaabaab, U = {ab}

N. Mhaskar and W.F. Smyth / String Covering: A Survey 239

because ab occurs M = 5 times in x, more than any other substring, and so u = ab — the same
substring chosen by the α-Partial Cover algorithm (Section 3.3) for α = 10.

From this example, we see that the frequency cover may not in fact be the substring that covers a
maximum number of positions (aba of length 3 is not in U but covers 11 positions). Furthermore, not
all strings have a frequency cover (for example, x = abc or abaca), while some strings have multiple
frequency covers, perhaps with different properties (x = ababacbab gives rise to u1 = aba covering
five positions and u2 = bab covering six positions).

In order to compute the frequency cover efficiently, it turns out to be convenient to make use of the
RSF (Repeating Substring Frequency) array for x, defined in Section 3.4. For example, in Figure 1
RSF [2] = 5 tells us that the substring of length LCP[2] = 1 occurring at position SA[2] = 3 —
that is, a — occurs 5 times in x. Similarly, since RSF [5] = 3, we know that the substring of length
LCP[5] = 3 occurring at position SA[5] = 4 — that is, aba — occurs 3 times in x.

3.6. Approximate covers

These algorithms generally depend on counting the minimum number of edit operations (insertion,
deletion or substitution of a single letter) required to transform one string x into another string x′,
where these operations may have different weights associated with them. In the following examples,
exactly one edit operation transforms x→ x′ (and of course vice versa), implying that the “distance”
between x and x′ is one:

• insertion: Insert c at position 2 of x = ab to form x′ = acb;

• deletion: Delete c at position 2 of x = acb to form x′ = ab;

• substitution: Change c to b at position 2 of x = ac to form x′ = ab.

More generally, given strings x and x′, we define edit distance (E) E(x,x′) to be the minimum
number of edit operations, weighted edit distance (WE) if different weights are assigned to different
edit operations, Levenshtein distance (L) L(x,x′) the minimum number of insertions and deletions,
and Hamming distance (H) H(x,x′) the minimum number of substitutions — required to transform
x into x′ (and vice versa)3. We use D to indicate any one of E,L,H . For details see [2, Sect. 2.2].

The idea of an approximate cover of a string was apparently introduced by Sim et al. [66] (not
available in English), then by Zhang and Blanchet-Sadri [67], whom we follow here. Given a string x
of length n and a set Ut,k = {u1,u2, . . . ,ut} of t strings of identical length k < n, Ut,k is said to be
a d-approximate k-cover of x for some integer d ≥ 0 if there exists a set V = {u1,u2, ...,ur} of r
distinct nonempty strings, not necessarily of equal length, such that

• V is a cover of x;

• for every u ∈ Ut,k, there exists v ∈ V such that D(u,v) ≤ d;

• for every v ∈ V , there exists u ∈ Ut,k such that D(u,v) ≤ d.

3In the literature these definitions vary. Of course deletion/insertion at position i is just a “substitution”, so both unweighted
edit distance and Hamming distance merely count two distinct Levenshtein operations as one.

240 N. Mhaskar and W.F. Smyth / String Covering: A Survey

The authors of [67] then described polynomial-time algorithms that, using the results from [51],
compute, for each distance measureD4, the minimum integer d such thatUt,k is a set of d-approximate
k-covers of x. Unfortunately, this result was incorrect: it was later shown in [52] that to determine
whether or not any given set V was indeed a minimum k-cover was NP-complete (see Section 3.2).
Nevertheless, practical algorithms were proposed to compute approximations of V ([67], [53]), and,
as discussed below, several variants of V have been proposed.

Although not a cover problem, in 2001 Sim et al. [68] introduced a related and more tractable prob-
lem. Given strings x[1..n] and u[1..m], m < n, for D = E,H consider partitions x = u1u2 · · ·ur

such that D(ui,u) ≤ t, 1 ≤ i < r, and D(ur,u
′) ≤ t for some prefix u′ of u. For each such parti-

tion, p = |u| is said to be a t-approximate period of x. A polynomial-time algorithm is described to
compute a minimum integer t for which such a partition exists.

In 2005 Christodoulakis et al. [69] studied a related cover problem: given strings x[1..n] and
u[1..m], m < n, consider arrangements of copies of u placed so as to overlay all positions in x.
Over all copies of u in each arrangement, determine the total distance D resulting from mismatches;
then an arrangement that minimizes D is a u-approximate cover of x. For D = H/E/WE5, the au-
thors describe algorithms to compute all u-approximate covers in x requiring timeO(mn)/O(m(n+
m))/O(mn2 + n2), respectively.

More recently, in 2019 Amir et al. [70] introduced the Approximate Cover Problem (ACP): find
a “best” approximate cover of a given string x of length n; that is, identify a string y of length
m < n whose copies cover a string z, also of length n, in such a way that, over all choices of y,
H(x, z) is minimized. By considering a relaxed version of ACP, they show that ACP itself is NP-
hard. They then discuss two relaxations of the ACP problem, where either a partial or a full ordered
list of occurrences of the possible cover of x is given. They show that both these problems have
polynomial time solutions.

In [71] the Cover Recovery Problem (CRP) is introduced: given a string x′ = x′[1..n] that results
from the approximate covering of x[1..n] by an unknown string u of known lengthm, output a “small
size set” S of strings of length m such that u ∈ S. In [72] further results are presented to assist in
understanding the overall complexity of ACP.

Then in 2019, Guth [73], building on previous work [74, 75], introduced a relaxed version of
the enhanced cover (Section 3.3). Given a non-negative integer k, a k-approximate enhanced cover
(k-AEC) y of x is a border of x such that the total number of positions covered by approximate
occurrences of y in x exceeds those covered by approximate occurrences of any other border of x.
Computation of all k-AECs is shown to require O(n2) time. A “relaxed” k-AEC is also considered,
computable in time O(n3).

In [76, 77], given strings x = x[1..n] and u, an integer k ∈ 0..n − 1, and distance measure
D, Kedzierski & Radoszewski study the (D, k)-coverage of u in x; that is, the number of positions
of x that lie within a substring v such that D(u,v) ≤ k. For given k, they describe an O(n2)-
time algorithm to compute (H, k)-coverage for all substrings u of x, O(n log1/3 nk2/3 log k) for all
prefixes. For D = E,WE, they describe algorithms to compute (D, k)-coverage for all substrings u

4In [67] the authors define Edit Distance as Levenshtein distance defined here and vice versa.
5In [69] the authors use Edit Distance and Levenshtein distance interchangeably.

N. Mhaskar and W.F. Smyth / String Covering: A Survey 241

in time O(n3) and O(n3
√
n log n), respectively. They also show that it is NP-hard to check whether

or not a given x has a k-approximate cover (or seed) of given length `, even on a binary alphabet.
It is noteworthy that, with the exception of the approach of Guth [73], the methodologies described

in this subsection avoid the requirement that the approximate cover should be a border of x — which
as we have seen has an average length of at most 1.64. No doubt the maximal cover of most strings
— for example, u = aba for x = acabaababaac — will be unrelated to any border.

3.7. 2-Dimensional covers

In 1996 Iliopoulos & Korda [78] described an O(log log n)-time parallel algorithm on the CRCW
PRAM model to determine whether a given n×n square matrix T is superprimitive — that is, whether
there exists a square submatrix S of T such that every position in T lies within an occurrence of S;
in other words, such that S is a (2D) cover of T . If so, then they return a smallest cover S. Then in
1998 Crochemore et al. [79] showed how to compute all the covers of a given square matrix T by
presenting anO(n2) time algorithm to compute all square submatrices P of T that cover T — a result
based on the AhoCorasick [80] automaton and gap monitoring techniques.

More recently the problem has been generalized from square tom×n rectangular matrices T , with
N ≡ mn: in 2019 Popa & Tanasescu [81] describe an average-caseO(N)-time algorithm to compute
a smallest 2D cover by rectangular submatrices S of a given T , as well as a worst-case O(N2)-time
algorithm to compute all 2D covers of T . They propose applications such as extraction of textures
from images, as well as to image compression and crystallography.

