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GRAPH DIAMETER PROBLEMS RELATED TO NETWORK ANALYSIS & DESIGN

William Fennell Smyth

SUMMARY

The main focus of this thesis is on a particular class of graphs called
diameter-critical graphs. It is proved that every graph of maximum size is in
fact diameter-critical. As a consequence, it becomes possible to establish a
number of new relations among important graph parameters: order, size,
minimum degree, diameter, and connectivity (edge-connectivity). In
particular,

(1) K-connected and K-edge-connected graphs of given diameter. and maximum
size are completely characterized;

(2) K-connected diameter-critical graphs of minimum size are completely
characterized;

(3) K-edge-connected diameter-critical graphs of minimum gize and
sufficiently large order are characterized; '

(4) a sharp upper bound is given on the diameter of a graph of specified
order, size, minimum degree, and connectivity;

(5)" diameter-critical graphs of given order, size, minimum degree, and
connectivity are partially characterized.

Applications of these new results to problems of network analysis and design,
especially to the determination of the diameter, are discussed.

CERTIFICATION

I certify that this thesis is entirely my own work, and that it has not
previously been submitted, in whole or in part, for any academic award at
Curtin university or elsewhere.

William Fennell Smyth
3 July 1989



TABLE OF CONTE

DEDICATION
ACKNOWLEDGEMENTS
1 INTRODUCTION

2 A SUMMARY OF THE MAIN RESULTS
2.1 Diameter-Critical Graphs
2.2 K-Connected D-Critical Graphs ?V(n,*,*,D}K)
2.3 K-Edge-Connected D-Critical Graphs @e(n,*,*,D,K)

2.4 Upper Bounds on the Diameter of Graphs of
‘ ?v(n,m,a,*,K)

3 K-CONNECTED D-CRITICAL GRAPHS @v(n,¥,*,D,K)
3.1 Edge-Minimal Graphs over €v(n,*,*,D,K)

3.2 A Partial Characterization of Graphs of Ev(n,m,*,D,K)

3.3 The Existence/Construction of Graphs of €v(n,m,*,D,K)

4  K-EDGE-CONNECTED D-CRITICAL GRAPHS ﬁe(n,¥,*,D,K)

4.1 Vertex Sequences of Edge-Maximal Graphs over
8y (n,*,*,D,K)

4.2 Structure of Edge-Maximal Graphs over Ee(n,*,*,D,K)
4.2 Edge-Minimal Graphs over @e(n,*,*,D,K)

5 UPPER BOUNDS ON THE DIAMETER OF GRAPHS OF ?v(n,m,a,*,K]
5.1 Edge-Maximal Graphs over ?v(n,m,a,*,K)

5.2 Maximum Diameter of Graphs of ?V(n,m,S,*,K)

GLOSSARY

REFERENCES

Page

C(11)

(1ii)

12
12
23
32

45

52

52

63

80

80

S0
128
151

153
153
186

170

182




DEDICATION

To my father, who didn’t live to see it,

and to my mother, who did.



ACKNOWLEDGEMENTS

Above all, I wish to express my appreciation of the support of
my friend and colleague, Lou Caccettia, who in his role as Thesis
Supervisor taught me much about both research and mathematics.
My thanks also to Dennis Moore, Chairman of my Thesis Committee,
whose idea it was, and to K. Yijayan, .Associate Supervisor, fog
his valuable comments. I am indebted as well to Julie
Aizlewpod, who did a marvellous Jjob of word-processing my
squiggles, and to Kerstin Baxter, for programming the messy
results of Chapter 5. Finally, a salute to Bill ferriman,_Head
of the School of Mathematics and Statistics, whose energy and

enterprise attracted me to Curtin University in the first place.



. CHAPTER 1

'

INTRODUCTION

A petwork is perhaps most simply and naturally thought of as a
set of points Jjoined by lines. Networks can represent numerous

real world objects, such as

* communications networks (global, national, or local);

* transportation (distribution) networks;

* computer networks;

* computer (VLSI) chips;

* multiprocessor configurations;

* neural connections;

* critical path (CPM/PERT) networks;

* flows (of gas, water, information);

* engineering structures (such as multistorey buildings, steel

transmission towers).

In each of these examples of a network, a line Jjoining two
peints has a significance determined by the real world object
being represented. Thus, in a transportation network, a line
might represent the highway connecting two cities; whereas in an
engineering structure, a line might represent a steel beanm
connecting two nodes. In recognition of this representational

role, a 1line in a network is often assigned one or more



nunerical wvalues: in a transportation network, interesting
values could be the disténce between the two’cities, or the time
or cost involved in travelling from one to the other (not
necessarily the same in each direction!); in an engineering
structure, interesting values could be the length, the moment of
inertia, or the stiffness of the bean. Similarly, values may
also be assigned to the points of the network: in both the
transportation network and engineering structure examples,
interesting values associated with points could be their
coordinates, Thus the solution of a very wide range of real
world problems can be reduced to the solution of abstract
problems defined on networks — that is, arrangements of points

and lines in which values, usually non-negative integer values,

are associated with the given points and/or lines.

In fact, it turns out that use of an even simpler model is often
of great benefit in dealing with some of the problems enumerated
above. Conéider, for example, a communications network in which
direct transmission from one node to another is possible if and
only if there exists a line (communications link) joining them.
Hence, to send a message from node A to another node B not
adjacent to A requires determining a "“shortest path" from A to
B. Sipce usnally the tranemigsion time between adjacent nodes
is Qery rapid, and since the major delays occur due to queuing
and storage at intermediate nodes, it fol;ows that a very good

measure of transmission time is provided by a simple count of



the least number of lines which need fo be traversed in order to

go from A to B. A network in which every line is assigned the
single value 1 1s called a graph, and the least number of iines
which need to be traversed in order to go from a point A of the
graph to another point B is called the distance from A to B and
written d(A,B). In Figure 1.1, d(A,B)A= 2. If there is no path

from a point A to point B, then by convention d(A,B) = o.

Example of a graph in which d(A,B) = 2

Figure 1.1

Graphs then provide a useful model‘ for problems on
communications networks and also, for similar reasons, for
problems on computer networks, computer chips, multiprocessor
configurations, and neural nets as well. For less obvious
reasons, graphs are also fundamental to the computer-based
analysis and design of'all large engineering structures (George
& Liu 1981, 1983) as well as to a myriad of other problems
(Caccetta & Vijayan 1987; Caccetta 1989). Indeed, it turﬁs out
that the most elementary properties of graphs are of decisive
importance to the solution of many of these problems — this is
not to say that the problems are necessarily simple, only that

they can be stated in terms of simple graph parameters.



In this chapter, then, a non-technical, hence slightly
imprecise, introduction is given to the siﬁple parameters used
in this thesis to identify graphs, and an outline of the main
results is provided which attempts to set them in the context of
related work. A precise mathematical treatment begins only in

Chapter 2,

The most obvious parameters associated with a graph G are the
number of points and the number of lines. The number of points
of G is called its order and denoted by n; the number of lines
of G is called its gize and denoted by m. Thug for the graph of
Figure 1.1, n = 5 and m = 6. Another obvious property of a
point of a graph is its degree; that is, the number of lines
connecting it to other points. The degree of a point X is

usually denoted deg(X), and the minimum degree & of G is Jjust

the minimum of the degrees over all points of G. Similarly the
maximum degree A is the maximum of the degrees over all peints
of G. For the graph of Figure 1.1, 8 = 2 (achieved by A, B, and
C) and A = 3 (achieved by D and E). Observe that n, m, &, and A
can be determined for a given graph G as a byproduct of reading
the graph into the main memory of a computer; that is, in time
O(m). (0(x) means “"bounded above by cx, where ¢ is some
positive constant value".) . One further property of a graph is
introduced at this poiﬁt: the diameter D of G is just the
maximum over all distances which occur in the graph. It is not

difficult to see that the diameter of the graph of Figure 1.1 is



2, since every pair of points is distance either 1 or 2 apart;
but observe that, in order to establish tﬂis fact, up to Eﬂ

pairs of points may need to be considered.

Making use only of the simple parameters {n, ﬁ, 8, A, and D)
defined so far, it is possible to gtate a famous, extremely
important, widely studied, and unsolved problem of graph theory.
Suppose that a graph G represents a communications network.
Then the diameter D represents the maximum time required to
transmit messages in the network; it is a measure of the
gfficiency of the network. On the other hand, the maximum
degree A represents the maximum number of "ports" available at
each node of the network; since clearly m = nA/2, A is a measure
of the cost per node of the network. In the design of

communications networks, the following question then immediately

arises:

What 1is the maximum order n of a graph'_
(communications network) of specified diameter D

(efficiency) and maximum degree A (unit cost)?

Solutions to this problem are known only in certain very special
cases (for D=1, for A =2, and for D = 2 with A = 3 or 7); it
is the subject of ‘much current research, and is discussed in
several .recent surveys of graph diameter problems (Bermond &
Bollobas 1981; Chung71984; Chung 1987). It is closely related

to the “cage" problem (Wong 1982; Chartrand & Lesniak 1988



pp35-45). There is no intention to deél further here with the
n(A,D) problem, as it is called; it has 'been introduced to
persuade the reader that naturally-arising simply-stated graph
diameter problems are of major current interest in computer
science. Indeed, the n(A,D) problem is only one of many such

problems, as the surveys referenced above make clear.

Since graph diameter problems are important, it becomes of
interest to have an efficient means of determining the diameter
D of a given graph. Unfortunately, as discussed in Section 5.2,
even though‘a good estimate of the diameter can usually or often
be computed in time O(m), there exists no algorithm which
guarantees determination of D in time less than O(nB). It has
been a fundamental objective of the research described here to
work toward an improved graph diameter algorithm in two main

ways:

(a) clarifying the relationship among D and other basic graph
parameters;
(b) determining an improved (sharper) upper bound on D in terms

of other graph parameters.

Two of the most important graph pvarameters which relate to these
objectives have not yét been defined: connectivity and

edge-connectivity, both denocted by X throughout this work.

Roughly speaking, the connectivity (respectively, edge-~




cqpnectivitgl_ of a graph is the least number of points
{respectively, lines) whose femoval disconnebts’the graph (that
is, yields at least two points X and Y not joined by any path).
Thus the graph of Figure 1.1 is said to-be 2-connected (K=2)
because at least two points need to be removed in order to
disconnect it; it is also 2-edge-connected. For more precise

definitions of these terms, see Section 2.1.

Before an overview of the new results_described in this thesis
is given, it may be of interest to look at some of the main
trends of previous work related to the objectives (a) and {b).
To begin with, a great deal of work has been done which relates
the four parameters n, 8, D, and K (where K denotes connectivity
rather than edge-connectivity). Perhaps the definitive result
is due to Klee and Quaife (1876), who give a lower bound
n,(3,D0,K) on the order n in terms of &, D, and K, extending an
earlier result due to Moon (1965). With a little effort, this
bound translates into an upper bound D*(n,S,K) on the diameter D
(see Theorem 2.20). The result was later rediscovered by
Seidman (1983) and by Amar, Fournier and Germa (1983), and an
alternate derivation was given by Myers (1980). Special cases
of the Klee/Quaife result were found by Kane and Mohanty (1978)
and by Goldsmith, Manvel and Faber (1981), while more precise
forms of the result for particular classes of graphs were

elucidated by Klee (1980], Myers (1981), and Bhattacharya

(1885).




A slightly different problem arises in connection with the three
parameters n, m, and D. Bosak, Rosa & Zn&m (1968) determined an
upper bound m*(n,D) on the sizelm of a graph, later rediscovered
by Smyth (1887) as an upper bound D*(n,m) on the diameter D.
Klee and Larman (1981) and Bollobas (1981), treating the size
m = m(n) and the diameter D = D(n) as functions of n, were able
to specify conditions under which almost every graph of order n
and size m had diameter D. More specifically, their reésults
made it clear that "most" graphs had small diameters, so that
their orders provided"good lower bounds for n(A,D) in the
communications network problem discussed above. In fact,
Bollobas and de la Vega (1982) applied the results to random
regular graphs (those for which 8§ = A = 2m/n) and were able to
prove the existence of graphs of order n = n(A,D) much larger
than those which could actually be constructed. Thus the
curious situation arises that, while on the one hand extremal
results make clear fhat a great many graphs of large order
n(A,D) exist, on the other hand nobody has been able to
construct them. This parallels the fact, mentioned earlier,
that while the diameter can usually be estimated efficiently, it
has not so far been possible to find a means of computing it

exactly in worst case time less than O(na].

This state of affairs becomes even more peignant when graphs of
small diameter are considered. It is easy to see that D=1if

and only if & = n~1. Further, it is well-known that if




(n-1)/2 = 8§ < n-1,

then D = 2, so that for half the possible range of values of &,

the diameter can be immediately specified. Moreover, other

graphs of diameter 2 can be described in terms of

their
complements. (The complement of a graph G is a graph G whose
points are the peoints of G and whose lines are exactly the lines

not in G, Figure 1.2 shows the complement of the graph of

Figure 1.1.)

Complement of Figure 1.1

RSN

Figure 1.2

Then the following result, put together by a sequence of
researchers (Sachs 1962; Ringel 1963; Harary & Robinsen 1985;

Straffin 1986; Bloom, Kennedy & Quintas 1987) can be proved:

A graph G of order n has diameter D = 2 if any

one of the following conditions holds:



(a) (n-1)/2 = & < n—1;_

(b) diam (G) = 4;

(c) diam (G) = 3 and G is regular.

Despite the simplicity of these conditions, no corresponding

results are known for graphs of diameter D = 3.

