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ABSTRACT. In this note, we obtain an upper bound on the maximum
number of distinct non-empty palindromes in starlike trees. This bound
implies, in particular, that there are at most 4n distinct non-empty palin-
dromes in a starlike tree with three branches each of length n — for
such starlike trees labelled with a binary alphabet, we sharpen the upper
bound to 4n− 1 and conjecture that the actual maximum is 4n− 2. It is
intriguing that this simple conjecture seems difficult to prove, in contrast
to the proof of the bound.

1. INTRODUCTION

We use the usual notation and terminology from graph theory and com-
binatorics on words.

A word of n elements is represented by an array x = x[1 . . n], with x[i]
being the ith element and x[i . . j] the factor of elements from position i to
position j. If i = 1 then the factor is a prefix and if j = n it is a suffix. The
letters in x come from some alphabet A. The length of x, written |x|, is the
number of letters x contains. If x = x[1 . . n] then the reverse of x, written
R(x), is x[n]x[n − 1] · · · x[1]. A word x that satisfies x = R(x) is called a
palindrome.

A starlike tree T is a tree consisting of a root vertex, called the central ver-
tex, from which there extends 3 or more branches (i.e., simple paths) where
each edge of a path directed from the central vertex to the terminal vertex
(leaf) of a branch is labelled with a single letter of an alphabet A. Thus ev-
ery path from the central vertex to a leaf in the tree, as well as every simple
path passing in reverse order from a leaf through the central vertex to the
leaf of another branch, constitutes a word. If a starlike tree T consists of k
branches, each of length n, we say that T is a (k, n)−starlike tree.
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FIGURE 1. A (3, 4)−starlike tree with edges labelled using the binary
alphabet {a, b}.
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The maximum number of distinct non-empty palindromes in a word of
length n is n (see Lemma 1 below). Moving from words to graphs we can
think of this as the maximum number of distinct non-empty palindromes
in an edge-labelled path Pn of length n where the labels are single letters.
This suggests extending the problem to other graphs. In [4] it was shown
that the maximum number of distinct non-empty palindromes in a cycle
Cn is less than 5n/3. For n divisible by 3 the so-called Biggles Words con-
tain 5n/3 − 2 distinct palindromes, so the bound is almost sharp. Brlek,
Lafreniére and Provençal [1] studied the palindromic complexity of trees
and constructed families of trees with n edges containing Θ(n1.5) distinct
palindromes. They conjectured that there are no trees with asymptoti-
cally larger palindromic complexity than that, and this was later proved
by Gawrychowski, Kociumaka, Rytter and Waleń [3].

In this note, we consider the maximum number of distinct non-empty
palindromes that can exist in a (k, n)−starlike tree. We call this number
P(k, n) and prove that P(k, n) ≤ (1 + (k

2))n. For k = 3 this gives P(3, n) ≤
4n, but for trees labelled with a binary alphabet we sharpen this result to
P(3, n) ≤ 4n − 1. On the basis of computational evidence, we conjecture
that for k = 3 the best possible bound is 4n− 2. Trees attaining this bound
are easily found, but mysteriously, it seems very difficult to prove.

2. RESULTS

The following well-known result is due to Droubay, Justin, and Pirillo [2].
We give a proof since its ideas will be used later.

Lemma 1. The number of distinct non-empty palindromes in a word of length n
is at most n.

Proof. If two palindromes end at the same place then the shorter is a suffix
of the longer. It is therefore also a prefix of the longer and so has occurred
earlier in the word. Thus at each position there is the end of at most one
palindrome making its first appearance in the word. The lemma follows.

�

Of course it is also true that each position in a word can be the starting
point of the last occurrence of at most one palindrome. Note that a position
i that marks the end of the first appearance of a palindrome in x[1..n] also
marks the start of the last occurrence j = n− i + 1 of the same palindrome
in R(x).

Theorem 2. An edge-labelled starlike tree with branches b1, b2, . . . , bk, where
|b1| ≥ |b2| ≥ · · · ≥ |bk|, contains at most

|b1|+
k

∑
i=2

(i− 1)|bi|

distinct non-empty palindromes.

Proof. We say that a palindrome within a branch bi is local, while one that
overlaps a path R(bi)bj, j > i, through the central vertex is overlapping.