A very recent paper [82] by Charalampopoulos et al. considers two forms of cover of a given
m× n matrix T : the 2D cover described above and a 1D cover by a vector S whose occurrences in T
are considered both vertically and horizontally. They present several new results:

• The smallest 2D cover can be computed in time O(N).

• All 2D covers can be computed in time O(N4/3).

• All 1D covers can be computed in time O(N).

In [83] Radoszewski et al. propose another form of cover called the tile cover; that is, a string S
that covers T by non-overlapping instances of S or its transpose ST . The authors consider two forms
of tile cover: 2D-string and 1D-string tile cover (this differs from the 1D cover proposed in [82] by
disallowing overlaps). They propose an O(N)-time algorithm to compute all 1D tile covers of T , and
an O(N1+ε), ε > 0, algorithm to compute all 2D-tile covers of T .

3.8. Specialized covers

In [84] Alzamel et al. introduce the k-anticover of given x = x[1..n]; that is, for a given integer
k ≥ 2, a set S = Sk of increasing positions i in x identifying substrings x[i..i + k − 1], constrained
to be distinct, such that every position in x is contained in an entry from S — in other words, such
that S “covers” x. For example [84], given x = abbbaaaaabab of length n = 12 and k = 3,
S3 = {1, 3, 5, 8, 10} is a 3-anticover of x, identifying distinct substrings abb, bba, aaa, aab, bab that

242 N. Mhaskar and W.F. Smyth / String Covering: A Survey

cover x; on the other hand, no string x = uvu has a |u|-anticover. It is shown in [84] that for k ≥ 3
it is NP-hard to determine whether or not a k-anticover of x exists, while a polynomial-time solution
exists for k = 2. In [85] Amir et al. introduce three variants of the k-anticover problem, as follows:

• MaxkAnticover: find a set Sk that maximizes the number of covered positions in x;

• MinRepkAnticover: if there exists no Sk, then find a set S′k of k-strings that allows duplicates
and covers x with a minimum number of repeats of any one entry;

• MinAnticover: find the smallest k such that there exists a k-anticover of x.

All of these variants are also shown to be NP-hard; however, polynomial-time approximation algo-
rithms are described for each.

In [86] Matsuda et al. introduce the Abelian cover; that is, a k-cover of x in which each entry has
the same Parikh vector P = Px. For example, for k = 3, x = abaab has Abelian cover (aba, aab),
each with Parikh vector P = (2, 1). They describe an O(n)-time algorithm to compute the longest
Abelian cover, whenever it exists, of given x = x[1..n], as well as an O(n2)-time algorithm to
compute an O(n2) representation of all (possibly exponential) Abelian covers of x.

Similarly, in [87], Grossi et al. introduce the cyclic cover of x; that is, any substring u whose
rotations cover x. In the above example x = abaab, therefore, every rotation of aba is a cyclic cover
of x. The authors describe an O(n log n) time algorithm to compute all the cyclic covers of a string.
A recent paper [88] improves the time requirement for this problem to O(n).

Recall that for 1 ≤ i ≤ j ≤ n, u = x[i..j] is a palindrome at centre (i + j)/2 with radius
(j − i+ 1)/2 if x[i+ h] = x[j − h] for every h = 0, 1, . . . , (j − i)/2 — maximal if there exists no
palindrome of greater radius at the same centre. For given k ∈ 1..n, we say that x has a palindromic
cover PCx,k of size k if every position of x lies within a palindrome of radius k/2. Of course every
single entry x[i] is a palindrome of radius 1/2, and so x always has palindromic cover PCx,1. In
[89] I et al. describe a O(n)-time and space algorithm to compute the smallest k such that PCx,k is
a palindromic cover of given x.

In [90], Radoszewski et al., study covers in both directed and undirected labeled trees. They
propose anO(n log n/ log log n)-time algorithm to compute all covers of a directed (rooted) tree, and
an O(n2)-time and space algorithm to compute all covers of an undirected labeled tree.

Recently, in [91] Charalampopoulos et al. introduce the subsequence cover (or s-cover) of x;
that is, a substring u whose occurrences as subsequences cover all the positions in x. They present
a linear-time algorithm to test whether a given string v is an s-cover of a word x, where x is defined
on polynomially-bounded integer alphabet. They then present a O(n)-time algorithm to compute the
shortest s-cover of the given x, where x is defined on a constant sized alphabet.

3.9. Extensions to indeterminate & weighted strings

Substantial work has been done on extending covering algorithms to indeterminate strings.
Of course every cover is a border: we have noted above [21] that the expected length of the

maximum border of a regular string does not exceed 1.64. For partial words Iliopoulos et al. showed

N. Mhaskar and W.F. Smyth / String Covering: A Survey 243

[92] that the expected number of borders was less than 3.5; for indeterminate strings Bari et al. [93]
showed that this quantity was less than 29.1746.

In 2003 Iliopoulos et al. [94] described two algorithms to compute the border array of a partial
word, both requiringO(n2) time in the worst case,O(n) time on average. In the same year [95] Holub
& Smyth described border array calculations with the same quadratic time complexity on both partial
words and indeterminate strings. Holub & Smyth also make a distinction between quantum borders,
which allow indeterminate letters to match in more than one way, and deterministic borders, in which
only a single match is allowed. They give the example x = a ∗∗c, which has two quantum border
pairs, (a∗, ∗c) and (a∗∗, ∗∗c), requiring x[2] to match both c and a, but only one deterministic border
pair — either (a∗, ∗c), requiring x[2] = c, or the pair (a ∗ ∗, ∗ ∗ c), requiring x[2] = a.

In 2008 Antoniou et al. [96] introduce the idea of a q-conservative indeterminate string — that
is, a string x containing at most q ≥ 0 indeterminate letters. They suggest use of the Aho-Corasick
automaton [80] to determine whether, for given nonnegative integers q, q′ and m, q-conservative x
has a q′-conservative cover of length m. There is no clear description of an algorithm. A subsequent
paper [97] discusses covers of DNA strings on (a, c, g, t).

In 2009 Bari et al. [93] present an average-caseO(n)-time algorithm, also using the Aho-Corasick
automaton, to compute all the covers of a regular or indeterminate string x based on the border array
algorithm in [95]. (For indeterminate strings, the cover also may be indeterminate.) They extend their
algorithm to compute the cover array in O(n2) time.

More recently, Crochemore et al. in [98] consider the problem of finding a shortest regular cover
of an indeterminate string x, showing that the computation is NP-complete even over strings x that
are restricted to partial words. However, they also describe “near-optimal” FPT (Fixed Parameter
Tractable) algorithms for both partial words and the general case, based on knowledge of a parameter
k — the number of non-regular letters in x.

Weighted strings introduce a new form of ambiguity, as the following example, taken from Zhang
et al. [99], demonstrates. In the weighted string

x = (a, 50; c, 25; g, 25)g(a, 60; c, 40)(a, 25; c, 25; g, 25; t, 25)c,

the pattern u = agc matches two overlapping substrings:

x[1..3] = (a, 50; c, 25; g, 25)g(a, 60; c, 40)

and
x[3..5] = (a, 60; c, 40)(a, 25; c, 25; g, 25; t, 25)c

with probabilities p1 = 0.5 × 1 × 0.4 = 0.2 and p2 = 0.6 × 0.25 × 1 = 0.15, respectively. In
the first of these, u[3] = c matches with x[3], but in the second, u[1] = a provides the match with
x[3]. If overlapping matches that depend on this ambiguous use of an indeterminate letter are allowed,
then the matching is called loose; if not, then strict. (See above, quantum/deterministic.) In [99] the
authors outlineO(n2)-time algorithms to compute all the covers of weighted strings, using both loose
and strict matching.

An O(n)-time algorithm to compute the covers of a weighted string is also given in [100], based
on prior calculation of a weighted suffix tree in time O(σn). A recent paper [101] describes a more
efficient cover calculation based on a “weighted index”.