The above discussion has not been intended to be exhaustive or
comprehensive, but merely to provide motivation and context for
the work described in subsequent chapters. This work

establishes the following main results:

(1} For given parameters n, D, and K (either connectivity or
edge-connectivity), graphs of maximum size m* = m*(n,D,K)
are completely characterized. This characterization
depends first on the definition of a diameter-critical
graph (that is, a graph which has the property that the
addition of any line necessarily décreases the diameter);

then on the easily-proved fact that every graph of maximum

g2ize must be diameter-critical.

(2) For given parameters n, D, and K, diameter-critical graphs
of minimum size m, =-m.(n.D.K) are completely characterized

when K signifies connectivity, and characterized for

sufficiently large n when K signifies edge-connectivity.
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For given parameters n, D, and connectivity K, diameter-

critical graphs are partially characterized.

For given parameters n, m &, and connectivity K, the
* *
maximum diameter D = D (n,m,8,K) is determined, thereby
sharpening the result of Klee and Quaife (1976). On the
*

: * *
way to computing D, the maximum size m = m (n,8,D,K) for

given n, 8, D, and X is also determined.

These results are presented in four chapters. Chapter 2 gives a
technical summary of the main results broken down into four main

sections:

* a discussion of diameter~critical graphs;
* results for K-connected graphs;
* results for K-edge-connected graphs;

* determination of an upper bound on the diameter.

Then Chapters 3-5 give detailed results and proof's corresponding
to the summaries prdvided in Sections 2.2-2.4 respectively. The
reader may find it convenient to go through the thesis in a
non-linear fashion; that is, for 2 = i = 4, to follow the
reading of Section 2.i by the reading of Chapter i+1. A

glossary of terms and symbols is provided to facilitate the

look-up of definitions.
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CHAPIER 2
A SUMMARY OF THE MAIN RESULTS

In this chapter the concept of a "diameter-critical" graph is
introduced, together with some closely-gglated ideas and
terminoclogy. Then the main results of this dissertation are
summarized under the topic areas shown in Table 2.1, These

results will be proved in the chapters indicated.

Main Topic Areas

Topic Chapter Main References

K-Connected Diameter- 3 Ore (1988), Caccetta &

Critical Graphs Smyth (1986b, 1889d)
K-Edge-Connected Diameter- 4 Caccetta & Smyth (1987a,

Critical Graphs . 1987b, 1988a, 1988b, 1989a)
An Upper Bound on the 5 Klee & Quaife (1978),

Diameter of a Graph Caccetta & Smyth (1989b,

1982c)
Table 2.1

2.1 Diameter-Critical Graphs

Throughout this document, unless explicitly stated to the
éontrary, the term graph will refer to a 'finite, non-empty,
connected, simple. undirected granh, In general, notation gnd
terminology follow Bondy & Murty (1877); in particular, the five
qualifiers of "graph™ in the previous ‘senteﬁce are used in

accordance with this standard reference. A graph will generally

be denoted by G = (V,E) with vertex set V of cardinality n = |V|
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(the order of G), and edge set E of cardinality m = |E| (the

size of G). The minimum (respectively, maximum) degree of G

will be denoted by & (respectively, A). For any two distinct

vertices u, v & V, the distance d(u,v) from u to v is defined to
be the number of edges on a shortest path from u to v; thus, if
(u,v) € E, d(u,v) = 1. If no shortest path from u to v exists
(G disconnected), d(u,v) = »; for every u ¢ V, d(u,u) = 0. The

diameter D = D(G) of a graph G is then defined to be

D = max d{u,v).
u, veV¥

For a non¥comp1ete graph G, consider all subsets X ¢ V
(respeétively, X & E) such that removing X from G yields a
disconnected graph; let K, be the minimum cardinality of any

such subset X; then K, is called the-connectivity (respectively,

edge—connectivity) of G. The connectivity (respectively,

edge-connectivity) of a complete graph of order n is defined to
be n-1. Then for every integer K satisfying 0 = % = K,, G is
said to be K-connected (respectively, K-edge—connected). It is
well known (Bondy & Murty 1977, p43) that every K-connected
graph is K’-edge-connected, for some integer K’ = K, and has

minimum degree 8 = K’,

In general, the work described here may be thought of as an
investigation of the relationships among the six integer

parameters n, m, 8, A, D, and K (where for the moment K may be

thought of as representing either the connectivity or the




edge-connectivity). The trivial inequalities which these

parameters must satisfy are as follows:

0=K=§=A=n-1; . (2.1)
max{n-1,n8/2} = m = nA/2 =< [2] ; ... (2.2)
0 <D= n-1. ... (2.3)

Of fundamental importance for this work is the idea of a rooted

level structure (Arany, Smyth & Széda 1971) or hierarchy:

corresponding to any arbitrarily chosen vertex u ¢ V, this is an
arrangement of the elements of V into subsets Li(u),
i =20,1,..., consisting of the vertices distance exactly i1 from

u. Each Li(u) is called a level, and its cardinality is denoted

by n, = ILi(u)[. Then a vertex sequence corresponding to u is
given by

S = Sd(u) = (no,nl,...,nd), ... (2.4)
where n, = 1 and d is the largest integer such that n, >0; dis

called the length of S, and if G has diameter D, it follows that
1 s'd = D, If d = D, the vertex u is said to be peripheral.

Subsequences‘of S of length k = 1 are referred to as k-tuples;

in particular, fer k = 1, 2, or 2, 2o termg, doubles, eor
triples, respectively. A k-tuple (ni'ni+1""’ni+k-1) is

|
internal if 1 < i < d-k and terminal if i = 0 or d-k+1; thus the

terms n1 and nD_1 are neither internal nor terminal. The order

of a k-tuple starting at n, is just the sum of its terms, and
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its size is Jjust the number of edges in the subgraph of G

If a double (x,y) has

induced by the levels Li’Li+1""'Li+k—1'
size [x;y], then it is said to be complete; similarly, if every

double of a k-tuple is complete, then the k~tuple itself will be

called complete. The notation

will be used to denote r = 0 consecutive occurrences of a given

h-tuple (xl,...,x ). A k-tuple (xl,...,x ) is said to be

h k

h-recurring if k > h and h is the least integer such that

X = Xy for every 1 = i1 = k-h; accordingly, a vertex sequence

i+h
(2.4) is said to be h-recurring if it contains an internal

h-recurring (d-3)-tuple.

In connection with vertex sequences, observe that if (2.4) is
complete, then within isomorphism it determines a graph G. As
indicated below (Lemmas 2.2 and 2.4), the graphs discussed in
this thesis will all have the property that they give rise to a
complete vertex sequence. Thus, when a complete vertex sequence
S is determined cofresponding to a graph G, =a one-one
correspondence is thereby established between S and G. This
property is exploitedlthroughout and, in general, all vertex

sequences considered here will be complete.

Another fundamental idea is that of a property-critical graph.

Suppose that P is a property (for example, diameter, edge-
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connectivity, chromatic number, minimum degree) of a graph G
which is measured by a real number P; this relationship may be
expressed by writing P(G) = P. Then G will be said to be lower

P-critical (respectively, lower P-edge-critical} if the removal

of any vertex (respectively, edge) from G yields a graph G’ such
that P(G') =* P; similarly, G will be said to be

upper P-edge-critical if the addition of any edge to G yields a

graph G’ such that P(G’) # P. (This use of "lower” and "upper"
is not unprecedented; it occurs, for example, in.Parthasarathy &
Srinivasan (1984).) Lower diameter-critical graphs (Boesch,
Harary & Kabell 1881; Bondy & Hell 1983; Caccetta 1984; Usami
1885) and lower diameter-edge-critical graphs (Chung & Garey
1984; Schoone, Bodlaender ; van Leeuwen 1987; Fan 1987), as well
as variations of such graphs, have been the subject of
considerable study; these graphs are closely related to the
n(A,D) problem described in Chapter 1, and tend,‘ not
surprisingly, to be very difficult to characterize. The main
thrust of the development to be described here, however, relates
to upper diameter-edge-critical graphs. To avoid this mouthful,

the convention will be adopted that, unless the contrary is

explicitly stated, diameter-critical will mean "upper
diameter-edge-critical"; further, D-critical will mean
"diameter-critical of diameter D",. Thaece termc, will eomébimés

be used to refer, not only to a graph, but also to a vertex
sequence SD(u) corresponding to a peripheral vertex u of a

D-critical graph. Observe that, since all graphs are simple,

these terms are of interest only if D = 2.




17

The first elementary result, due to Ore (1968), may now be

stated:

Lemma 2.1 A graph G is D-critical if and only 1if every
peripheral vertex gives rise to a vertex sequence

(2.4) such that

(a) each terminal term is of order 1;

(b) every double is complete. |

It is an easy consequence of Lemma 2.1 that every D-critical
graph contains exactly two peripheral vertices. Moreover, it is
not difficult to see that a graph can give rise to a complete
vertex sequence corresponding to at most two peripheral
vertices. Hence, an immediate corollary of Lemma 2.1 is the

following:

Lemma 2.2 A graph G 1is D-critical if and only if every
- peripheral vertex of G gives rise to a complete

vertex sequence. |

It is now possible to define the main classes of graph which
will be considered below. These classes are specified in terms

of given values of the parameters n, m, 8 D, and K:

?V(n,m,S,D,K) : all K-connected graphs of order n, size m,
minimum degree 8§, and diameter D;

?e(n,m,S,D,K) : all K-edge-connected graphs of order n,

size m, minimum degree &, and diameter D;
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Ev(n,m,S.D,K) : all D-critical graphs of ?v(n,m,a,D,K);

€e(n,m,6,D,K) : all D-critical graphs of ?e(n,m,a,D,K).

Observe that a, class of graphs will be non~empty if and only if
there exists at least one graph whose parameters take the
' specified values; in particular, if any of (2.1)-(2.3) are
violated no graph exists, and therefore (2.1)-(2.3) will always
be assumed to hold. To simplify notation, it will be supposed
in the remainder of this thesis that the class subscript "e"
means "¢ = wv,e"; that is, that both K-connected and
K-edge-connected graphs are independently referenced. It will
further be supposed that the replacement of a parameter by "**

indicates that the parameter is unspecified. Thus, for example,

?c(n,*,*,D,K) specifies two classes of graphs:

* all K-connected graphs of order n and diameter D;

* all K-edge-connected graphs of order n and diameter D.

Similarly, €v(*,*,*,D,K) is the class of all K-connected

D-critical graphs.

Observe that every non-D-critical graph can be made D-critical
§< by the addition of edges. Hence, to defermine whether or not
?c(n,*,*,D,K) is  empty, it  suffices to consider the
corresponding class of D-critical graphs, To discover more
about D-critical graphs, a new definition is required. Given a

class ¥ of graphs, a distinguished graph G ¢ ¥ of size m is said
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to be edge-maximal (respectively, edge-minimal) over ¥ if no

graph of ¥ has size greater than (respectivély, less than) m;
when the context is clear, the qualifier "over %" will bel
omitted. Further, both of these terms will sometimes be applied
by extenslon to vertex sequences of G, or to tuples within
vertex sequences. Now consider a peripheral vertex u of an
arbitrary graph G € §, and for 1 = i = D-1, call a vertex
i+l

vV E Li(U) exceptional if its degree deg(v) < ny_q *n ot -

1. A fundamental result can now be stated and proved:

Lemma 2.3 For D = 3, no edge-maximal graph of

?c = ?c(n,*,a,D,K) contains an exceptional vertex.

Proof  Suppose on the contrary that an edge-maximal graph G
contains the exceptional vertices vl,vz,...,vt. Let

SD(u) = (1,n1,n ..,nD) denote a vertex sequence of G

o -
corresponding to a peripheral vertex u. Note that if
n, = 8, then by the edge-maximality of G, t = O. Suppose
then that n, > 8 and note further that t = 2. Then the
edge-maximality of G implies that the exceptional
vertices lbelong elther to one level or to adjacent
levels of G. Further, the only vertices of G that can
have degree & are the exceptional vertices. Suppose
without loss of generality that deg(vl) = &, Then v1 is
not adjacent to any vi, 2 =1 = t, and the vertices
92,v3,. Ve form a clique (if this were not s¢, an edge
could be added to yield =a graph of §E(n,*,6,D,K) having

more edges than G).
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If L1(uJ contains no exceptional vertex, then a graph

G e ?C(n,*,S,D,K) with vertex sequenée

Sﬁ = (1,8,n1+n2-6,n ,...,nD)
has more edges than G. Hence the exceplional vertices
of G are contained in Ll(u) v Lz(u]. If v, & Ll(u),
then the vertices of Ll(u) form a clique and a graph G’
can be constructed as above having more edges than G.
Hence vy € Ll(u). Now the graph induced by the vertices'
of Ll(u) v Lz(u) N\ {vl} must be complete, since
otherwise G could not have been edge-maximal. But irf
the edges (vl,vi), l s i = t, are added and if n1-6
vertices are then transferred from Ll(u) to Lz(u), a
graph G” = ?c(n,*,S,D,KJ will be formed having at least
t-1 more edges than G. This contradiction establishes

the lemma. n

Lemma 2.3 of course also holds for graphs of ?C(n,*,*,D,K).
Further, let SD(d) = (1,n1,n ,...,nD) be a vertex sequence
corresponding to a peripheral vertex u of a graph G edge-maximal
over ?c(n,*,a,D.K). Observe from the proof of Lemma 2.3 that it
may be supposed that n, =& It follaws then 'that the sizé of
nD is [QD], hence by Lemma 2.3 that every peripheral vertex of

an edge-maximal graph gives rise to a complete vertex sequence.