The path R(b1)b2 contains |b1|+ |b2| edge labels and therefore, by Lemma 1,
contains at most |b1| + |b2| distinct palindromes. Now consider the path
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R(b1)b3. This contains at most |b1|+ |b3| distinct palindromes, with at most
|b3| of their first appearances ending in b3. Palindromes local to b1 would
have been counted in the path R(b1)b2. Thus, in addition to these palin-
dromes, there are at most |b3| other palindromes in R(b1)b3, whether local
or overlapping. Similarly, there are at most |bi| new palindromes in each
path R(b1)bi for i = 4, 5, . . . , k. Thus the total number of new palindromes
in paths R(b1)bi, i = 2, 3, . . . , k, is at most ∑k

i=1 |bi|.
Now consider the paths R(b2)bi for 3 ≤ i ≤ k. The set of palindromes

in R(b2) is of course exactly the set of palindromes in b2. These local palin-
dromes fall into two types, as follows.

Type 1: Those palindromes counted in b1,2 := R(b1)b2 because their first
occurrences were in b1,2, thus not in R(b1). These will of course also
occur in R(b2)bi, but will not be counted a second time.

Type 2: Those palindromes not counted in b1,2. These palindromes must
therefore not have their first occurrences in R(b1)b2, and so must
have occurred (and been counted) previously. These palindromes
will therefore not be counted a second time.

Thus in R(b2)bi there will be no new palindromes local to b2, only (local
or overlapping) palindromes ending in bi, of which there will be at most
∑k

i=3 |bi| altogether, by Lemma 1.
Considering now all the paths R(bi)bj, i = 1, 2, . . . , k − 1, j = i + 1, i +

2, . . . , k, we see that the maximum number of palindromes in all paths of
the starlike tree is

k

∑
i=1
|bi|+

k

∑
i=2
|bi|+ · · ·+

k

∑
i=k−1

|bi|+ |bk|

= |b1|+
k

∑
i=2

(i− 1)|bi|,

as required. �

Corollary 3.

P(k, n) ≤
(

1 +
(

k
2

))
n.

Proof. Substitute n for each |bi| in the theorem. �

Table 1 (below) shows values of P(k, n) for low values of k and n when
we are restricted to a binary alphabet. We see that the upper bounds are far
from sharp.
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n k = 3 k = 4 k = 5
1 3, 4 4, 7 4, 11
2 6, 8 8, 14 9, 22
3 10, 12 14, 21 16, 33
4 14, 16 20, 28 24, 44
5 18, 20 26, 35 32, 55

TABLE 1. Maximum number of palindromes in various starlike trees of
fixed branch length. The first value in each cell is P(k, n) and the second
is the upper bound given by Corollary 3.

Using larger alphabets does not seem to increase the maxima except in
the case of a starlike tree with five branches of length 1. With a binary
alphabet we get at most four palindromes with branches labelled a, a, a, b, b;
with a ternary alphabet we get five palindromes using a, a, b, b, c.

One might expect there to be an easy induction proof, but there is not.
In the case of starlike trees with 3 branches of length n labelled by a binary
alphabet, Corollary 3 gives an upper bound of 4n. One might assume that
by adding an extra letter to each branch you could only get at most 4 new
palindromes, but this is not implied by our proof. If the three branches are
labelled A, B and C, adding an extra letter to the A branch can give an extra
palindrome in the AB branch and in the AC branch, so 2 more palindromes
starting in the A branch. Also 2 more starting in each of the branches B and
C, so up to 6 new palindromes (not 4) altogether.

We conjecture that, for all n ≥ 2, P(3, n) = 4n − 2. This bound can be
attained using branches labelled an, ban−1 and bban−2 (see Figure 1), but it
seems very difficult to prove. One can make similar conjectures for larger k
but in these cases there are many examples attaining the maxima, none of
which look suitably canonical.

The following is a slight improvement on the bound for P(3, n) when the
alphabet is binary.

Theorem 4. The maximum number of distinct non-empty palindromes arising
when a binary alphabet is used to edge-label a starlike tree with three length n
branches is at most 4n− 1.

Proof. Label the three branches x, y and z. Since our alphabet is binary, at
least two of these have the same nth letter, say α. Without loss of general-
ity, suppose y[n] = z[n] = α. There are at most 2n palindromes in R(x)y
and at most n more distinct palindromes in R(y)z. We claim however that
there are at most n− 1 new ones in R(x)z. For suppose that a palindrome
in R(x)z ends at z[n]. Then it must also occur in R(x)y ending at y[n], and
so it has already been counted. Thus there are at most 4n− 1 distinct palin-
dromes in the starlike tree. �

Similar results hold whenever paths in the tree share a common suffix.
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