244 N. Mhaskar and W.F. Smyth / String Covering: A Survey

4. Seeds of strings

As defined earlier, the seed of a string x is a proper substring u of x that is a cover of a superstring
w of x. The notion of seed was first introduced in [6, 7] by Iliopoulos et al., where they describe
an O(n log n)-time algorithm to compute all the seeds of a given string x[1..n], by computing a
linear representation of seeds. Berkman et al. in [102] present a parallel algorithm to compute all
seeds in O(log n) time and O(n1+ε) space, using n processors in the CRCW PRAM model. Then
in [19] Christou et al. present an alternate sequential O(n log n) algorithm for computing the shortest
seed of a given string. In [103] Smyth poses the question whether all seeds for the given string can
be computed in time linear in its length. In 2012 Kociumaka et al. [104] answer this question in
the affirmative by presenting the first linear time algorithm to compute seeds — though based on
the assumption of an integer alphabet. Their algorithm was complex and required constructing a
representation of seeds on two suffix trees. In 2020, the same authors [8] present a solution to the
same problem that uses a much simpler approach called the package representation — again based
on an integer alphabet. The authors define a package to be a collection of consecutive prefixes of a
substring of w; that is, a package is defined as

pack(i, j1, j2) = {w[i..j] : j1 ≤ j ≤ j2},

where i ≤ j1 ≤ j2 ≤ |w|. If L is a set of ordered integer triples, they then define

PACK(L) =
⋃

(i,j1,j2)∈L

pack(i, j1, j2)

Their solution outputs the set L such that the seeds of w are exactly the elements of PACK(L).
Furthermore, all packages in the representation are pairwise disjoint; that is, each seed belongs to
exactly one package. It turns out that packages correspond to paths in the suffix trie that can be easily
stored using the suffix tree. This fact and the connection between seeds and subword complexity both
contribute to the reduced linear time complexity of the seed computation algorithm.

Many other problems on seeds similar to those on covers have also been studied and are outlined
below.

4.1. Left and right seeds

A left (right) seed u of a string x is a prefix (suffix) of x that is also a seed of x. A minimal (maximal)
left seed array ofx[1..n] is an integer array of length nwhose i-th element is the minimum (maximum)
length of the left seed of x[1..i]. The minimal (maximal) right seed array is defined analogously. See
Figure 2 for an example presented in [105]. In [19, 106] Christou et al. present a linear-time algorithm
to compute the minimum and maximum left seed arrays of x. Both these algorithms rely on the linear
time computation of the period and cover arrays of x (see introduction to Section 3) in order to achieve
O(n) running times. In the same paper, they also give an O(n2) algorithm to compute all the seeds
of x of length at least k using the precomputed suffix, LCP, period and suffix period arrays of x. In
addition, they present an alternateO(n log n)-time approach to computing the shortest seeds of x that
is based on independent processing of disjoint chains in the suffix tree of x. Further, by checking

N. Mhaskar and W.F. Smyth / String Covering: A Survey 245

whether the shortest seed has length at least m, they extend this algorithm to compute the shortest
seeds of length at least m inO(n log(n/m)) time. Thus, for sufficiently large m = Θ(n), the running
time of the algorithm reduces to O(n).

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14

x a b a a b a b a a b a a b a b

LSmin 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3

LSmax 0 0 2 3 4 5 6 7 8 9
10 11 12 13 14

RSmin 1 2 2 3 3 3 5 3 5 5 3 8 5 3 8

RSmax 0 0 2 3 4 5 6 7 8 9
10 11 12 13 14

Figure 2: LSmin, LSmax, RSmin and RSmax are the minimal left seed, maximal left seed, minimal
right seed and maximal right seed arrays, respectively, computed for the string x = abaababaabaabab
— adapted from [105].

In [107] Christou et al. describe an O(n log n)-time algorithm to compute the minimal right seed
array. Their solution uses a variant of the partitioning algorithm introduced by Crochemore in [108],
as employed by Iliopoulos, Moore & Park in [6], to find the sets of ending positions of all occurrences
of each distinct substring in x. Using this methodology, [107] finds a suffix of each prefix of the string
that is covered by some substring, then checks for occurrences of right seeds to compute the minimal
right seed array. They also present a simple O(n) algorithm to compute the maximal right seed array
by detecting border-free prefixes of x. In addition to these results, the extended journal version [105]
of [107] describes algorithms to compute all the left and right seeds of x. To compute all the left
seeds of x their linear time algorithm uses the maximal cover array and the period array of x. Since
the right seeds of x are just the left seeds of the reverse string xR, all right seeds of x can be computed
in linear time by applying the left seeds algorithm to xR.

In 2013 Flouri et al. [61] introduce the enhanced left seed; that is, a proper prefix u of x that
occurs at least twice in x and such that the number of letters in x which lie within some occurrence of
u in a superstring of x is a maximum over all such prefixes of x. Making use of new data structures
introduced in the paper, the authors describe an O(n log n)-time algorithm to compute the minimal
(shortest length) enhanced left seed of x. The running time of the algorithm is dominated by the
time required to compute some of these data structures. Then they go on to define the enhanced left-
seed array — an integer array of length n whose i-th element is equal to the length of the enhanced
left seed of the prefix of length i. To compute the minimal enhanced left-seed array, they apply the
minimal enhanced left seed algorithm repeatedly, thus computing the minimal enhanced left seed of
every prefix of x in O(n2) time.

246 N. Mhaskar and W.F. Smyth / String Covering: A Survey

4.2. λ-seeds

In [109] Guo et al. attempted to extend the λ-covers problem of Section 3.2 to λ-seeds; that is, given
x[1..n] and an integer λ, find all the sets U = {u1,u2, . . . ,uλ} of substrings of x such that:

(1) |u1| = |u2| = . . . = |uλ|;

(2) there exists a superstring y = vxw of x with |v|, |w| < |ui| such that y can be constructed by
concatenating or overlapping elements of U .

Of course the results presented in [109] are subject to the same difficulties raised by the counterex-
ample of Czajka & Radoszewski [36] (Section 3.2).

4.3. Approximate seeds

Here again we make use of the distance measures defined in Section 3.6. In [110], Christodoulakis et
al. study the approximate seeds of strings under the distance rules D = H , D = E and D = WE
(weighted edit).

They define a string s to be a t-approximate seed of x, t ∈ N, if there exist nonempty strings
s1, s2, . . . , sr such that (i) D(s, si) ≤ t, for 1 ≤ i ≤ r, and (ii) there exists a superstring y = uxv
of x, |u| < |s| and |v| < |s|, that can be constructed by overlapping or concatenated copies of
s1, s2, . . . , sr. They then solve the following three problems:

(1) Smallest distance approximate seed problem: here strings x[1..n], s[1..m] and a distance func-
tion D are assumed to be given and the minimum t value is computed. Their solution first
computes the distance between s and every substring u of x and then uses a dynamic program-
ming approach to compute ti such that s is a ti-approximate seed of x[1..i]. It follows that tn is
the minimum t such that s is a t-approximate seed of x. The algorithm runs in O(mn) time for
both D = H,E. However for D = WE, it requires O(mn2)-time.

(2) Restricted smallest approximate seed problem: In this case the string s is not given, and so
any substring of x is a candidate for the t-approximate seed. Their solution to this problem is
similar to that used to solve problem (1), but requires significantly more time —O(n4) time for
D = WE and O(n3) time for D = H .

(3) Smallest approximate seed problem: This problem is a generalization of (2) in that not only is s
not given, it is moreover not required to be a substring of x. The authors show that this problem
is NP-complete for any distance rule D by reduction from the NP-complete shortest common
supersequence (SCS) problem [111, 112].

Further finite automaton-based algorithms for problems (1) and (2), under Hamming distance (D =
H) bounded by k, were described in several contributions by Guth et al. [113, 114, 115]. An algorithm
for problem (3) was included in Guth’s doctoral dissertation [116], which also included experimental
evaluation of these algorithms.