But then by Lemma 2.2 G must be D-critical. Hence:
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Lemma 2.4 For D = 3, G is edge-maximal over ?C = ?C(n,*,S,D,K)
if and oply ir G is édge—maximal over
€c = €c(p,*,6,D,KJ. ' =

Lemma 2.4 has two very important consequences: first, it makes

clear that the search for edge-maximal graphs of §E can be

restricted to a search of €c; second, it allows results

established for D-critical graphs (such as Lemmas 2.1, 2.2, 2.8,

and 2.7 of this section) to be used in the proof of theorems

characterizing edge-maximal graphs. Note also that Lemma 2.4

extends naturally to the classes ?c(n,*,*,D,K) and

€ (n,*, *,D,K).
c

The class ?V(*.*,S,D,KJ has been stugied by Klee and Quaife
(1976}, who derive expressions for the . minimum order
n, = n,(8,D,K) attainable by any graph G ¢ ?v(*,*,a,D,K). The
same expressions (Amar, Fournier & Germa 1983), or some of them
(Seidman 1983), or special cases of them {Goldsmith, Manved &
Faber 1981; Moon 1985) have been discovered or rediscovered by

others.

This section ends with three simple but useful technical lemmas
related to vertex sequences, all of them essentially due to Ore
(1968). First, however, consider a vertex sequence Sd(u)
generated by any vertex u in a graph G ¢ ?c(*,*,s,*,K). Observe

E‘ that a lower bound on the order of an internal triple of Sd(u)

is given by
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max{ad+1, 3K}, vhen ¢

x
I
[

3

S3+1 , when ¢ ...(2.8)

)
[11]

J

Further, recalling (2.1), observe that when G ¢ §é(*,*,*,*,K),

the lower bound occurs when § is set equal to K in (2.5); this

is equivalent to choosing G = @e[*,*,K,*,K). In this. context,

then, an internal triple of SD(u) is said to be lean if its

order is exactly Mc; otherwise fat. The lemmas may now be

stated as follows:

Lemma 2.5

Lemma 2.8

Lemma 2.7

Suppose that B = (x,y,z) is a lean internal triple

contained in a vertex sequence of a graph

G e 55(*.*,3,*,K). If B is embedded in a S-tuple

(u,B,v), then

v
%
=

{a) u= z; (b) w

Let 8 = (x,y,2) be a triple of a vertex sequence
SD(u) corresponding to a peripheral vertex u of =z
graph G ¢ 'G’C(*,*,*,D,*]. Then the size of B is

[X'l'g'l'Z] - XZ. |

Suppose there exist vertex sequences of length D of
graphs in @e(*,*,*,D.*) which contain the 4-tuples

B, = (w,x,y¥,2), B = (w,x-a,y+a,z), a = 0.

1 2

Then the size of 32 exceeds the size of BI by

a(z-w). ]
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2.2 K-Connected D-Critical Graphs ?v(n,*,ﬁ,D,K)

In this section the main results forﬁ edge-maximal and
edge-minimal graphs Gﬂ € @v(n,*,*,D,K) are presented;. then a
methodology is described which permits the determination of
whether the class €v(n,m,*,D,K) is eméty or not, and, if not,
the construction of a graph in the class. Proofs of these

results and further details will be found in Chapter 3.

Observe first (Kane & Mohanty 1978) that for any graph
G e 5 (n,*3DK), it must be true that n = n,, where
n, = (D-3)K + 2(8+1). When & is not specified, so that

G e ?v(n,*,*,D,K), n, takes the form (D-1)K + 2, by virtue of

the relation (2.1). In either case, G is said to have excess
a = n-n,, Independent of the choice of the parameter D, the

following lemma is fundamental for K-connected graphs:

Lemma 2.8 For every vertex sequence of a graph
G e ?V(n,*.S,*,K).
(a) every non-terminal term has order at least K;
(b) eQery terminal double has order at least &+1;
(c¢) every non-terminal triple has order at least

Mv = max{é+1,3K}.

Proof * Condition (a) follows from the K-connected constraint,
(b) from the minimum degree constraint, and (e¢) from

both constraints taken together. |
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Note that for graphs of g,(n,*,* %K), Lemma 2.8 still holds,
but, again by (2.1), with & replaced by K in conditions (b) and

(c).

In view of Lemma 2.8(a), the terms of any vertex sequenhce {1.4)

of a graph G ¢ ﬁv(n,*.*,D,K) can be expressed in the form
nk =K+ Sk, 3, = 0,

for every 1 = k = D-1. Then corresponding to a peripheral

vertex u of G, the vertex sequence takes the form
SD(u) = (1,K+61.K+62,...,K+6D_1,1), ...(2.8)

where now the excess

a= S, . 2.7
’ 1skZ£-1 k

In fact the excess vertices can be isolated in the (D~1)-tuple

), ...(2.8)

i = k D-1 |
"o 1skZD—2 [[z] * 8k6k+1] ¥ [: ] ... (2.9)
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Let

b=28 +a& .. | ... (2.10)

Then the following basic result can be stated:

Lemma 2.8 For D = 3, suppose that a graph G e ﬁv(n,*,*,D,K)
has a vertex sequence (2.8); let a, 1, and b be

defined“by (2.7), (2.9), and [(2.10), respectively.

Then the size ‘of G is
m = K((3D~5)K - (D-Ba-5)1/2 + i - (K=1)b., ...(2.11)

Proof The size of the vertex sequence S1 = (1,K,K,...,K,1) is

m, = [If](D-l) + Kz(D-2) + 2K,

and the size of the (D-1)-tuple 82 2""'6D—1) is

1. The edges induced between S1 and S2 are given by

= (61,6

m, = b(2K+1) + 2(a-b)X.

Then m = m, + m, + 1, and the result is a matter of

algebra, ]

This important lemma can be used to establish the first main

result of this section: Ore’s characterization of edge-maximal
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K-connected D-critical graphs (Ore 1968), which states
essentially that the excess a = n-n, vertices are concentrated

in at most two adjacent levels.

Theorem 2.1 A graph G ¢ ?v(n,*,*,D.K). D=4, is edge-maximnal
if and only if it has a vertex sequence
(1,n1,n2,...,nD_1,1) which satisfies both of the

following conditions:

(a) Let j’ = min{2,K} and let n, = (D-1)K+2.
Then there exists an integer j satisfying

J* = J = D~j’ such that

= 2K + (n-n,).

n‘j =z K, nj+1 = K, n‘j + nJ+1

(b) For every integer i satisfying 1 <i < J or

J+tl < i = D-1, n, = K.

/

Proof  Observe that (2.11) is maximized by choosing i = Eﬂ
and, for K > 1, b = 0. It follows that the excess
vertices must occur in at most two ad jacent non-terminal

levels which can include L1 and L only when K =1. =

D-1
It is easy to see that for 2 =< D = 3, every graph
G e @V(n,*,*,D,K) has the same size, and thus is both
edge-maximal and edge-minimal. For D = 4, the details of the

characterization of edge-minimal graphs turn out to be rather
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complicated, and are therefore left to be spelled out in Chapter
3. Nevertheless, the idea of the characterization is equally
clear: for edge-minimal K-connected D-critical graphs, the first
2(K-1) of the excess vertices are divided evenly between the two
levels L1 and LD—1’ with any remaining excess being spread as
uniformly as possible over non-adjacent non-terminal levels
cheosen from Ll""’LD-l'

On the assumption that edge-maximal and edge-minimal graphs.of
€v(n,*,*,D,K) have been characterized, it is natural now to
enquire which classes ?V(n,m,*,D,K] are non-empty, and if so,
how to construct graphs in these classes. Observe first from
(2.11) that, for sufficiently large K (for example, greater than
Eﬂ+b), there must be wvalues of m which cannot be realized.
(2.11) may also be used, in conjunction with Theorem 2.1 and the
characterization of edge-minimal graphs, to compute bounds on m.

For D = 4, the upper bound is computed from (2.11)} to be
* 2
m = [(3D-B)K" - (D-6a-5)K + a(a-1)]/2, ... (2.12)

while expressions for the lower bound are found, after some

- computation, to be

me = [(3D-5)K% - (D-4a-85)K + (|as2|%+[as2]%+a)] 2, ... (2.13)
i

for D=5 or a = 2(K-1);
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= [(3D+5 K2 D—Sa'_+5)fc] /2+ [g] [D/2]+a” (a’mod [D/2]]), . .. (2.18)

for D= 6 and a = 2(X-1);

where a’ = 2-2K+2 and a” = |a’/[D/2]]. Then for D = 4,

@v(n,m,*,D,K) can possibly be non-empty only for

m*ﬁmsm, ..-(2-15)

*
where m, and m are defined by (2.12)-(2.14).

Observe that the tuple (2.8) is slightly different from the
tuples originally defined, in that possibly Sk = 0, for any
1 =k = D-1, but Lemmas 2.1(b), 2.8, and 2.7 continﬁe to hold,
and therefore the previously-defined terminology can safely be
used. Observe also that the expression (2.11) depends not only
on the given parameters n, D, and X (hence a), but also on b and
1, which are functions only of the 8. . The dependence on the

k

given parameters can be removed by writing

m’ = m - K[(3D-5)K - (D-6a-5)]/2

i - b{K-1), ...(2.18)

and it is clear that the size m is feasible if and only if the
Sk of (2.8) can be chosen to yield b and i satisfying (2.186).
Thus the feasibility/construction problem reduces to 1a
Consideration of the properties of tuples (2.8). The key lemmas
are the following, which define 2 tuple’s minimum size

o(a, [k/2]) and establish its monotonicity.
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Lemma 2.10 For any integer k # 1, the least size of =a k-tuple

of order a = 0 is
o(a,k’) = (a mod k') |ask’] + k’[Lagk’J],

where k’ = [k/2]. This size is attained by the

k-tuple

T.(a,k) = [[ba/k’]+1,0]a mod k', (bl/ka’OJLk/2J-a mod k"

La/k'Jk mod 2]_
(Throughout this document, the notation x mod vy is used for
integers x = 0, y > 0, to mean the remainder when x is divided
by ¥: X - ybqu. This is consistent with Pascal and many

other computer languages.)

Lemma '2.11 For integers a =z 0, k = 1,

[l_a/(kg)_[ + 1]

[(a+1)/k] +

(a} o(a,k) - ola, k+1)

v

.
¥

(b) o(a+1,k) - o(a,k)

[[(a+1)mod kj/k1 - 1 ]

Based on these lemmas, the main results can then be proved:




Theorem 2.2

Theorem 2.3

Theorem 2.4
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For given integers a =z 0 and k = 4, there exists a

k-tuple of size i for every integer 1 satisfying

cr[a, Lk/ZJ] =is [g‘] "

For k =2 8, let J = J(a,b,k) denote the set of all

k-tuples (51,0,63,8 ..,ak_z,O,Sk) of order a = b

4’

such that 61 + Sk = b = 0, Then for

k! = L(k—4)/2], every size i in the range

s (20« (), 5 ]

is achieved by some element of 7, provided

-~ 1

b =b = (a-k’+k”) - V@”(Ba—Zk’+k”—2),

where k” = k’/(k’-1). When k’|](a~b), this upper

bound becomes
b = [(a+k”) - Vﬁ”(2a+k”-2) J,

and is least possible. |

For k = 8, let 95 = ﬂata,b,k) denote the set of

all k-tuples (61,82,6 90,...,0,8 8

3’ * k27 k-1

order a = b such that 61 + Sk = b > 0 and

Sk) of
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62 + 63 + 6k—2 + ak_1|= a - b.
Then, for x = 61 + 62 + 63, the size i of an
element of 33 is given by
1= (3] - x(a—x) - 8.5, - 5_ .(b-3,) =
12 172 k-2 17

Theorems 2.2-2.4 form the basis of an algorithm to determine

whether or not a given class @V = ?v(n,m,*,D,K) = ¢, and, if

not, to construct an element G & @v. This algorithm is-

complicated and is therefore not described here; see Chapter 3
for details. The algorithm will deal efficiently with nany
cases (for example, the upper bound B of Theorem 2.3 is within
0(v2) of a); but due to the fact that Theorems 2.2-2.4 do not
provide a complete characteri;atiéa of all siées achievable by
graphs G ¢ €v’ there remain certain cases which can only be
dealt with by "brute force" -- that is, by an exhaustive (and
cﬁrrespondingly time-consuming) inspection of every possible
k-tuple of the specified order (as suggested by (2.9)). For
example, achievable sizes specified by Theorems 2.3 and 2.4 do
not exhaust all possible sizes of k-tuples of order a such that
61 + ak = b; an example given in Chapter 3 makes this clear.
Further, there ars certoin wvalvas of b net savarad by Thecren
2.3 which may give rise to feasible sizes m =1 - (K-1)b: if

for some value b, the corresponding size

i=m+ (K-1)b
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turns out to be not feasible, then, corresponding to b+1, it is

necessary to try to achieve the size
i =m+ (K-1)(b+1) = 1 + (K-1).

If K> 1, and if the use of brute force is excluded, there is at
present no sure methodology to determine whether size i’ ig

achievable or not,

2.3 K-Edge-Connected D-Critical Graphs @e(n,*,*,D,K)

In this section characterizations of edge-maximal and
edge-minimal graphs G ¢ €e(n,*,*,D,K) are provided. These
characterizations are complete for edge-maximal graphs, but for
edge-minimal graphs omit certain cases when n is small with
respect to the product DK. Proofs of the results presented
here, together with further details, will be found in Chapter 4.
It follows from Lemma 2.8 that, when & is not specifi?d, a
K-connected graph is fully characterized by the requirement that
every non-terminal term of its vertex sequence be at least K.
For K-edge-connected graphs, however, no such easy
characterization is possible: as the next lemma makes clear,
both doubles and triples need to be specified. Further, as-will
be apparent later, the doubles and triples conditiens interact
in a comple# manner; it 1s precisely this interaction which
makes the analysis of K-edge-connected graphs so much more
difficult. In accordance with these observations, a new

Parameter
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a= [2v/K ] | ... (2.17)

is now introduced; as the following result shows, « is Just the
minimum order of a double in any vertex sequence of a

K-edge—-connected graph.