In [76], Kedzierski and Radoszewski propose efficient algorithms for computing (many) variants
of approximate covers and seeds and improve upon the complexities of previous algorithms. They

N. Mhaskar and W.F. Smyth / String Covering: A Survey 247

show that their solutions are particularly efficient if the number (or total cost) of the allowed errors is
bounded. In the context of seeds, they notably presentO(n2k) andO(n3

√
n log n) time algorithms to

solve the above problem (2) for D = H and D = WE, respectively. They also show that for D = H ,
problem (3) remains NP-hard even when the length of s is fixed, a result that holds even for strings on
a binary alphabet.

4.4. Partial seeds

In this section we discuss the notion of partial seeds introduced in [117] by the same authors (Kociu-
maka et al.) who introduced the partial covers [59] discussed in Section 3.3.

Let C(u,x) denote the number of positions covered by (full) occurrences of u in x. Then the
non-empty prefix (suffix) of x that is also the suffix (prefix) of u is called the left (right) overhanging
occurrence ofu in x. S(u,x) is the number of positions covered by the full, left and right overhanging
occurrences of u in x. Then u is an α-partial seed of x, if S(u,x) ≥ α. For example, if x =
abaababaaaaba, then S(aba,x) = 11 and S(abaa,x) = 11. Therefore both are 11-partial seeds of
x, but aba is the shortest one. The authors present an O(n log n) algorithm to compute all shortest
α-partial seeds of x. Their solution uses the augmented suffix tree (cover suffix tree), originally
introduced in [59], to compute α-partial covers, with some additional nodes. They also describe an
O(n log n) time algorithm to compute a factor u of x, given an interval [`, r], 0 ≤ ` ≤ r ≤ n, such
that |u| ∈ [`, r] and which maximizes S(u,x). Recently, by giving a linear time construction of the
cover suffix tree data structure, Radoszewski in [60] shows that all α-partial seeds can be computed in
O(n)-time.

4.5. Extensions to indeterminate and weighted strings

In Section 3.9 we discussed q-conservative indeterminate strings, and the problem of finding covers
in such strings. Here we mention the λ-conservative seeds problem introduced by Antoniou et. al
in [96]: given a q-conservative indeterminate string x and λ ∈ Z+, a λ-conservative seed is a seed of
x of length λ. Making use of the Aho-Corasick automaton [80], the authors describe an O(nλ)-time
algorithm to compute the λ-conservative seeds (if they exist) of x.

Section 3.9 also discussed weighted strings and cover algorithms for them. In [99] Zhang et al.
discuss loose and strict matching (see Section 3.9) and present two cover algorithms for weighted
strings based on these string matching variations. In the same paper, they also propose O(n2)-time
algorithms that compute all seeds in the given weighted string based on these matchings.

5. Open problems

As suggested in the Introduction, a central motivation for the study of covers and seeds is the ubiqui-
tous requirement to find compressed representations of long strings that moreover disclose patterns —
some sort of “meaning” — not evident in their original linear formulation. In this context we present
here a collection of open problems arising from the work surveyed above, some suggested by the
authors themselves, some of them new.

248 N. Mhaskar and W.F. Smyth / String Covering: A Survey

5.1. Covers

Find String on Minimum Alphabet (3): [42] describes a linear-time approach to determining a string
corresponding to a given border array or prefix array, but not necessarily on a minimum alpha-
bet. Can this improvement be achieved, also in linear time?

Shortest Covers, All Rotations (3.1): (1) The question of the space required for shortest cover
computation has also been raised. In [118] two space-efficient near-linear randomized
algorithms are described that with high accuracy compute the shortest cover of given x.
Can the shortest cover be computed in polylog(n) space?

(2) [43, 44, 46] all employ ST x3 to represent the seeds of x. Can a more direct approach be
found, possibly replacing the suffix tree, possibly reducing processing time?

k-Covers (3.2): In view of the NP-completeness of the original k-cover problem, and the difficulty
discovered in [36] with its replacement, further results in this challenging area would be very
welcome.

λ-Covers (3.2): (1) The complex work of Radoszewski & Straszyński [58] deals efficiently with
the case λ = 2. Their solution also deals with the generalized case of λ > 2; however, for
each unit increase in λ, the running time complexity of the solution increases by a factor
of n. Does a solution with better running time for λ > 2 exist?

(2) In [58] the authors propose the following problems:
(a) Can a shortest 2-cover be computed in linear time?
(b) Can we efficiently compute a variation of the 2-covers (and λ-covers) problem, in

which the factors that cover the string are of different lengths?

Maximal Covers (3.4): (1) As noted in Section 3.3, the all-partial-covers can be computed inO(n)-
time using the linear time construction of the cover suffix tree data structure. Can we
compute the all-partial-covers/maximal covers without the need to use annotated suffix
trees?

(2) Are the maximal covers of practical use for the compact representation of any classes of
string? If so, can the computation of this representation be iterated?

ACP Problems (3.6): In [70, 71] the authors propose related problems:

(1) Does ACP remain NP-hard on a constant alphabet?
(2) What is the effect on ACP complexity if distance metrics other than Hamming are used?
(3) In addition to RACP, are there other relaxations of ACP solvable in polynomial time?

Specialized Covers (3.8): In [86] the authors ask whether all the Abelian covers of given x can be
computed in less thanO(n2) time. The question has to some degree been answered affirmatively
by Kociumaka et al. [119], who describe an O(n2/ log n) algorithm for this and other related
problems, given a constant-sized alphabet. However, in view of the recent proof [120] that the
closely related Abelian squares problem is “3SUM” hard, it seems unlikely that a clearly more
efficient algorithm, free of the n2 factor, can be found. Also, the following questions arise:

N. Mhaskar and W.F. Smyth / String Covering: A Survey 249

(1) How often can strings on a small alphabet be covered by an Abelian cover?

(2) Can these “coverable” strings be characterized in a useful way?

Similarly, how many strings possess a cyclic cover — significantly more than those with just a
cover?

5.2. Seeds

Left and Right Seeds (4.1): In [19, 107] the authors pose the following problem: given an integer
arrayA of length n, determine whether or notA is the minimal left-seed (resp. right-seed) array
of some string and, if so, construct one such string. In addition, the following questions are of
interest:

(1) In the above problem, what would be the minimum number of distinct letters required to
build such a string? Can such strings always be constructed over a bounded alphabet?

(2) Can we compute the minimal right seed array in linear time?

Enhanced Left Seeds and Enhanced Left Seeds Array (4.1): As noted in [61], the same problem
arises here as with the Abelian covers calculation: can the minimal enhanced left-seed array be
computed in time clearly less than order n2? Moreover:

(1) Does an O(n log n) or O(n) algorithm exist to compute this array?

(2) What is the complexity of an optimal algorithm to compute the maximal enhanced left-
seed array? Does an O(n log n) or O(n) algorithm exist for this problem?

λ-Seeds (4.2): As with λ-covers, can the λ-seeds problem be usefully reformulated?

Approximate Seeds (4.3): Do finite automata-based solutions exist for problems (1) and (2) under
D = E,WE, and bounded by a constant k? If so what are the time complexities of these
solutions?

Partial Seeds (4.4): Can we compute partial seeds using the SA and LCP arrays? If so, can they
also be computed in O(n) time?

6. Conclusion

In this paper we have attempted to bring together in an organized fashion all the results related to
covers/seeds published since the invention of these concepts more than 30 years ago. That they have
been so much studied testifies to their current relevance as well as to their potential future impact on
the development of combinatorics on words and string algorithms. We anticipate that further study
of the numerous open problems stated here will lead to significant advances in these fundamental
computational areas.

250 N. Mhaskar and W.F. Smyth / String Covering: A Survey

Acknowledgements

Revisions: The authors wish to acknowledge the fine work of several referees whose insightful and
knowledgeable commentary has resulted in significant improvement to this paper.

Funding: The second author was funded by the Natural Sciences & Engineering Research Council
of Canada [Grant Number 10536797].

Conflict of Interest: Both authors declare that they have no conflict of interest.

Informed Consent: This article does not contain any studies on human participants or animals
performed by any of the authors.

References
[1] Thue A. Über unendliche Zeichenreichen. Norske Vid. Selsk. Skr. Mat. Nat. Kl. (Cristiania), 1906.

7:1–22.

[2] Smyth B. Computing Patterns in Strings. Pearson/Addison–Wesley, 2003. ISBN 9780201398397.

[3] Crochemore M, Hancart C, Lecroq T. Algorithms on Strings. Cambridge University Press, 2007.
doi:10.1017/CBO9780511546853.

[4] Watson JD, Crick FHC. Molecular structure of nucleic acids. Nature, 1953. 171:737–738. URL
https://doi.org/10.1038/171737a0.

[5] Apostolico A, Ehrenfeucht A. Efficient Detection of Quasi–periodicities in Strings. Technical Report
90.5, The Leonadro Fibonacci Institute, Trento, Italy, 1990.

[6] Iliopoulos CS, Moore DW, Park K. Covering a String. In: Proc. 4th CM–SIAM Symp. on Discrete Algo-
rithms (SODA), volume LNCS 684. 1993 pp. 54–62. URL https://doi.org/10.1007/BFb0029796.

[7] Iliopoulos CS, Moore DW, Park K. Covering a String. Algorithmica, 1996. 16(1):288–297. doi:
https://doi.org/10.1007/BF01955677.

[8] Kociumaka T, Kubica M, Radoszewski J, Rytter W, Waleń T. A Linear-Time Algorithm
for Seeds Computation. ACM Transactions on Algorithms, 2020. 16(2):27/1–27/23. doi:
https://doi.org/10.1145/3386369.

[9] Manber U, Myers G. Suffix Arrays: A New Method for On–Line String Searches. In: Proc. 1st CM–
SIAM Symp. on Discrete Algorithms (SODA). 1990 pp. 319–327.

[10] Manber U, Myers G. Suffix Arrays: A New Method for On–Line String Searches. SIAM J. Computing,
1993. 22:935–948. URL https://doi.org/10.1137/0222058.

[11] Kärkkäinen J, Sanders P. Simple linear work suffix array construction. In: Proc. 30th International
Colloquium on Automata, Languages, and Programming, volume LNCS 2719. 2003 pp. 943–955. doi:
https://doi.org/10.1007/3-540-45061-0 73.

[12] Kärkkäinen J, Sanders P, Burkhardt S. Linear work suffix array construction. J. ACM, 2006. 53(6):918–
936. URL https://doi.org/10.1145/1217856.1217858.

[13] Kasai T, Lee G, Arimura H, Arikawa S, Park K. Linear-Time Longest-Common-Prefix Computation
in Suffix Arrays and Its Applications. In: Proc. 12th Annual Symp. Combinatorial Pattern Matching
(CPM). 2001 pp. 181–192. doi:https://doi.org/10.1007/3-540-48194-X 17.

N. Mhaskar and W.F. Smyth / String Covering: A Survey 251

[14] Smyth WF. Computing regularities in strings: A survey. European J. Combinatorics, 2013. 34(1):3–14.
doi:https://doi.org/10.1016/j.ejc.2012.07.010.

[15] Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix trees with enhanced suffix arrays. J. Discrete
Algorithms, 2004. 2(1):53–86. doi:https://doi.org/10.1016/S1570-8667(03)00065-0.

[16] Weiner P. Linear Pattern Matching Algorithms. In: Proc. 14th Annual Symposium on Switching and
Automata Theory (SWAT). 1973 pp. 1–11. doi:10.1109/SWAT.1973.13.

[17] Apostolico A. The myriad Virtues of Subword Trees. In: Combinatorial Algorithms on Words, NATO
ISI Series. Springer–Verlag, 1985 pp. 85–96. doi:10.1007/978-3-642-82456-2 6.

[18] Puglisi SJ, Smyth WF, Turpin AH. A taxonomy of suffix array construction algorithms. ACM Computing
Surveys, 2007. 39(2). URL https://doi.org/10.1145/1242471.1242472.

[19] Christou M, Crochemore M, Iliopoulos CS, Kubica M, Pissis SP, Radoszewski J, Rytter W, Szreder
B, Walen T. Efficient seed computation revisited. Theoret. Comput. Sci., 2013. 483:171–181. doi:
https://doi.org/10.1016/j.tcs.2011.12.078. Special Issue Combinatorial Pattern Matching 2011.

[20] Aho AV, Hopcroft JE, Ullman JD. The Design and Analysis of Computer Algorithms. Addison–Wesley,
Reading, MA, 1974.

[21] Alatabbi A, Islam ASMS, Rahman MS, Simpson J, Smyth WF. Enhanced Covers of Regular & Inde-
terminate Strings using Prefix Tables. J. Automata, Languages & Combinatorics, 2016. 21(3):131–147.
URL https://doi.org/10.25596/jalc-2016-131.

[22] Bland W, Kucherov G, Smyth WF. Prefix table construction and conversion. In: Proc. 24th In-
ternat. Workshop on Combinatorial Algs. (IWOCA), volume LNCS 8288. 2013 pp. 41–53. doi:
https://doi.org/10.1007/978-3-642-45278-9 5.

[23] Smyth WF, Wang S. New perspectives on the prefix array. In: Proc. 15th String Processing & Inform.
Retrieval Symp. (SPIRE), volume LNCS 5280. 2008 pp. 133–143. doi:https://doi.org/10.1007/978-3-
540-89097-3 14.

[24] Iliopoulos CS, Radoszewski J. Truly Subquadratic-Time Extension Queries and Periodicity Detection
in Strings with Uncertainties. In: Proc. 27th Annual Symp. Combinatorial Pattern Matching (CPM),
volume LIPIcs 54. 2016 pp. 8.1–8.12. doi:10.4230/LIPIcs.CPM.2016.8.

[25] Mhaskar N, Smyth WF. Simple KMP Pattern-Matching on Indeterminate Strings. In: Proc.Prague
Stringology Conference (PSC). 2020 pp. 125–133. URL http://www.stringology.org/event/

2020/p11.html.

[26] Dehghani H, Lecroq T, Mhaskar N, Smyth WF. Practical KMP/BM style pattern-matching on indeter-
minate strings. submitted for publication, 2022.

[27] Knuth DE, Morris JH, Pratt VR. Fast pattern matching in strings. SIAM J. Computing, 1977. 6(2):323–
350. doi:https://doi.org/10.1137/0206024.

[28] Boyer RS, Moore JS. A fast string searching algorithm. Communications of the ACM, 1977. 20(10):762–
772. doi:https://doi.org/10.1145/359842.359859.

[29] Apostolico A, Ehrenfeucht A. Efficient Detection of Quasiperiodicities in Strings. Theoret. Comput. Sci.,
1993. 119(2):247–265. doi:https://doi.org/10.1016/0304-3975(93)90159-Q.

[30] Iliopoulos C, Mouchard L. An O(n log n) Algorithm for Computing all Maximal Quasiperiodicities in
Strings. In: Proceeding of the Computing: Australasian Theory Symposium (CATS). 1999 pp. 262–272.
URL https://hal.science/hal-00465077.

252 N. Mhaskar and W.F. Smyth / String Covering: A Survey

[31] Brodal GS, Pedersen CNS. Finding Maximal Quasiperiodicities in Strings. In: Proc. 11th An-
nual Symp. Combinatorial Pattern Matching (CPM), volume LNCS 1848. 2000 pp. 397–411. doi:
https://doi.org/10.1007/3-540-45123-4 33.

[32] Apostolico A, Farach M, Iliopoulos CS. Optimal superprimitivity testing for strings. Information Pro-
cessing Letters, 1991. 39(1):17–20. doi:https://doi.org/10.1016/0020-0190(91)90056-N.

[33] Breslauer D. An On-Line String Superprimitivity Test. Informtion Processing Letters, 1992. 44(6):345–
347. doi:https://doi.org/10.1016/0020-0190(92)90111-8.