Lemma 2.12 For every  vertex sequence of a graph
G e ?e(n,*,a.*,K),
(a) every terminal double has order at least 8+1;
(b) the product of the terms of every nen—-terminal
double is at least K; |
(c) every non-terminal triple has order at least

S+1.

Proof Conditions (a) and (¢) follow immediately from the
minimum degree constraint. To prove (b), observe that
in order to maintain K-edge-connectivity, there must be

at least K edges between adjacent levels. |

We shall say that a vertex sequence is feasible if it satisfies

Lemma 2.12. This lemma of course applies also to graphs of

ﬁe = Ee(n,*,*,D,K), with 8 = K; in this case, it follows that,

for D = 3, a necessary condition that €P # ¢ 1s given by
e (2.18)

n = r(k+1) + ',

where r = |D/3] + 1, and
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]
-
1l

Dmod 3, for D mod 3 = 1;

= » ©otherwise,

In fact, for D mod 3 # 1, it is easy to see that the condition
(2.18) is also sufficient. For Dmod 3 = 1 and D = 7, however,
suppose that equality holds in (2.18). This implies the
existence of an internal term x = 1, which therefore by Lemma
2.12(b} must have at léast one internal neighbouring term of
order K. If x has two internal neighbours of order K, it
follows that n > r(K+1) + K, a contradiction; but if x has just
one internal neighbour of order K, it follows from Lemma 2.12(b)
again that x has a neighbouring internal triple of ordér at
least K + «, so that by Lemma 2.12(c), n = r(K+1) + «, also a
contradiction. Hence condition (2.18) is not sufficient when
D mod 3 = 1. This 1little demonstration illustrates the
difficulty of reasoning about the classes ﬁe, whose vertex
sequences satisfy doubles and triples conditions, but no
non-trivial single term condition. The same point arises in the
first main theorem, which once again gives a necessary condition

only:

Theorem 2.5 For D=6 and K = 8, every edge-maximal graph
G e Eé(n,*,*,D,K) has a vertex sequence in which
every internal triple except possibly

(nD_4,nD_3,nD“2) is lean. u
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This resqlt corresponds closely to Theorem 2.; for K-connected
graphs and expresses a similar condition: that fhe éxcess
vertices are concentrated in one level (either n, or nD_zJ.- For
K-edge-connected graphs, however, the exact value of the excess
can be difficult to specify, as the preceding discussion has
shown. To see that the condition of Theorem 2.5 is not
sufficient, consider two graphs Gl',G2 £ Eé(lsa,*,*,B,SO) with

corresponding vertex sequences
S1 = (1,50,7,36,8,50,1), S2 = (1,580,36,5,10,50,1);

neither S1 nor S2 contains a fat triple, but G2 has 5765 edges,
while G1 has only 4519. Finglly, an even more serious
deficiency of Theorem 2.5 is that it does not determine the
structure of the graph G: as Tables 2.4 and 2.5 at the end of
this section show, the lean internal triple which determines
- maximum size is not fixed, but can vary widely as a function of

n for fixed D and K.

For 2 = D = 3, it has already been noted in Section 2.2 that
every graph of ?e has the same size, while for 4 = D = 5,
edge-maximal graphs of €e are exactly those whose tgrminal
doubles are of order K+1. Vertex sequences for these

edge~maximal graphs are illustrated in Table 2.2,

i
i
I
i
i
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Edge-Maximal Vertex Sequences for @e(n,ﬁ,*,D,KJ, 2=D=35

D Vertex Sequence Conditiens

2 (1,K+a, 1) a=0

3 (1,XK+a,K+b, 1) az0, bz=0

4 (1,K,2,K,1) az]

5 (1,K,a,b,K, 1) az0, ab=K
Table 2.2

To express more precise results for D = 6, further definitions
are required. First, the definition of "lean" is extended to
doubles: in any vertex sequence of a graph of ﬁé, an internal

~double is said to be lean if its order is exactly «; otherwise,

fat. Then a graph of €e is said to be vertex-minimal if it has

a vertex sequence of length D for which one of the following

conditions is satisfied:

(for K =7) Every internal double is lean.

(for X = 8) Every internal triple is lean.

By extension, a vertex sequence satisfying one of these
conditions is also said to be vertex-minimal. Note that, for
given D and K, the fact that a vertex sequence is vertex-minimal
does not fix n: for example, for D = 7 and any K = 9, both
(1,K,3,FK/B],K—[K/S]-2,3,K,1) and (1,K,4,[K/4],K-[K/4]—3,4,K,1)

are vertex-minimal. Moreover,'for K =2 or 3, there may even
exist wvertex séquences which are not vertex-minimal but which

have the same order and size as a vertex-minimal vertex
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sequence: compare, for example,
s=1(1,2,1,2,1,2,2,1) and 8 = (1,2,1,2,2,1,2,1),

or s=(1,3,3,1,3,3,1) and S = (1,3,1,3,3,3,1).
A basic result can now be stated:

Lemma 2.13 Every vertex-minimal vertex sequence of a graph of
%?e(n,*,*,D,K) is h-recurring, where
h =2, for K = 7;

= 3, for K = 8.
Proof An immediate consequence of the definitions. =

Lemma 2.13 deals with vertex-minimal vertex sequences for all
values of K, while Theorem 2.5 deals with arbitrary vertex
sequences for K = 8, For K = 7, then, in order to present a
complete picture, a counterpart to Theorem 2.5 is required. It
turns out that, as a result of the conflict between the doubles
and the triples conditions (Lemma 2.12(b) and 2.12(c),
respectively), the corresponding theorem for K = 7 deals with
numerous special cases and is therefore complicated to state.
For this reason, the statement of the theorem for K = 7 is
delayed until Section 4.1: note however that, excent for very
special cases, the result is essentially the same as Theorenm

2.8: excess vertices are concentrated either in n2 or nD-2'
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In order to facilitate further discussion, several new
quantities are now defined. Let ®, be the least integer such
that al(a—al) =z K. Then set @, = a-e,, So that ®, and @, are,
respectively, the least and greatest terms of a lean double. In
order to have, for K = 8, a corresponding representation of =z

lean triple, let Ka = K+l-o. The quantities @ys Gy, and Ka are

important throughout the discussion of K-edge-connected graphs.

Turning now to edge-maximal graphs for K = 8, observe that by

Theorem 2.5 every edge-maximal graph of €e has a vertex sequence
r-1
SD = (1,K, ({x,y,2) B, K, 1), ...(2.19)

where as above r = |D/3]-1, (x,y,2) is a lean triple, and B

denotes the tuple

(x,y,z+a), for D mod 3 = 0;
(x,y,2z,x+al, for Dmod 3 = 1;
(x,y,2z,x,y+a), otherwise;
* *
where the excess a = 0. The maximum number m = m (n,D,X) of

edges represented by (2.19) may therefore be expressed as

follows:

*
m* =‘(r'+2)[K;1] + [2 ] + f*(x,y,z;a), ... (2.20)

#* »*
where n = n - (r+2)(K+1) and f is a function determined by
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choosing %, y, and z (hence a) so as to maximize

K{x+z+a)+a(y+z)-xz, if Dmod 3 =0; ...(2.21)
f(x,y,2z;a) = {Kt2x+a)+az y 1f Dmed 3 =1; ...(2.22)
K(x+y+a) , otherwise. ... (2.23)
*
From (2.23} it follows immediately that, since n = X+y+a for

*
Dmod 3 = 2, m is constant. Hence in this case the condition

of Theorem 2.5 is also sufficient:

Theorem 2.8 For D=6, Dmod 3 = 2, and K = 8, a graph
G e €e(n,*,*,D,K) i1s edge-maximal if and only if G
has a vertex sequenée in which every internal
triple except possibly (nD_4,nD_3,nD_2) is

lean, |

Moreover, in the case D mod 3 = 1, it follows from (2.22) that

f{x,y,z;a) = 2Kx ; 2Kn* for a = 0, so that ma.E is once again

constant. This remark justifies condition (a) of the following

result; condition (b) is proved in Section 4.2.

Thecrem 2.7 For Dz & and K = 8, a vertex-minimal graph
G e €é(n,*,*,D,K)lis edge-maximal if and only if
one of the following eonditions is satisfied;

(a) D mod 3 = O;

(b) G has a vertex sequence (2.19) where
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(ey,@),K ), if X # 16, 18;20,22-24, 28, 27, 36;
(2K, 1), if K = 36,48

(a2+2,a1-1,Ka—1), otherwise. - _ n

(x,y,2) = (a2+3,tx

Since the result for D mod 3 = 0 is complex for vertex-minimal
graphs, it is not surprising that it turns out to be even more

complex for a > O:

Theorem 2.8 For D=6, Dmod 3 = 0, and K = 8, suppose that a !
graph G ¢ %e(n,*,*,D,K) has a vertex sequence

(2.19) in which a = «-1. Suppose further that

* * *
integers a and a# are given, where a =a =0

except as shown in the following table:

K a* a*

16 2 2

19 - 2 2

20 1 2

22 2 2

23 1 2

24 1 1 i
26 1 2

27 1 1 y
36 2 2

Table 2.3

Then G is edge-maximal if and only if the vertex i
sequence (2.19) satisfies one of the following

conditions:
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*
(&) 0=a= a and (x,y,2z) is specified by

Theorem 2.7(b);
>

(b) a” =a < a1 and (x,y,2) = (az,al,Ka);

(¢} a=o01and z = K, : n
In order to state the result for a =z « economically, it is
convenient to introduce the idea of a transformation which
carries a k-tuple of a vertex sequence into another k-tuple of
the same order. A transformation is said to be feasible if both
the original vertex sequence and the transformed one are

feasible.

Theorem 2.9 For D = B, D mod 3 = 0, and K = 8, suppose that a
graph G = ﬁe(n,*,*,D,K) has a vertex sequence
(2.18) in which 2 = . Then G is edge-maximal if
and only if there exists ne feasible

transformation

T (x,y,2) = (x',y',2)

of (2.18) satisfying all of the following

conditions:

(a) x' <x, 9 >y, z' < z;
() vy = [kx'];

(c) z+a > [K(y'-y)+x’'(z2'-2)1/(x~x'). o
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In Chapter 4 a more computationally useful form of Theorem 2.9

is derived. Here the final result for edge-maximal graphs is

the following:

Theorem 2.10 For D2 6, Dmod 3 = 1, and K = 8, suppose that a i

graph G ¢ ﬁe(n,*,*,D,K) has a vertex sequence
»* »* *
(2.18) in which n > Ka' Let j and k be the

vaiues of j and k which maximize 7 i |
(i+j){ -1[(K-a2)/(i+j) - 1]}

over 0 = j = a1-3 and 1 = k = 2, where

il
JEEY
wa

i=1(4,k)

rK/(ul-j)]—az-j, for k

]
a8}

K, = [K/(x=3)], for k

* #* *
Let i =1i(j ,k ). Then G is edge-maximal if and

only if

.*' _* .'* .'*-
(x,y,2) = (K -1, -] yo, L+ ).

Further, there exist integers a, = a«a-1 and

»*
a 2 -1 such that

2 (X,y,2) = (K, ,a,);

1A

(a) for a

v

*
(b) foraza, (xy2z)= (az,al,Ka). ]
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To conclude the discussion of edge-maximal graphs, and to convey
some appreciation of the significance of Tﬁeorems 2.6-2.10,
Tables 2.4 and 2.5 give numerical examples of edge-maximal
vertex sequences for K = 16 {a = 8, @ = @, = 4, Ka = @) and

K=170 (a=17, @ =17, @, = 10, K, = 54), respectively.

Edge-Maximal Vertex Sequences, K = 16, Dmod 3 = 1

a (x,y,2)
0-5 (9,4,4)
5-7 (8,3,8)
7_11 (6)3)8)

=11 (4,4,9)

Table 2.4

Edge-Maximal Vertex Sequences, K = 70, D mod 3 = 0

a (x,y,2)
0 s (12,8,53)
0-15 (10,7,54)
16 (9,8,54)
’ (8,8,54)
(7,10,54)
17-80 (7,10,54)
80-82 (B,12,53)
82-218 (5,14,52)
216-356 (4,18,49)
=358 (3,24,44), for D > B
356-706 (3,24,44), for D =85
T706-2332 (2,35,34), for D=6
=2392 (1,70,0), for v =258
Table 2.5

What has been presented above amounts to a complete

characterization of edge-maximal graphs of @é, hence by Lemma




44

2.4 of ?e. For edge-minimal graphs, two main results are
presented, which provide a characterization fof "larger" wvalues
of n. Recall that for 2 = D = 3 every  graph in ﬁe is
edge-minimal. Then the first of these results depends upon the
observation that, for even D = 4 and sufficiently large n,

L ¥* %
@e(n, 5, D,K) € ﬁv(n, L* 0D, 1),

Theorem 2.11 For even D =2 4 and n = D(K+1)/2 + 1, a graph

G ¢ ﬁé(n,f,*,D,K) is edge-minimal if and only if

G is edge-minimal over Ev(n,*,*.D,l). n

For even D, then, the characterization depends essentially on
Theorems 3.1 and 3.2. For odd D, however, the dependence is
indirect and more complicated:

Theorem 2.12 For odd D=5 and n. =2 (D-1)K + 2, a graph

G e Eé{n,*,*,D,K) is edge-minimal if and only if
it has a vertex sequence which satisfies all of

the following conditions:

(a) n‘:.l =1, for j=D-1and j =2,4,...,D-5;
{(b) mln{nD_4,nD_5} = K;
(c) for every 1 = j = (D-5)/2,

(i) n2j = 2ZK-1;

(ii) for every 1 = j* = (D-5)/2,

Ing5o1 a0 g ] = 15

(111)  ny; g-mp o] = 15

(iv) |n2j_1-nD_4—nD_3| s 1. "




These two results are proved in Section 4.3. From (2.18) it
follows -that the missing values of n lie in relatively narrow

ranges:

([D/3]+1)(K+1) + r’ = n = (D/2)(K+1) + 1, n even;

([D/3}+1}(K+1) + r’ = n = (D-1)K + 2, n odd.

No work has been done on the existence or construction of graphs
of @é(n,m,*,D,K), as described in Section 2.2 for graphs of €v.
Since there is no single term condition for K-edge-connected
gfaphs, it is clear that to deal with this problem, a quite
different methodology would be required. In general, the

problem appears to be very difficult.

2.4 Upper Bounds on the Diameter of Graphs of ?v(n,m,a,i,K)

The results described in this section derive ultimately from the
realization that diameter-critical graphs are essentially graphs
of large diameter, and further that, by applying the methodology
developed for the class ﬁe(n,*,*,D,KJ, it should be possible to
characterize edge-maximal graphs of ?V(n,*,a,D,K); hence to
determine a sharp upper bound on the diameter of any graph of
?V(n,m,a,*,K). Recall f;om Section 1 that for graphs of
?V(*,*,S,*,K), a lean triple has order Mv = max{d+1,3K}. Then

the basic result is as follows (compare Theorem 2.5):
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Theorem 2.13 For D = 6, there exists an edge-maximal graph of
?v(n,*,S,D,K] with a vertex sequence in which

every internal triple except possibly

(np 4+ Dp_5eBp_5) is lean. n

For D = 5 the edge-maximal graphs can be determined by

inspection, as shown in the following table:

Edge-Maximal Graphs of §v(n,*.3,D,K), D=5

—
D Vertex Sequence Sy m (n,8,D,K)
1 (1,n-1), [g]
‘ n-1=3=K _
2 (1,8,n-5-1) [;] + 3
3 (lln_(x+2)lx! 1)9 [;1]
d = x or n—-(x+2) ‘
4 (1,3,n-2(8+1),8,1), [n;Z] - 5(5-2)
n-2(8+1) = K
5 (1,6,x,n—2(6+1)-x,5,1), n{n-28-5)/2 + (8+1)(8+3)
K = x = n~2(3+1)-K

Table 2.6

For D = 8, however; in order to make use of Theorem 2.13, a

derivation is required very similar to that described in Section

2.3 for edge-maximal graphs of €é(n,*,*,D,K), with the slight
!

additional cbmplication that the minimum degree & must now be

considered. Accordingly, generalizing (2.19), let
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S = (1,5, (x,y,2)" 1, 8,8, 1) ... (2.24)

be a vertex sequence of an edge-maximal graph of ?v(n,*,a,D,KJ,
where r = |D/3[-1, (x,y,z) is a lean triple, B denotes the

tuples

(x,y,2z+a), (x,y,z,%x+a), (x,y,2z,x,y+a),

according as D mod 3 = 0, 1, or 2, respectively, and the excess

* *

a = 0. Then the maximum number of edges m = m (n,3,D0,XK)

corresponding to (2.24) is given by
* Mv 8+1 n* *

m =r|, +2[2]+[2]+f(x.y,z;a), ...(2.25)
#* *

where n =n - er - 2(8+1) and f 1is a function determined by

choosing x, y, and z (hence 2a) to meximize

d(x+z+a) + aly+z) - xz, Dmod 3 = 0; .. (2.28)

f(x,y,z;a) = {8(2x+a) + az ‘ , Dmod 3 = 1; ...(z2.27)

S(x+y+a) , otherwise. ...(2.28)

After a calculation similar to that outlined in Section 2.3, the

following result is derived:
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»
Theorem 2.14 For D =2 5, the size m of an edge-maximal graph

of ?v(n;*,S;D,K) is given by (2.30), where
(a) for D med 3 = 0,
»* *
f = (8+K+K’)n + (K’'8+8K-KK’);
(b) for Dmod 3 = 1,
* *
(i) £ = 28n ,
for a = 2K-1 and a = K'-K, or
for 2K = a = K'-K-2;
* #* *
(ii} £ =28n - (8-K)(n =K,
for a = 2K-1 and a > K'-K;
* * *
(iii) £ =23n - (8-K')(n -X),
for a = 2K and.a = K'-K-1;

* #*
(c) forDmod 3 =2, f = 8n ;

and K’ = 8§+1-2K, n

From this result, together with Table 2.8, it is tedious but

straightforward to prove

*
Theorem 2.15 For fixed n, &, and K, the function m {n,s,D,K)

specified by (2.25) is monotone decreasing in D.

This monotonicity property, together with the computational
results of Theorem 2.14, makes possible the determination of an
upper bound on the diameter of a graph of ?v(n,m,é,*,K). To

express this bound, consider a set of quadratic equations
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F'J.(I‘) =2 - [bj+2(n-1)]r + [cJ.f-n(n—B]—m] =0, 1= j=85,

... (2.29)

whose coefficients bj and cj are given by the following table,

Coefficients of Fj(r] (where ¥y = 3+1)

j b. c.
J J J

1 —2y+Mv-2K n[-2y+2Mv-2KJ + 7(27~2Mv+2K+4J - K(ZMV-4K—2) - ZMV
2 -MV—Z -2n - y(2y-8)

3 -27—Mv+2K n{-2y+2K) - 7(27+2Mv-8K+4) - K(2M§—4K—4) - 2Mv

4 —27+Mv—4K n(—27+2MV—4K) + 7(27—4Mv+10K+4) - K(ZMV-4K+2)

5 -27-Mv -2yn + y(2y+4)

Table 2.7
Suppose now that each of the equations (2.29) gives rise to real
roots, and let rj, 1 = j =5, denote the lesser of each pair.
Then set

*
Dy = SLPJ/MVJ + [(3-1)/3] + 3, 1= § = 5. ... (2.30)

Thecrem 2.168 For a graph of ?V(n,m,a,*,KJ. where

N .
m<m(n§,5K), the maximum diameter

*

* * E *
D =D (n,m8,K) = min(Dl,Dj,,D

S)’

where j’ = 2, 3, or 4 according as
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a =n - (|[D/3]-1)M, - 27 - K,

satisfies Theorem 2.14(b) (i), (ii), or (1ii),
. :
respectively; and the Dj’ l = §J = 8, are

specified by (2.28), (2.30), and Table 2.7. =

It is not clear what, if any, algorithmic impact the bound
expressed by Theorem 2.18 will have. Although the bound is
sharp for the class ?v(n,m,a,*,K). it can nevertheless be much
larger than the diameter of an individual graph in the class;
although this effect is reduced substantially for graphs of
higher connectivity, the difficulty then arises that the
connectivity K of a graph is generally not known and is roughly
as difficult Fo determine as the diameter D. Thus, while
Theorem 2.16 does represent an advance in quantifying the
relationship among the parameters n, m, 8, D, and K, there is at
the present time no specific algorithm to which it directly
relates. Future work in this general area might focus on any of

the fellowing topics:

the determination of the maximum diameter of a graph of

?e(n,m,é,*,K);

algorithms for determining a lower bound on the {edge-)

connectivity of a graph of ?C(n,m,a,D,*J;

J P
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* fast recognition algorithms for graphs of "large" or "small®
diameter (generalizing, for example, the well-known result

that if (n~1)/2 = 8 < n~1, then D = 2);

* numerical experimentation based on Theorems 2.18 and 2.17

(see below).

This survey is concluded by quoting a form of a result menticned
in Section 1, due to Klee and Quaife (1978). In contrast to the
calculation described here of an upper bound on the size of
graphs of ?v(n.*,a,D,K), Klee and Quaife determine a lower bound
on the order of graphs of ?v(*,*,S,D,K); Just as the upper bound
found here was inverted to yield an upper bound on D, so also

can Klee and Quaife’s lower bound be inverted, to yvield

Theorem 2.17 For a graph of ?v(n,*,é,*,K). where 8 < (n-1)/2,

*
the maximum diameter D is given by

)
il

[[n+3K-2(3+1)1/K], & = 3K ~ 1;

3|n/(8+1)] + min{l_[n mod(6+1')}/KJ,2} - 3,

otherwise. ' ]
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CHAPTER 3

K-CONNECTED D-CRITICAL GRAPHS ?vIn,*,i,D,K)

In this chapter edge-minimal graphs of €v = E&(n,*,*,D,K) are
characterizéd (the characterization of edge-maximal graphs was
completed in Section 2.2), and then results are proved which
partially characterize graphs of ?; = @v(n,m,*;D,K). Based on
these results, an algorithm is described which determines, for
given n, m, D, and K, whether or not E; is empty; and if not,
constructs a graph G ¢ €;. The main references for this chapter
are Ore (1868) and Caccetta & Smyth (1988b, 1989d); the main

results of this chapter are summarized in Section 2.2.

3.1 Edge-Minimal Graphs over @v(n,¥,¥,D,K)

As indicated in Section 2.2, the main results of this section
can be summarized by the statement that, for D = 4, a graph G of
€v is edge-minimal if and only if the first 2(K-1) of its excess
vertices are partitioned as uniformly as possible between levels
L1 and LD__1 of the level structure corresponding to G, and the
remaining excess vertices distributed as uniformly as possible
over non-adjacent non-terminal levels. However, the technical
details of a ©precise characterization gecame somewhat
complicated. In this section these details are spelled out,
making use of preliminary results which have application also in

the development of Section 3.2.
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Recall that-in.Section 2.2, in order to discuss the construction
of graphs of ﬁ;, it was convenient to consider a (D-1)-tuple
(2.8) in which any term SJ, 1 = § = D-1, could be zero. Here

this idea is generalized slightly to denote by

3 ) ... (3.1)

T(a,k) = (61,62,..., K

a2 k-tuple, k =z 1, of order a =z 0. Similarly, the use of edge-
minimal is generalized to describe a k-tuple T(a,k) of size
not greater than any other k-tuple of order a. A k-tuple will

be called partitionable if for every J satisfying

1 = J = J[ks2]-1, 62j and 62j+1 are not both non-zero. A
partition of a partitionable k-tuple is the set of [k/zj doubles
(52j-1'62j)' 1 = j = |[k/2], together with the single term 8 %
when k is odd. Each of the [kxz] elements of a partition is
called a clump. With this nomenclature a fundamental lemma can

now be proved:

Lemma 3.1 Fora=Oand k=1, a k-tuple T = T(a,k) on a
vertices is edge-minimal if and only if"
(a) T is partitionable;
(b) the orders of each pair of clumps of T differ

by at most one.

Proof Suppose first that T = (61,62,...,6k) ‘is  not

partitionable, and observe that therefore the sum
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o
y = ) 8,5%2j+1 > 0- Now consider the k-tuple -
1=j=[k/2]-1

* * 4 s '
T =T (a,k) = (38],8},...,8)),

where

= + 3 , for j odd;
3% 7 % J

=0 , oOtherwise.

*
Obgerve then that the size of T exceeds the size of T

*
by exactly Z , So that T cannot be edge-minimal.

Suppose next that T is partitionable, but that
condition (b) is false. Hence there exist two clumps of
orders ¢, and ¢, such that ¢,=C¢, = 2. But then T cannot

be edge-minimal, because the transformation

would yield a k-tuple on a vertices whose size was less

than that of T by

[pé] ) [c1;1] . [cg] ) [02;1] oo

This proves necessity. To prove sufficiency, suppose

that both conditions (a) and (b) are true, and observe




that any rearrangement of T incompatible with (a) and .

(b) would either make some 5j > |a/k’| + 1 or make some
zero term non-zero, or both; since all of these changes
necessarily increase the size, it follows that T must be

edge-minimal. This completes the proof. ]

Let a double (xl,xz) such that Xy > 0, Xy > 0, be called a non-

trivial double, Then Lemma 3.1 has the following immediate

corollary:

Lemma 3.2 For a =0, and k 2 1, an edge-minimal k-tuple T(a,k)
contains
(2) no non-trivial doubles, if k is odd;

(b) at most one non-trivial double, if k is even. m

Lemmas 3.1 and 3.2 deal with the problem of minimizing the size
of an unconstrained k-tuple, but from Lemma 2.9 it is clear that
for K > 1 the problem of determining an edge-minimal graph of @v

will require the minimization of the quantity
g{i,b) = 1 - (K~1)b.

This minimization problem is fortunately simplified h

main characterization theorem:




Theorem 3.1

Procf

Since
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Suppose that K = 2, n, = (D-1)XK+2, and n = n,.
Then for 4 s D=5, or for D= 8 and n = (D+1)K, a
graph G ¢ ﬁv(n,*,*,D,K) is edge-minimal if and

only if it has a vertex sequence

(1,K+61,K,K,....K,K+6D_1,1)
of length D in which 61 + 5D—1 = n-n, and
|8,=8p 4 = 1.

n = (D+1)K, it follows that the excess

a = n-n, = 2(K-1). By Lemma 2.8(c), the minimum order

of a non-terminal triple is 3K, greater by K-1 than the

minimum order of each terminal triple. Then for

a = 2(K-1), the excess vertices must be distributed only

to 61

and & any k-tuple such that Bj > 0, for some

D-1°

1 < J < D-1, must have size greater than any other

k-tuple of the same order, where Sj is reduced by one,

and either 81 < 2K-1 or 6D-1 < 2K-1 is correspondingly

increased by one. Further, the distribution to &, and

6D—-1

|8,-5

p-1l =

1

must be as uniform as possible, so that

1, since otherwise the size could be

increased by transferring a vertex from larger to

smaller.  Thus for K = 2 and n = (D+1)K, uniform

distribution to & and 3 is a necessary and

1 D-1

sufficient condition that G be edge-minimal. L
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Theorem 3.1 has been stated to apply only for K.z 2 in order to
avoid certain trivial special cases which arise for K = 1. In
fact, it is easy to see that Theorem 3.1 holds for D = 6,
n = (D+1)K, and K = 1, since in this case the excess is zero.
Moreover, for 4 = D =< 5, the condition is sufficient when K = 1;
that it is not necessary 1is a consequence of the following

possibilities:

... ¥ when n = D+2 = n,+1l, the single excess vertex may be
added to any level Ll’ 2,...,LD_l;
* when D = 5 and n-n, > 2, the excess vertices may be

distributed uniformly over levels L, and L (rather than

1
L1 and L3 as the theorem states).

As a preliminary to the second main theorem, three more lemmas

are proved:

Lemma. 3.3 Suppose D = 4 and let S = (no,nl,...,nD) denote a
vertex sequence of an edge-minimal graph

G e €V(n,*,*,D,K). Then for K = 2, n, = = K;

2 -~ "p-2
for K = 1, S has the same size as an edge-minimal

vertex sequence S’ of the form

’ I r /s 4
(1,1’11, 1,n3,n4,- --,nD_S: 1)n-D_1I1)'




Proof

Lemma 3.