[34] Moore D, Smyth WF. An optimal algorithm to compute all the covers of a string. Informtion Processing
Letters, 1994. 50:239–246. doi:https://doi.org/10.1016/0020-0190(94)00045-X.

[35] Moore D, Smyth WF. Correction to: An optimal algorithm to compute all the covers of a string. Inform-
tion Processing Letters, 1995. 54:101–103. doi:https://doi.org/10.1016/0020-0190(94)00235-Q.

[36] Czajka P, Radoszewski J. Experimental Evaluation of Algorithms for Computing Quasiperiods. Theo-
retical Computer Science, 2021. 854:17–29. doi:https://doi.org/10.1016/j.tcs.2020.11.033.

[37] Iliopoulos CS, Park K. A Work-Time Optimal Algorithm for Computing All String Covers. Theoretical
Computer Science, 1996. 164(1&2):299–310. doi:https://doi.org/10.1016/0304-3975(96)00047-3.

[38] Li Y, Smyth WF. Computing the Cover Array in Linear Time. Algorithmica, 2002. 32(1):95–106.
doi:https://doi.org/10.1007/s00453-001-0062-2.

[39] Crochemore M, Iliopoulos CS, Pissis SP, Tischler G. Cover array string reconstruction. In: Proc. 21st
Annual Symp. Combinatorial Pattern Matching (CPM), volume LNCS 6129. 2010 pp. 251–259. doi:
https://doi.org/10.1007/978-3-642-13509-5 23.

[40] Moosa TM, Nazeen S, Rahman MS, Reaz R. Linear Time Inference of Strings from Cover Arrays using
a Binary Alphabet. In: Proc. 6th International Workshop on Algorithms & Computation (WALCOM),
volume LNCS 7151. 2013 pp. 1–16. doi:https://doi.org/10.1007/978-3-642-28076-4 17.

[41] Moosa TM, Nazeen S, Rahman MS, Reaz R. Inferring Strings From Cover Arrays. Discrete Mathematics,
Algorithms and Applications, 2013. 05(02):1360005. doi:10.1142/S1793830913600057.

[42] Gawrychowsk P, Kociumaka T, Radoszewski J, Rytter W, Wale T. Universal Reconstruction of a String.
Theoret. Comput. Sci., 2020. 812:174–186. doi:https://doi.org/10.1016/j.tcs.2019.10.027.

[43] Crochemore M, Iliopoulos CS, Radoszewski J, Ryttter W, Straszyński J, Waleń T, Zuba W. Shortest Cov-
ers of all Cyclic Shifts of a String. In: Proc. 14th International Workshop on Algorithms & Computation
(WALCOM), volume LNCS 12049. 2020 pp. 69–80. doi:https://doi.org/10.1007/978-3-030-39881-1 7.

[44] Crochemore M, Iliopoulos CS, Radoszewski J, Ryttter W, Straszyński J, Waleń T, Zuba W. Short-
est Covers of all Cyclic Shifts of a String. Theoret. Comput. Sci., 2021. 866:70–81. doi:
https://doi.org/10.1016/j.tcs.2021.03.011.

[45] Crochemore M, Iliopoulos CS, Radoszewski J, Rytter W, Straszyński J, Waleń T, Zuba W. Linear-Time
Computation of Shortest Covers of All Rotations of a String. In: Proc. 33rd Annual Symp. Combinatorial
Pattern Matching (CPM), volume LIPIcs 223. 2022 pp. 22:1–22:15. doi:10.4230/LIPIcs.CPM.2022.22.

[46] Crochemore M, Iliopoulos CS, Radoszewski J, Ryttter W, Straszyński J, Waleń T, Zuba W. Internal
Quasiperiod Queries. In: Proc. 27th String Processing & Inform. Retrieval Symp. (SPIRE), volume
LNCS 12303. 2020 pp. 60–75. doi:https://doi.org/10.1007/978-3-030-59212-7 5.

N. Mhaskar and W.F. Smyth / String Covering: A Survey 253

[47] Matsuoka Y, Aoki T, Inenaga S, Bannai H, Takeda M. Generalized Pattern Matching and Periodicity
under Substring Consistent Equivalence Relations. Theoretical Computer Science, 2016. 656:225–233.
doi:https://doi.org/10.1016/j.tcs.2016.02.017.

[48] Fine NJ, Wilf HS. Uniqueness Theorems for Periodic Functions. Proc. American Mathematical Society,
1965. 16(1):109–114. doi:https://doi.org/10.2307/2034009.

[49] Kikuchi N, Hendrian D, Yoshinaka R, Shinohara A. Computing Covers under Substring Consistent
Equivalence Relations. In: Proc. 27th String Processing & Inform. Retrieval Symp. (SPIRE), volume
LNCS 12303. 2020 pp. 131–146. doi:https://doi.org/10.1007/978-3-030-59212-7 10.

[50] Amir A, Iliopoulos CS, Radoszewski J. Two strings at Hamming distance 1 cannot be both quasiperiodic.
Information Processing Letters, 2017. 128:54–57. doi:https://doi.org/10.1016/j.ipl.2017.08.005.

[51] Iliopoulos CS, Smyth WF. On-line algorithms for k-covering. In: Proc. 9th Australasian Workshop on
Combinatorial Algs. (AWOCA). 1998 pp. 97–106.

[52] Cole R, Iliopoulos CS, Mohamed M, Smyth WF, Yang L. The complexity of the minimum k-cover
problem. J. Automata, Languages & Combinatorics, 2005. 10-5/6:641–653. doi:10.25596/jalc-2005-
641.

[53] Iliopoulos CS, Mohamed M, Smyth WF. New complexity results for the k-covers problem. Information
Sciences, 2011. 181:2571–2575. doi:https://doi.org/10.1016/j.ins.2011.02.009.

[54] Guo Q, Zhang H, Iliopoulos CS. Computing the Minimum Approximate λ-Cover of a String. In: Proc.
13th String Processing & Inform. Retrieval Symp. (SPIRE), volume LNCS 4209. 2006 pp. 49–60. doi:
https://doi.org/10.1007/11880561 5.

[55] Guo Q, Zhang H, Iliopoulos C. Computing the λ-covers of a string. Information Sciences, 2007.
177(19):3957–3967. doi:https://doi.org/10.1016/j.ins.2007.02.020.

[56] Zhang H, Guo Q, Iliopoulos CS. Algorithms for Computing the λ-Regularities in Strings. Fundamenta
Informaticae, 2008. 84:33–49.

[57] Iliopoulos CS, Perdikuri K, Zhang H. Computing the regularities in biological weighted sequence. String
Algorithmics, NATO Book series, King’s College Publications, 2004. pp. 109–128.

[58] Radoszewski J, Straszyński J. Efficient Computation of 2-Covers of a String. In: Proc. 28th
Annual European Symposium on Algorithms (ESA), volume 173. 2020 pp. 77:1–77:17. doi:
10.4230/LIPIcs.ESA.2020.77.

[59] Kociumaka T, Radoszewski J, Rytter W, Pissis SP, Waleń T. Fast Algorithm for Partial Covers in Words.
Algorithmica, 2015. 73(1):217 – 233. doi:https://doi.org/10.1007/s00453-014-9915-3.

[60] Radoszewski J. Linear Time Construction of Cover Suffix Tree and Applications. In: Proc. 31st
Annual European Symposium on Algorithms (ESA), volume 274. 2023 pp. 89:1–89:17. doi:10.4230/
LIPIcs.ESA.2023.89.

[61] Flouri T, Iliopoulos CS, Kociumaka T, Pissis SP, Puglisi SJ, Smyth WF, Tyczynski W. Enhanced string
covering. Theoretical Computer Science, 2013. 506:102 – 114. doi:10.1016/ j.tcs.2013.08.013.

[62] Mhaskar N, Smyth WF. String Covering with Optimal Covers. Journal of Discrete Algorithms, 2018.
51:26–38. doi:https://doi.org/10.1016/j.jda.2018.09.003.

[63] Mhaskar N, Smyth WF. Frequency covers for strings. Fundamenta Informaticae, 2018. 163(3):275–289.
doi:10.3233/FI-2018-1744.

254 N. Mhaskar and W.F. Smyth / String Covering: A Survey

[64] Koponen H, Mhaskar N, Smyth WF. Improved Practical Algorithms to Compute Maximal Covers. In:
(submitted). 2023 .

[65] Golding GB, Koponen H, Mhaskar N, Smyth WF. Computing Maximal Covers for Protein Sequences.
Journal of Computational Biology, 2023. 30(2):149–160. doi:10.1089/cmb.2021.0520.

[66] Sim JS, Park K, Kim SR, Lee JS. Finding Approximate Covers of Strings. Journal of KIISE: Computer
Systems and Theory, 2002. 29(1):16–21.

[67] Zhang L, Blanchet-Sadri F. Algorithms for Approximate k-Covering of Strings. Int. J. Found. Comput.
Sci., 2005. 16(6):1231–1251. URL https://doi.org/10.1142/S0129054105003789.

[68] Sim JS, Iliopoulos CS, Park K, Smyth WF. Approximate period of strings. Theoret. Comput. Sci., 2001.
262:557–568. doi:https://doi.org/10.1016/S0304-3975(00)00365-0.

[69] Christodoulakis M, Iliopoulos CS, Park K, Sim JS. Implementing Approximate Regularities. Mathemat-
ical and Computer Modelling, 2005. 42:855–866. doi:https://doi.org/10.1016/j.mcm.2005.09.013.

[70] Amir A, Levy A, Lubin R, Porat E. Approximate Cover of Strings. Theoret. Comput. Sci., 2019. 793:59–
69. doi:https://doi.org/10.1016/j.tcs.2019.05.020.

[71] Amir A, Levy A, Lewenstein M, Lubin R, Porat B. Can We Recover the Cover? Algorithmica, 2019.
81:2857–2875. doi:https://doi.org/10.1007/s00453-019-00559-8.

[72] Amir A, Levy A, Porat E. Quasi-Periodicity Under Mismatch Errors. In: Proc. 29th Annual
Symp. Combinatorial Pattern Matching (CPM), volume LIPIcs 105. 2018 pp. 4:1–4:15. doi:10.4230/
LIPIcs.CPM.2018.4.

[73] Guth O. On Approximate Enhanced Covers under Hamming Distance. Discrete Appl. Math., 2020.
274:67–80. doi:https://doi.org/10.1016/j.dam.2019.01.015.

[74] Guth O, Melichar B, Balik M. Searching All Approximate Covers and their Distance Using Fi-
nite Automata. In: Proc. Inf. Technologies — Appls. and Theory. 2008 pp. 21–26. URL
https://ceur-ws.org/Vol-414/.

[75] Guth O. Computing All Approximate Enhanced Covers with the Hamming Distance. Proc. 20th
Prague Stringology Conference (PSC), 2016. pp. 146–157. URL http://www.stringology.org/

event/2016/index.html.

[76] Kedzierski A, Radoszewski J. k-Approximate Quasiperiodicity under Hamming and Edit Distance. In:
Proc. 31st Annual Symp. Combinatorial Pattern Matching (CPM), volume LIPIcs 161. 2020 pp. 18:1–
18:15. doi:10.4230/LIPIcs.CPM.2020.18.

[77] Kedzierski A, Radoszewski J. k-Approximate Quasiperiodicity under Hamming and Edit Distance. Al-
gorithmica, 2022. pp. 566–589. doi:https://doi.org/10.1007/s00453-021-00842-7.

[78] Iliopoulos CS, Korda M. Optimal parallel superprimitivity testing on square arrays. Parallel Processing
Letters, 1996. 6(3):299–308. doi:https://doi.org/10.1142/S0129626496000297.

[79] Crochemore M, Iliopoulos CS, Korda M. Two-dimensional prefix string matching and covering on square
matrices. Algorithmica, 1998. 20:353–373. doi:https://doi.org/10.1007/PL00009200.

[80] Aho AV, Corasick MJ. Efficient string matching: an aid to bibliographic search. Communications of the
ACM, 1975. 18(6):333–340. doi:10.1145/360825.360855.

N. Mhaskar and W.F. Smyth / String Covering: A Survey 255

[81] Popa A, Tanasescu A. An Output-Sensitive Algorithm for the Minimization of 2-Dimensional String
Covers. In: Proc. 15th International Conference on Theory and Applications of Models of Computation
(TAMC), volume LNCS 11436. 2019 pp. 536–549. doi:https://doi.org/10.1007/978-3-030-14812-6 33.

[82] Charalampopoulos P, Radoszewski J, Rytter W, Waleń T, Zuba W. Computing Covers of 2D Strings.
In: Proc. 32nd Annual Symp. Combinatorial Pattern Matching (CPM). 2021 pp. 12:1–12:20. doi:
10.4230/LIPIcs.CPM.2021.12.

[83] Radoszewski J, Rytter W, Straszyński J, Waleń T, Zuba W. Rectangular Tile Covers of 2D-Strings. In:
Proc. 33rd Annual Symp. Combinatorial Pattern Matching (CPM), volume LIPIcs 223. 2022 pp. 23:1–
23:14. doi:10.4230/LIPIcs.CPM.2022.23.

[84] Alzamel M, Conte A, Denzumi S, Grossi R, Iliopoulos CS, Kurita K, Wasa K. Finding the Anticover of
a String. In: Proc. 31st Annual Symp. Combinatorial Pattern Matching (CPM), volume LIPIcs 161. 2020
pp. 2.1–2.11. doi:10.4230/LIPIcs.CPM.2020.2.

[85] Amir A, Boneh I, Kondratovsky E. Approximating the Anticover of a String. In: Proc. 27th
String Processing & Inform. Retrieval Symp. (SPIRE), volume LNCS 12303. 2020 pp. 99–114. doi:
https://doi.org/10.1007/978-3-030-59212-7 8.

[86] Matsuda S, Inenaga S, Bannai H, Takeda M. Computing Abelian Covers and Abelian Runs. Proc.
18th Prague Stringology Conference (PSC), 2014. pp. 43–51. URL http://www.stringology.org/

papers/PSC2014.pdf.

[87] Grossi R, Iliopoulos CS, Jansson J, Lim Z, Sung WK, Zuba W. Finding the Cyclic Covers of a String. In:
Proc. 17th International Workshop on Algorithms & Computation (WALCOM), volume LNCS 13973.
2023 pp. 139–150. doi:https://doi.org/10.1007/978-3-031-27051-2 13.

[88] Iliopoulos C, Kociumaka T, Radoszewski J, Rytter W, Wale T, Zuba W. Linear Time Computation
of Cyclic Roots and Cyclic Covers of a String. In: Proc. 34th Annual Symp. Combinatorial Pattern
Matching (CPM). 2023 .

[89] I T, Sugimoto S, Inenaga S, Bannai H, Takeda M. Computing Palindromic Factorizations and Palindromic
Covers On-line. In: Proc. 25th Annual Symp. Combinatorial Pattern Matching (CPM), volume LNCS
8486. 2014 pp. 150–161. doi:https://doi.org/10.1007/978-3-319-07566-2 16.

[90] Radoszewski J, Rytter W, Straszyński J, Waleń T, Zuba W. String Covers of a Tree. In: Proc. 28th
String Processing & Inform. Retrieval Symp. (SPIRE), volume LNCS 12944. 2021 pp. 68–82. doi:
https://doi.org/10.1007/978-3-030-86692-1 7.

[91] Charalampopoulos P, Pissis SP, Radoszewski J, Rytter W, Waleń T, Zuba W. Subsequence Covers of
Words. In: Proc. 29th String Processing & Inform. Retrieval Symp. (SPIRE), volume LNCS 13617.
2022 pp. 3–15. doi:https://doi.org/10.1007/978-3-031-20643-6 1.