Proof
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By Lemma 2.7, if n, = K+a, a > 0, then the size of the

4-tuple

N'CD
|

= (1,n1,K+a,n3)

exceeds that of

By = (1.n1+a,K.n3)
by alny-1) = a(k-1), For K = 2, this is a
COntradiction; for K=1, the size difference is =zero.

Similarly for nD-2' |

4 For n = (D+1)K, every vertex sequence of every
edge-minimal graph of ﬁ;(n,*,*,D,K) has n, = 2K-1,
n = 2K-1.

D-1
The result is trivial for X = 1. Then suppose that
K > lhand further that the lemma is false. Then some
aj >0, 1< j<D-1, and as in the proof of Theorem 3.1,
it is clear that the size must be increased by reducing
SJ by one and at the same time increasing either §, or

1

ﬁu_l hy one, a contradiction. "
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Lemma 3.5 For t = n-(D+1)K = O, the size of an edge-minimal

graph G ¢ ﬁv(n,*,*,D,KJ is
m = K[(3D+8)X - (D-6t+5}] + i,

where i is the minimum size of a (D-1)-tuple of

order t.

Proof By Lemmas 3.3 and 3.4, m may be computed from the vertex

sSequence
(1,2K—1+61,K,K+63,K+64,...,K+6D_3,K,2K-1+6D_1,1),
where t = Z SJ. Hence
1=j=D-1

m = [g] (D-3) + KZ(D—4) + 2[25] + 2K(2K-1) + 3tK + i,

/

from which the result follows. ]

From this last result, it follows that Lemma 3.1 may be applied
to characterize edge-minimal graphs of @v. In order to state
the characterization theorem precisely, further definitions are
required. In the spirit of the definition of "lean" for
triples, let a non-terminal term be called lean if it has order
K; otherwise, fat. For integers h and k, let #(h,k) denote the

set of all distinct k-tuples consisting of h non-ad jacent fat
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terms of order K+1 and k~h lean terms. Note that #(h,k) is

non-empty if and only if k=21, 0 = h = [k/z]. For example, '

?(2,4) = {[K,K+1,K,K+1),(K+1,K,K+1,K),(K+1,K,K,K+1)}.

Then for k = 6, define the sets of (k+1)-tuples

#,(0,k) = {(1,2K-1,K,S,K,2K-1,1) | s ¢ ?(h,k-s)},
$p(h, k) = {(1,2K—1,K,S,K,2K,1) | se ?(h—i.k-S)}, k

$a(h, k)

{(1,2K,K,S,K,2K,1) | s e ?(h—z,k—S)},

and

¢ (h, ) £, (1) U £,(0,K) U £ (h, k). ...(3.2)

Next, for any integer h = 2, consider the particular

(2h+1)-tuple
S = (1,25, (k+1,K072 2k, 1) ¢ #4(h, 2h),
and for any integer t = 0, let
9*(t,2h) ... (3.3)

denote the set of all distinct (2h+1)-tuples obtained by
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spreading t vertices as evenly as possible over the fat terms of
S. Now let 9?(t,2h+1) denote the set of all distinect
2(h+1)-tuples obtained by spreading t = O vertices as uniformly
as possible over the fat terms of every element of

h h-h, -2

F4(h,2n41) = {(1,2K, (K,k+1) L KK, (K+#1,K)  ° ,2K,1) |

0 = h1 = h~2}.

Observe that every element S e ?f(h,2h+1) contains exactly one
of the 4-tuples (X, K+a,K,K) or (K,K,K+a,K), for some a = 1. If
in fact a = 2, then each of these 4-tuples can be transformed

into a-1 corresponding 4-tuples
(K,K+b, K+c,K),

where b > 0, ¢ > 0, b+c = a, and by Lemma 2.7 the size of the
4-tuple is unchanged. Hence let yg(t,2h+1) denote the set of
all distinct 2(h+1)-tuples obtained by carrying out these

transformations on every element of Yf(t,2h+1), and then let
i =3
¥7(t,2h+1) = ylit,2h+13 V) Pz(t,2h+1). ...(3.4)

Finally, based on (3.2)-(3.4), the main characterization result

can be stated:
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Theorem 3.2 For D = 6 and t = n-(D+1)K > 0, a graph

Proof

G 2 8 (n,*%D,K) is edge-minimal if and only if
it has a vertex sequence SD satisfying one of the
following conditions:

(a) t < [D/2] and Sj & # (t,D):

(b) Deven, t = D/2, and S_ ¢ y*(t-D/z.D);

D
#
(c) Dodd, t = [D/2], and Sy e #"(t-[D/2},D);
(d) Dodd, t = |D/2], K=1, and S; = (1,8) or
¥

(S,1), where S £ ¥ (t-|D/2]+2,D-1). n

For case (a), observe that by Lemma 3.5, the (D-1)-tuple

Sy = (81,0,84,8,,...,8) ,0,8,_,)

determines the size of an edge-minimal graph. By Lemnma
3.1, S, must contain t non-adjacent ones and D-1-t

0

zeros, and hence specifies exactly the vertex sequences

*
of ¥ (t,D).

For case (b), observe that since D is even and t = D/2,
the vertex sequences are by Lemmas 3.1, 3.2(a), and 3.5

restricted to the forms specified by ?t(t—D/z,D).

For case {(c), cobserve that for D odd and t = [p/zj, the
vertex sequences of ?#(t—LD/ZJ,D) are, by Lemmas 3.1,

3.2(b), and 3.5, the only sequences possible for K = 2;
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for K = 1, however, the vertex sequences specified by
(c) and (d) exhaust all possible cases. This completes

the proof. n

3.2 A Partial Characterization of Graphs of & (n,m, *,D,K)
In this section, results are presented which, for given integers
n, m D, and K, provide partial answers to the following

problems:

* €, (n,m*D,K) = ¢?

* Construct a graph G ¢ Ev(n,m,*,D,K).

First recall Lemmas 2.10 and 2.11, stated in Section 2.2, which
specify a sharp lower bound o(a,k) on the size of a k‘-tuple,
2k-1 = k’/ = 2k, on a vertices, and establish its monotonicity
properties. Lemma 2.10 is now seen to be an easy corollary of

Lemmas 2.9 and 3.1, but Lemma 2.11 is restated here and proved.

Lemma. 2.11 For integers a =z 0, k = 1,

[I_a/(kd-é)] + 1]

L(a+1)/k] +

¥

(a) o(a,k) - o(a,k+l)

(b) elatl,k) - o(a,k)

[[(a+1)mod k]/k] - 1.
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To prove (a), observe that the transformation of a
(2k+2)-tuple of minimum size into a 2k-tuple of minimum

size may be thought of as a sequence of steps by which a

term initially of order B8 = |a/(k+1)| is reduced to

~zero: at each step B is decreased by one, while another

term « = |a/(k+1)| is increased by one. Consider the

identity

atll [« B-1] _ [B) _ ._

B9 - @+ B - [ = wen - a5)
true for all integers « = 0, B = 1. From this

expression it is clear that the increase in size at step

4 is
x-B+1zh

Then in exactly |a/(k+1)| such steps a 2k-tuple of

minimum size can be created, where by construction

o{a, k) - o(a,k+l) = [

b = La/{12<+1 )_|+1] ,
1=h=|a/(k+1)]

as required,

To prove (b), observe that the removal of a single
vertex from a minimum 2k-tuple of order a + 1 affects a
term of order either [(a+1)/k] + 1 (when (a+1)mod k > 0)

or |(a+1)/k] (when (a+l)mod k = 0). n
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Lemma 2.11 implies that for fixed a and for k = a-1, ola,k) is
strictly monotone decreasing iﬂ k; while for fixed k and for
a =z k, o(a,k) is strictly monotone increasing in a. It is now
possible to prove Theorem 2.2, one of the main results of this

section:

Theorem 2.2 For given integers a = 0 and k = 4, there exists a

k-tuple of size i for every integer i satisfying

o-[a, [_k/ZJJ =i = [;'] ™
Proof  Suppose that k is even, and let k/ = k/2, a’ = [g/k’].

Then recall from Lemma 2.10 that for even k the minimum

size o(a,k’) is achieved by the k-tuple
* 7 _ ’
T.(a,k) = [(a‘+1,0)a mod k .(a’.O)k a mod k ]-

The 'maximum size Eﬂ is achieved by the k-tuple

{a,0,0,...,0). For eo(a,k’) < i <« Eﬂ, the proof

proceeds by construction.

Consider the rightmost 4-tuple, say (x,0,y,0), of
T,(a,k). By Lemma 2.1 this 4-tuple has size [’2‘] + [;’]
Observe that the order of the rightmost two terms can be

reversed, yielding the 4-tuple

T(x+y,4) = (x,0,0,y),
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without changing the size of T,(a,k). Suppose without
loss of generality that x = y. It will be demonstrated
that T(x+y,4) can be modified to yield any size i’

satisfying

e () == 12

so that the corresponding size 1 of the k-tuple

satisfies

s e _ [X] _ (v
i=o(a,k) +i [2] [2]

Consider the modified 4-tuple

Th,r(X+y'4) = (x-h-1,1,r,y+h-r),

1A

where 0 = A = x-1, 0 r = y+h, This 4-tuple has size

ch,r(x+y,4) = [x;h] + [y;h] +r
_ IX
B )

Observe that for fixed A, s P(x+y,4) - Fj - Pj takes

+ [g] + hAly—-x+h) + 1.

2

every integer value in the closed range

[h(y—x+h),Uh],

where
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c
!

Aly=x+h) + (y+h) .

(h+l)y = hx + A(A+1)

n

v

(h+1) (y-x+h+1)

for all allowable values of A. Thus, as & varies from 0

2

X
to x 1, U'h’r(x+y’4) - [] 2

Pq takes every integer

value in every closed range
[h(y=-x+h), (h+1) (y-x+ht1)].

Since for A = x-1, Uh = xy, it follows that o r‘(x+y,4)

takes every integer value from [;] + [52’] to
X vy =[xty
B - B) e e ()

at least once.

It has been shown that the rightmost 4-tuple of T,(a,k)
can be rearranged so that its size i takes every value

in the range

[o(a,k’),o(a, k’ )+xy].

If k=4, ola,k’) = [x] + [Y] so that

cofa,k’) + xy = {x;y]’
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and the proof is complete. For k = 6, however, the
construction described above can be repeated on the
(k-2)-tuple T(a,k-2) which is identical to T,(a,k) in
the first k-4 positions and whose rightmost double is
(x+y,0}. After the construction has been‘carried out
altogether k‘-1 times, it is clear that the size i must

have taken every value in the range

[a‘(a. k'), [g]]

as required.
To complete the proof, observe that, by virtue of the
monotonicity of o¢(a,k’) (Lemma 2.11), the size range
a

ola,k’) =1 = [2] can be achieved by any j-tuple, j = k,

and in particular, by j = k+1. : ]

A comparison of this result with Lemma 2.10 shows that, for even
k, every size between minimum and maximum is in fact achieved by
some k-tuple; thus, in this case, the specified range provides
both a necessary and sufficient condition for existence of the
k-tuple. For odd k, however, the minimum of the range specified
by Theoren 2.24 is ola, |_1</2J), while by Lemma 2.10 there exists a
k-tuple of size o(a, [k/2]) < o(a, I_k/zj). Hence, for odd k, the

range

[e(a, [k/2]), ola, [k/2])] ... (3.8)

e




69

remains to be investigated. The next result shows that for
k = 3, this range in general contains gaps; that is, sizes which

are achieved by no triple T(a,3) on a vertices.

Lemma 3.6 For given integers a = 0 and i, there exists a
triple on a vertices of size i if and only if both

of the following conditions are satisfied:

@ otwer = (B2« () < i« ] = otan

o _
(b) i = [2] - p, where p s |a/2]|[as2] is a non-
negative Integer, and some factorization p = xy

satisfies x + ¥y = a.

Proof By Lemma 2.10, no size outside the range specified by
condition (a) is achievable. Further, by Lemma 2.8, the

achievable sizes necessarily take the form

i= [g] - xy, ... (3.7

vhere 0 = x = a, 0 = y = a~x. Since the minimum value

of this expression is

o(a,2)

[g] - a2 [ar2],

it is clear that xy = |a/2|[a/2]. Since the condition
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on p stated in (b) is equivalent to the condition on x

and y stated for (3.7), the result is proved. "

From Lemma 3.8 it follows that no triple T(a,3) can achieve a
size [Z'] - p, where p is a prime satisfying a = p = |a/2][a/2].

But exceptional values p are not restricted to primes; for
11

example, no triple T(11,3) can achieve a size 5| - 22 = 33 or
[%] - 27 = 28, even though [g] - 24 = 31 and 1;] - 25 = 30

are both achievable. It is natural then to enquire whether odd
k-tuples, k = 5, necessarily achieve every size in the range
(3.8), since if so, the problem of the existence of a graph of
@v(n,m,*,D,KJ would be greatly simplified. Unfortunately, no
definite.answer can be given to this enquiry, and the problem

appears to be difficult, as the following examples indicate.

Consider tuples T(a,k) with the property that a = k‘a‘’ for
k! = [kfz] and some positive integer a’. Then the edge-minimal

such tuple is

T.(a,k) = (a’,0,a’,0,...,2’,0,a’)

with size o{k‘a’,k’) = k’[a

2]. Observe that, in order to form

sizes

i=ve(k'a’, k') + 17,




where 1 = i’ = a‘’-1, only k-tuples of the form

(al,O,az,O,..,,ak,_l,O,ak,) ...(3.8)

need be considered; that is, k-tuples generated by transferring

vertices among the non-zero terms of Te(a,k).

Now suppose k = 5. By considering the possible 5-tuples (3.8),

it is not difficult t9 see that sizes

. _ [ .,
i= 3[2 ] + i,

for i’ = 2,5,6,8,10,11,14,15, and an infinite number of larger
values, cannot be achieved. Thus, for a‘ sufficiently }arge,
there must exist sizes in the range Ew(Ba’,a), G(Sa’,z)] which
are not achievable by any 5-tuple T(3a’,5), and in fact this
negative result extends easily to more general 5-tuples T(b,5),

where b is not necessarily a multiple of k/ = 3.

A similar calculation for k = 7 yields the result that

is achievable by some 7-tuple (3.5) when 1 = i’ = 13 or

16 = i’ = 21, but net for i’ = 14. Thus for a‘

v

18

Iy

(a B4) there exists at least one size in the range
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Er(4a’,4),¢(4a’,3)] which is not achievable by any 7-tuple
T(4a’,7). For k = 9 it is not known whether any such
non-achievable sizes exist, but it appears likely that they do.

In fact, the following conjecture is stated:

Conjecture 3.1 For given positive integers k' = 2 and A, there

exists an integer a = a(k’,A) such that exactly
A sizes in the range Er(a,k’),o{a,k’—l)] are

achieved by no tuple T(a,2k’-1).

If it is correct, this conjecture is discouraging. On the other

* *
hand, let i = i (a,k’) be the largest integer such that for

*
ola,k’) = i = i, every size i is achievable by some tuple

W
T(a,2k’-1). It seems likely that i grows rapidly with k’, so

* _ e

that, if 1 could somehow be computed, the existence of many

long tuples of specified order and size could be determined.
L 3

Attempts to compute or estimate i have however not been

successful . d

So far the investigation has dealt with the sizes of k-tuples

which are unconstrained in any way. However, as expression

(2.16) indicates, for K > 1 the size i to be achieved by a given

k-~tuple on a vertices depends on the sum b of the first and last

terms:

i=m + b(k-1),
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ﬁhere, as explained in Section 2.2, m’ is the sizg obtained from
the given size m by subtracting out the components based solely
on the given parameters n, D, and K. The results obtained so
far, then, relate to the cases b = 0 or K= 1. To deal with the

more general case, for k =2 5 let
I{a,b, k) ...(3.9)

denote the set of all k-tuples (& .,BkJ of order a =2z b = 0

1,62,..

such that 61 * 6k = b z 0; these k-tuples will be called
b-constrained. Further, let J'(a,b,k) dencte the subset of
J(a,b,k) characterized by tuples in which 62 = ak—l = 0. The

second main result of this sectior can now be proved:

Theorem 2.3 For given integers a = b = 0, k = 8, anq

k/ = [(k-4)/2], every size i in the range

[«r(a—b,k’ )+[|_b£2_|]+[rb£2'|] , [ ;b]-r[;]] e (3010)

is achieved by some element of 7' = J'(a,b,k),

provided

b=b= (ak'+k”) - vk?(2a-2k'+k"-2) |,

where k” = k’/(k’-1). When k’[(a-b), this upper

bound becomes

e e et ot gt
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b= [(a+k”) - vﬁ"(2a+k"—2)1 .

and is least possible.

Observe first that the upper boundary of the range
(3.10) is the largest size actuélly achieved by any
element of J’; also that, by Theorem 2.2, the lower
boundary is achieved by an element of J’; further that,
when k is even, the lower boundary is by Lemma 2.10 the

least size of any element of J°.

Let 61 = x be fixed, so that Sk = b-x. Then by Theorem

2.2, every size in the range
_ _ ’ x|, [b~x] - [a-b]. {x]. [b-
Lesd = [ (7 (576 (7]

is achieved by some element of J’. Both the lower and

upper boundaries of this range are monotone increasing

as X takes the values Lb/ZJ,Lb/ZJ—l,...,O. Then every

size in the entire range (3.10) will be achieved if and
only if Ux = L, for every [b/2] =z x = 1; that isn

using (3.5),

¥

[a;b] - o¢la-b,k’)

) - (29 05 - )

b-2x + 1. ... (3.11)
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It follows that every size in (3.10) will be achieved if
and only if -

[ ;b] - o(a-b,k’) = b-1. ... (3.12)

Now suppose that k’|(a-b), so that a’ = (a-b)/k’ is an

al

integer and o(a-b,k’) = k’[ 2]. After some algebra, the

expression (3.12) then becomes
b% - 2(a+k“)b + (a2+2k”) = 0.

Replacing the inequality yields a quadratic equation in
b, whose solution B is the largest value of b for which
(3.12) holds. It is straightforward to verify that the
expression thus obtained is the one given in the

statement of the theoren.

'In case k' ! (a-b), set a’ = [(a-b)/k’]-1. It follows

then from (3.12) that

a—b , k’a’ _ ’a: . i
(59 - rnar > () i) oo

is a necessary condition that every size in the range
(3.10) is achievable. As before, this inequality can be
transformed into a quadratic equation in b, with the

solution b given in the statement of the thecrem. ]
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Since for large values of a the upper bound IB is roughly
O(a-v2), it follows that for most values of b, every size in the
range (3.10) will be achievable by an element of 7’({a,b,k). In
this sense Theorem 2.3 is encouraging. On the other hand, the
result also makes clear that there always exist larger values of
b which will give rise to gaps in the range (3.10) — that is,
sizes which are not achieved by any k-tuple of J'(a,b,k). For
those values of b which give rise to gaps, (3.11) may be used in

the form

X = [c-(a-b,k’) + b - [;b] - 1]/2 ... {3.13)
to determine the critical values 81 = X, and the omitted sizes
may then be specified. This calculation is included in the

algorithm of Section 3.3.

The preceding theorem provides a mechanism for determining the
sizes achievable by k-tuples which are subject to two
restrictions: 61 + 6k = b and 62 = 5k—1 = Q. The second of
these restrictions ensures that no sizes greater than
[ ;b] + [E] can be achieved by any k-tuple of J’(a,b,k). For

sizes ranging up to Eﬂ, the following theorem provides a

partial characterization:

Theorem 2.4 For k = 8, let 93 = 93(a,b,k) denote the set of

all k-tuples (61,82,63,0,0,...,0,6

k_z,ak_l,ak) of




order a = b such that 61 + ak

Then, for x = 61 + 62 + 63, the size i of an

element of 33 is given by

2
[2] - x(a=x) = 8,8, ~ &_,(b-5,).

Proof An immediate consequence of Lemma 2.6.

To see that this result does not provide complete coverage of
all sizes which may arise, consider 94 = ﬂé(a,b.k), the set of

all b-constrained k-tuples

” n " ” o "
(8,,85,85,87,0,0,...,0,8/ 87,87 .,8,),

k = 8, of order a such that &, + 85 + 84 + 87 = x and

1 3 4

” ” " ) — - s
6k_3 + ak_z + ak—l + Sk = a-X. By Lemma 2.8, the size of an

element of 34 is

)

s a — — - — -y — — -
i” = [%] x(a-x) - &, (x 8,-83) - &, (a~x Sy 1%,

_ SHSN _ oo ”
9591 = %k 1%-a

If this quantity is compared with the expression of Theorem 2.4,

it is found after some manipulation that
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(8 ) - 373" - 57 §”

FH_FT = "_ -
1717 = 8,(8578) + 8, {8y 1781 = 338 ~ 3 18 3

k

representing the size difference between elements of 94 and 33'

which have the same values of a, b, and x. In particular, let
. = (La-b)r2] [(a-b)r2] [br2] [br2]
e T [ 2 * 2 U272

denote the minimum edge count of 93 for given a and b, where
8, =23 = 0. -Then
k "k-3""

S Y Y. S0y o RW Y-y
17 - 14 = 85(8,-87) ~ 8y, (8, -87 )

and it follows that the minimum edge count i of 94 will be less

than iy if the choices

M - " = " M
62 1, K1 1, 34 > 61, and 6k—3 > Bk
are made: this can always be done provided

(a~b)/2 - 1 - b/2 > 0; that is, a > 2b+2. Thus, for fixed a and
b, it can happen that elements of 34 achieve sizes less than the
minimum of 33. On the other hand, at the upper end of the range
for i”, observe from Theorem 2.4 thét the maximum size [;] is
achieved for x = 61 = 6k~2-= 0; while the next largest size is

either




corresponding to x

corresponding to x = 6k—2 = (0, Thus, for given a and

b, there are gaps sizes achieved by elements of

94(a,b.k).

The analysis of this section has shown that there are possible
gaps in the sizes achievable by graphs G & %v(n,*,*,D,K); that
is, gaps in the values of m for which @v(n,m,*,D,K) is

non-empty. These gaps are of two main kinds:

(a) for unconstrained k-tuples T(a,k) on a vertices, where k is
odd, there appear always to' be sizes in the range

[e(a, [k/2]), o(a, [k/2])] which are achieved by no k-tuple;

for b-constrained k-tuples T(a,b,k) on. 2 vertices, there

appear always to be sizes in the range
b/2 b/2 a .

|:0'(a—-b, [(k-4)/2]) + [I- 5 -I] + [r 5 ]], [2]] which are

achieved by no k-tuple.

In general, although the feasibility of a given size m can be
efficiently determined in many cases, there always exist sizes
which cannot be handled by any means other than some form of
exhaustive search ("brute force"), as suggested for example by
the expression (2.9). In the next section, the algorithmic

consequences of the analysis conducted here are explored.
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3.3 -The Existence/Construction of Graphs of €v(n,m,¥,D,K)

In this section, based on the results of Section 3.2, an
algorithm 'for determining whether or not the class
@; = @&(n,m,*,D,K) exists is outlinea, In order to make the
flow of the algorithm <clear, =a number of trivial or
algebraically complicated details are omitted. In particular,
the details of the construction of graphs of ﬁ; are not
explicitly considered; it will be clear that, by virtue of the
constructive nature of the proofs of Lemma 3.6 and Theorems
2.2-2.4, a graph G ¢ E; can be constructed in a straightforward

manner once it has been established that %; 2 9.

In order to state the algorithm, a further result is required, a

counterpart for b-constrained k-tuples to Lemma 3. 1:

Lemma 3.7 For a =z b 2 0, k = 2, and k' = [k/2], a
b-constrained k-tuple T = T(a,b,k) on a vertices is

edge-minimal if and only if

(a) T is partitionable; X
(b) the orders of non-terminal clumps of T differ
by at most one;
(e} (i) for odd k, or for even k and a < k’b, the
orders of terminal clumps differ by at
most one;

(ii) for even k and a > k‘(b-1), one terminal

term is a clump of order b.
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Proof For odd k, the proof is a straightforward ,extggﬁigg_Jgff,
the pfoof of Lemma 3.1. Then suppose that k is even.
If a > k’(b-1), e&ery tuple with a terminal term of
order b and k‘~1 other non-terminal clumps satisfying
condition (b) is edge-minimal; whereas, for a = k’(b-1),
no such tuple can be edge-minimal. On the other hand,
if a > k’b, no tuple with a non-zero terminal term less

than b can be edge-minimal; while for a = k'b, every

tuple satisfying condition (b) together with

+%]
]

1 ma.x{[_a/k’ 1 [b/z]}, Baq * O = b8,
or

K max{[a/k’], [b/z]}, 3, *+ 3, = b5,

o2
]

is edge-minimal. Observe that these latter tuples can
always be constructed. Then, by an argument similar to
that of Lemma 3.1, it follows that, alsoc when k is even,
the given conditions are both necessary and sufficient

for T to be edge-minimal. ]

With this result, it is clear that Lemma 3.2 applies also to
tuples of J(a,b,k), and further that the following counterpart

of Lemma 2.10 holds:
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Lemma 3.8 For a = b 2= 0, k = 5, and k’

edge-minimal tuple of J(a,b,k) has size

iy = ola-b,k’'-2) + [ngzj] + [rbgz1],

if k is odd, or if k is even and

a = k’ |b/2];
= o(a,k’),
if k is even and k' |[br2] < a < k'b;

= o{a~b,k’~1) + Eﬂ, otherwise.

Proof A direct consequence of Lemma 3.7.

It is now possible to embark on a structured.description of an
algorithm which determines whether or not E; = ¢. As mentioned
at the beginning of this section, the extension of the algorithm
to specify a graph G e €; is straightforward. The algorithm is
presented in Figure 3.1 as a Boolean function EXIST, which
returns TRUE if @; # ¢; otherwise, FALSE. The input parameters

n, m, D, and K are integers satisfying (2.1)-(2.3) together with

the inequalities
D=2, Kz 1, n=z= (D-1)K+2.