[92] Iliopoulos CS, Mohammed M, Mouchard L, Perdikuri KG, Smyth WF, Tsakalidis AK. String Regu-
larities with Don’t Cares. Proc. 7th Prague Stringology Conference (PSC), 2002. pp. 65–74. URL
http://www.stringology.org/event/2002/index.html.

[93] Bari MF, Rahman MS, Shahriyar R. Finding all covers of an indeterminate string in O(n) time
on average. In: Proc. 13thPrague Stringology Conference (PSC). 2009 pp. 263–271. URL
http://www.stringology.org/event/2009/index.html.

[94] Iliopoulos CS, Mohamed M, Mouchard L, Perdikuri K, Smyth WF, Tsakalidis AK. String Regularities
with Don’t Cares. Nordic J. Comput., 2003. 10(1):40–51.

256 N. Mhaskar and W.F. Smyth / String Covering: A Survey

[95] Holub J, Smyth WF. Algorithms on indeterminate strings. In: Proc. 14th Australasian Workshop on
Combinatorial Algs. (AWOCA). 2003 pp. 36–45.

[96] Antoniou P, Crochemore M, Iliopoulos CS, Jayasekera I, Landau GM. Conservative String Covering of
Indeterminate Strings. In: Proc. 12th Prague Stringology Conference (PSC). 2008 pp. 108–115. URL
http://www.stringology.org/event/2008/index.html.

[97] Antoniou P, Iliopoulos CS, Jayasekera I, Rytter W. Computing repetitive structures in indeterminate
strings. In: Proc. 3rd Int’l Conference on Pattern Recognition in Bioinformatics (PRIB), volume LNCS
5265. 2008 URL https://api.semanticscholar.org/CorpusID:8858579.

[98] Crochemore M, Iliopoulos CS, Kociumaka T, Radoszewski J, Rytter W, Walen T. Covering prob-
lems for partial words and for indeterminate strings. Theoret. Comput. Sci., 2017. 698:25–39. doi:
https://doi.org/10.1016/j.tcs.2017.05.026.

[99] Zhang H, Guo Q, Iliopoulos CS. Varieties of Regularities in Weighted Sequences. In: Proc. 6th Inter-
national Conf. on Algorithmic Aspects in Information and Management, volume LNCS 7124. 2010 pp.
271–280. doi:https://doi.org/10.1007/978-3-642-14355-7 28.

[100] Iliopoulos CS, Makris C, Panagis Y, Perdikuri K, Theodoridis E, Tsakalidis A. The Weighted Suffix
Tree: An Efficient Data Structure for Handling Molecular Weighted Sequences and its Applications.
Fundamenta Informaticae, 2006. 71:259–277.

[101] Barton C, Kociumaka T, Lie C, Pissis SP, Radoszewski J. Indexing Weighted Sequences: Neat and Effi-
cient. Information and Computation, 2019. 270:104462.1–104462.21. doi:10.1016/ j.ic.2019.104462.

[102] Berkman O, Iliopoulos CS, Park K. The Subtree Max Gap Problem with Application to parallel String
Covering. Information and Computation, 1995. 123:127–137. doi:10.1006/inco.1995.1162.

[103] Smyth W. Repetitive perhaps, but certainly not boring. Theoretical Computer Science, 2000. 246:343–
355. doi:https://doi.org/10.1016/S0304-3975(00)00067-0.

[104] Kociumaka T, Kubica M, Radoszewski J, Rytter W, Waleń T. A Linear-Time Algorithm for Seeds Com-
putation. In: Proc. 23rd CM–SIAM Symp. on Discrete Algorithms (SODA). 2012 pp. 1095–1112.

[105] Christou M, Crochemore M, Guth O, Iliopoulos CS, Pissis SP. On the left and right seeds of a string. J.
Discrete Algorithms, 2012. 17:31–44. doi:https://doi.org/10.1016/j.jda.2012.10.004.

[106] Christou M, Crochemore M, Iliopoulos CS, Kubica M, Pissis SP, Radoszewski J, Rytter W, Szreder
B, Walen T. Efficient seeds computation revisited. In: Proc. 22nd Annual Symp. Combinatorial Pattern
Matching (CPM), volume LNCS 6661. 2011 pp. 350–363. doi:https://doi.org/10.1007/978-3-642-21458-
5 30.

[107] Christou M, Crochemore M, Guth O, Iliopoulos CS, Pissis SP. On the right-seed array of a string. In:
Proc. 17th Annual International Computing & Combinatorics Conference (COCOON). 2012 pp. 492–
502. doi:https://doi.org/10.1007/978-3-642-22685-4 43.

[108] Crochemore M. An optimal algorithm for computing the repetitions in a word. Informtion Processing
Letters, 1981. 12(5):244–250. doi:https://doi.org/10.1016/0020-0190(81)90024-7.

[109] Guo Q, Zhang H, Iliopoulos CS. Computing the λ-Seeds of a String. In: Proc. 2nd International Conf.
on Algorithmic Aspects in Information and Management, volume LNCS 4041. 2006 pp. 303–313. doi:
10.1007/11775096 28.

[110] Christodoulakis M, Iliopoulos CS, Park K, Sim JS. Approximate Seeds of Strings. J. Automata, Lan-
guages & Combinatorics, 2005. 10(5/6):609–626. doi:10.25596/jalc-2005-609.

N. Mhaskar and W.F. Smyth / String Covering: A Survey 257

[111] Maier D. The Complexity of Some Problems on Subsequences and Supersequences. J. ACM, 1978.
25(2):322–336. doi:https://doi.org/10.1145/322063.322075.

[112] Räihä K, Ukkonen E. The Shortest Common Supersequence Problem over Binary Alphabet is NP–
Complete. Theoret. Comput. Sci., 1981. 16:187–198. doi:10.1016/0304-3975(81)90075-X.

[113] Guth O, Melichar B. Using Finite Automata Approach for Searching Approximate Seeds of Strings.
In: Proc. Intelligent Automation and Computer Engineering, volume LNCS 52. 2010 pp. 347–360. doi:
10.1007/978-90-481-3517-2-27.

[114] Guth O, Melichar B. Searching All Seeds of Strings with Hamming Distance using Finite Automata.
In: Proc. International MultiConference of Engineers and Computer Scientists (IMECS), volume 1. 2009
URL https://www.iaeng.org/publication/IMECS2009/.

[115] Guth O, Melichar B. Finite Automata Approach to Computing All Seeds of Strings with the Small-
est Hamming Distance. IAENG International Journal of Computer Science, 2009. 36(2). URL
https://www.iaeng.org/IJCS/issues v36/issue 2/.

[116] Guth O. Searching Regularities in Strings using Finite Automata. Ph.D. thesis, Czech Technical Univer-
sity in Prague, Zikova 1903/2, Praha, CZ 160 00, 2014.

[117] Kociumaka T, Pissis SP, Radoszewski J, Rytter W, Walen T. Efficient algorithms for shortest partial seeds
in words. Theoret. Comput. Sci., 2018. 710:139–147. doi:https://doi.org/10.1016/j.tcs.2016.11.035.

[118] Gawrychowski P, Radoszewski J, Starikovskaya T. Quasi-Periodicity in Streams. In: Proc. 30th An-
nual Symp. Combinatorial Pattern Matching (CPM), volume LIPIcs 128. 2019 pp. 22:1–22:14. doi:
10.4230/LIPIcs.CPM.2019.22.

[119] Kociumaka T, Radoszewski J, Winiewski B. Subquadratic-Time Algorithms for Abelian Stringology
Problems. In: Proc. 6th Mathematical Aspects of Computer and Information Sciences (MACIS), volume
LNCS 9582. 2015 doi:https://doi.org/10.1007/978-3-319-32859-1 27.

[120] Radoszewsk J, Rytter W, Straszyski J, Walen T, Zuba W. Hardness of Detecting Abelian and Additive
Square Factors in Strings. In: Proc. 29th Annual European Symposium on Algorithms (ESA), volume
LIPIcs 2021. 2021 pp. 77:1–77:19. doi:10.4230/LIPIcs.ESA.2021.77.