EXIST is expressed in a Pascal-like pseudocode that makes use of

the feature

return(X),

[k/2], an

i

ORI AR S
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An Algorithm to Determine the Existence of a Graph in €v(n,m,*,D,K)

function EXIST (N,m,D,K) : boolean;

a :=n = (D-1)K - 2; {Compute excess.}
if D=2 then m’ :=m - K(K+4a+3)/2 + a {Compute m’ using
else m’ :=m - K[(3D~5)K - (D-6a-5)]/2; Lemma 2.9.}

if m* < O then return (FALSE); if m’ = 0 then return (a=0);

{Fora=0o0r D = 3, @v(n,*,*,D.K) contains a unique graph.}

if a=0o0or D=3 then return [m' + (K-1)a = ; ;

~_~—

~
I

[

gives rise to the special case i = m’.}
if K= 1 then return (EXIST1(a,m’,D-1));

{The bounds on 1 (Theorem 2.2) imply bounds on b.}
b, := max{0, [To(a, [(D-1)/2])-m’"1/(K-1)]};

»*
b := min{a.L[Eﬂ-mV]/(K-l)J};
M :
if b, > b then return (FALSE); {Ensure i satisfies its bounds.}
{For D = 4 or 5, there exist only 1 or 2 internal terms: handle as special
if D = 5 then return (EXIST45(a,m’D,X)); cases. }
{b = 0 gives rise to the special case i = m’.}

if b, = 0 then
if EXIST1(a,m’,D-3,K) then return (TRUE) else b, = 1;

1

{D = 6 is an application of Lemma 3.6.}
if D = 6 then return (EXIST6(a,n’,D,K));
*
for b :=b, to b {Each valid b gives rise to
I:=m + (K-1)b; a corresponding size 1.}
i, = MINSIZE(a,b,D-1); {Using Lemma 3.8.}
if i =i, then return (TRUE)
elseif i > i, then {i<i, invalid: try next b.}
{Handle D = 7,8 as special cases using Lemmas 2.10 and 3.6.}
if D = 8 and EXIST78(a,b,i,D-1) then return {TRUE);
{Deal with the general case using Theorems 2.3 and 2.4.}
elseif EXISTG(a,b,i,D~1) then return (TRUE)
i next b; {If the current b didn’t yield TRUE, try the next one.}

| {If all else fails, do an exhaustive search based on expression (2.9).}
b if D < 8 then return (FALSE) else return (BRUTEFORCE(a,m’,D,K)).

FIGURE 3.1

}
‘
|
I
I
ot
!
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which assigns the value of X to the function F currently being
executed and then exits from F. This feature is in fact often
useful in practice, and is recommended to the attention of

future computer language developers.

EXIST calls seven otper functions, whose roles are described in
Table 3.1. Of these functions, one is the inefficient but
straightforward BRUTEFORCE algorithm, called only when more
efficient methods have failed; and three (EXIST45, EXIST6, and
EXIST?B) deal in a fairly obvious manner with graphs of small
diameter. The remaining three functions (EXIST1, MINSIZE, and
EXISTG) are however more interesting: pseudocode is given for
them in Figures 3.2-3.4, and further discussion of EXISTG, by
far the most complex of the three, may be found in the next
paragraph. Apart from purely mathematical functions such as
U{], [Y], [X]’ o(X,Y), L(X,a,b,k}, and U(X,a,b), these three
functions call three other subfunctions, w@ich are described in

Table 3.2,

Theorem 2.3 deals with tuples of J/ = J’(a,b,k); these tuples
have the property that 62 = ak—l = 0, while 61 = X and 6k = b-x
for 0 = x = b. However, Theorem 2.3 does not take into account
the fact that, when x = 0 or b. 62 or, respectivelyv. 6k—1 may be
hon-zero. This special case has however been taken into account

in EXISTG, by allowing k’ to be set equal to |(k-3)/2] when

X = 0 rather than L(k-4)/2j. EXISTG then makes use of the value




|
85 | o ff

b specified in Theorem 2.3, but also uses expression (3.13) to :_%
* ' ' P
compute a value x which has the property that, for every
»*
X = x < |b/2], the sub-ranges [Lx’Ux] and ELx+1'Ux+1] overlap;
thus the inspection of the sub-ranges is required only when they

do not overlap. -

This concludes the discussion of the algorithm EXIST and Chapter

3. . [




Functions Called by EXIST(n,m,D,K) i

FUNCTION

(all parameters TYPE DESCRIPTION
positive integers)

EXIST1(a,m’, k), boolean | For K=1 or b=0, determines
k=3 whether or not m’ is a size
achievable by T(a,k): using
Lemma 3.6 if k=3, and Theorem o
2.2 otherwise. May call a o
specialized brute force 't
function BABYBRUTE when k is !
odd, See Figure 3.2.

EXIST45(a,m’,D,K), boolean | Uses a and m’ to determine )
4=D=5 K=2 whether or not m is a size {
achievable by a graph of i
€ =% (n,* *D,XK). D
V v H E
EXISTS (a, m’,K), boolean | For D=6, uses a and m’ together f
K=2 with Lemma 3.6 to determine I
) whether or not m is a size p
achievable by a graph of @v. L
|
MINSIZE(a, b, k), integer | Computes the minimum size i, of - i
k=8 .| T(a,b,k) corresponding to Lemma .
3.8. See Figure 3.3.
Il
i
EXIST78(a, b, 1,k), boolean | Determines whether or not i is [
B=k=7 a size achievable by T(a,b, k). ‘&
|
EXISTG(a, b, i, k), boolean | Returns TRUEJEf, according to VT
kzg Theorems 2.3 and 2.4, i is a

size achievable by T(a,b,k); .
otherwise, returns FALSE.
See Figure 3.4.

BRUTEFORCE(a,n’,D,K), | boolean Using expression (2.8) and the
Dzg, K=2 variables a and m’, performs an
exhaustive search to determine
whether or not m is a size

ol S msrmlal m olies e a0
CAlrddd i FLAM L WY W 5t CApiL W .

Also calls BABYBRUTE.

Table 3.1
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Function EXISTI (a,m’,k)

function EXIST1 (a,m’,k) : boolean;

{To determine whether or not the size m’ is achievable by T(a,k).}
{Return FALSE if m’ is outside the bounds of Lemma 2. 10 and Theorem 2.2.}

g] then return (FALSE);

if m’ < o(a, [k/2]) or m’ > [

{Use Lemma 3.6 to deal with the special case of a triple.}
if k = 3 then return (EXIST3(a,m’));

{Return TRUE if m’ is the exact minimum or inside the range specified by
Theorem 2.2,}

if m’ = o(a, [k/2]) or m’ = o(a, [k/2]) then return (TRUE);

{If all else fails, do an exhaustive search of the range
[o(a, [k/2]),0(a, [k/2])].}
return (BABYBRUTE(a,m’,k)}).

Figure 3.2

Function MINSIZE (a,b,k)

function MINSIZE (a,b,k) : integer;

{A straightforward application of Lemma 3.8.}

s

a‘’ 1= g - b; b ;= I_b/ZJ; k! = rk/2];

4 -
if odd (k) or a = b’k’ then return q‘(a’,k’—ZJ + [bz] + [bzb ]],
if a > b’k’ and a < bk’ then return (ola,k’));

£ b
return [o*(a’,k'-l) + [2]]

|
Figure 3.3
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Function EXISTG (a,b,i,k)

function EXISTG (a,b,i,k) : boolean;

{To determine whether, on the basis of Theorems 2.3 and 2.4, a given ,i
size 1 is achievable by T(a,b,k). In accordance with Theorem 2.3 and
the discussion in the text, the following functions are defined:

bla,k) := (a"+k") - vﬂ”(za”+k”-2),

L(x,a,b,k) := ¢(a’,k’) + [x] + [b' ],

a, If k' [(a~b);
a~k’, otherwise.}

2 2 |

_ [2f X b- R

. ) 1

vhere k’ := |(k-4)/2], if x is undefined or if x # 0; ' »‘
= [(k-3)s2], if x = O \ |

k” = kt/(kl_l); ,

a’' := a-b; |

a’ := ‘

|

.

{If i is outside the range covered by Theorem 2.3, try Theorem 2.4.} s
if 1 > U(0,a,b) then return (EXIST2.8 (a,b,1,k)); 1
{If i is within the range for Theorem 2.3 and b

=
ifi= min{L(O,a,b,k), L(Lb/ZJ, a,b,k)} and b = b(
then return (TRUE);

b, then TRUE.}
a, k)

'{USing expression (3.13), determine the value of x above which intervals

xi‘E 1= L[w(a,k’) - [a;] +b - 1]/2];
*

If 1 = U(x +1,a,b) and i = L(Lb/zj,a,b,k) then return (TRUE): .

overlap. }

*
{Below x , inspect each interval individually.}
" :
for x ;= x down to O
if i = U(x,a,b) and i = L(x,a,b,k) then return {TRUE).

Figure 3.4
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Functions Called by EXIST! and EXISTG

FUNCTION
{all parameters TYPE DESCRIPTION
positive integers)
EXIST3 (a,m’) boolean | Uses Lemma 3.8 to deternmine
whether or not m’ is a size
achievable by a triple T(a,3).
BABYBRUTE (a,m’,k), boolean | Performs an exhaustive search
k=14 of the range [o(a, [k/2],
o(a, [k/2])], k odd, to determine
whether or not m’ is an
achievable size of T{a, k).
EXIST2.8 (a,b,i,k)}, boolean Uses Theorem 2.4 to determine
k=28 whether or not i is a size
achievable by T(a,b, k).
Table 3.2
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CHAPTER 4
K-EDGE-CONNECTED D-CRTTICAL GRAPHS 8,(n, %, ¥,D,K)

In this chapter edge-maximal graphs of ﬁé = @e(n,*,*,D,K)
(hence, by Lemma 2.4, .gé(n,*,*,D,KJ) are completely
characterized, and edge-minimal graphs of €e are characterized
for n sufficiently large with respect to the product DK. The
references for this work are Caccetta & Smyth (1987a, 1987b,
1988a, 1988b, 1988a), and the main results are summarized in
Section 2.3, Section 4.1 is devoted to a proof of Theorem 2.3,
which for D = 6 and K = 8 specifies the form of vertex sequences
of edge~maximal graphs; then in Section 4.2, smaller values of D
and K are considered, and Theorem 2.5 is applied to yield a more
precise determination of edge-maximal graphs (Theorems
2.8-2.10); finally, in Section 4.3, edge-minimal graphs are

considered.

4.1 Vertex Sequences of Edge-Maximal Graphs over Ee(n,*,ﬁ,D,K)

In this section a rather lengthy sequence of lemmas is proved,
leading eventually to the establishment of Theorem 2.5; that is,
to the conclusion that for D =z 6 and K = 8 every edge-maximal
graph of ?e gives rise to a vertex sequence in which all excess
vertices are confined to a single term. The result is thus
essentially the same as Theorem 2.1, established in Section 2.2
for edge-maximal graphs of ﬁv;'the proof however is much more
difficult, and the result itself is less useful, in that it does
not lead easily to a specification of the structure of the

edge-maximal graph.
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Recall first the definitions of the terms feasible, lean and fat

{applied both to doubles and triples), transformation, and

feasible transformation introduced in Section 2.3. One further

definition will be useful: a vertex u of a graph
G € @e(n,*,*.D,K) is said to be removable if

G-{u} ¢ @e(n-l,*,*,D,K). By extension, if the removable vertex
u occurs in level Li of a rooted level structure R of G, then I_.i
will sometimes be said to contain u; by further extension, since
n, = |Li| is a term in the vertex sequence induced by R, n, may
similarly be said to contain u. The first lemmé, valid for E}

as well as for @é, may then be stated and proved:

Lemna 4.1 Let S = SD(u) be a vertex sequence of an
edge-maximal graph G ¢ EE(n,*,*,D,KJ. If any two
terms n, and nj of S contain a removable vertex of

G, then |i-j| = 1.

Proof  Suppose ]i-jl = 2, and observe that by Lemma 2.1 no

removable vertex is terminal. Then the transformations

T, : B, = n. -1, n, — n +1,
1 i i J J

T, : n, - n,+1, n, — n.-1,
2 i 1 J J

- change the size of S by

Jo1)-

),

~(ng_, +n, + Do) v 1 (nj-l +n, +n,

-(nj—l + nj + nj+1J + 1 + (ni_ *n, +n

1 i+1




Z il
|
|

|1
respectively. Since one of these size changes is i
%

positive, G cannot he edge-maximal, a contradiction. |

; An immediate consequence of Lemma 4.1 is that no two

non-adjacent terms of an edge-maximal vertex sequence can exceed
K. Hence, for ¢ = v, the result provides an alternative means

of proving Theorem 2.1. For ¢ = e, however, a great deal more

effort is fequired:

Lemma 4.2 For D=7, K= 8, let 8§ = SD(u) be a vertex sequence
of an edge-maximal graph of @e(n,*,*,D,K). If for
some i, 2 =i =D-2, n, < vK, then

; (a) for 3 =i = D-3, n, < min(n

1-2' P2l

{(b) for i

2, Dy < ny o

e <& .
D-2, n, <n _,

{c) for i

 Proof  Result (a) will be proved; the proofs of (b) and (c) use

|
an almost identical argument. Suppose then that (a) is e
|

false, so that

mln{ni_z.ni+2} =D0,7X, X = 0. R S ¢ Al

Then without loss of generality, it may be supnosed that. o

ni+2 = ni—x. Hence S contains the subsequence

(n;_pomyeeesmy J) = (FK/ni]+a,ni,rK/ni]+b,ni—x,[K/(ni—x)]+c), -
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where a, b and ¢ are non-negative integers. Since by
the hypothesis of the lemma, n, < [k/ni], and since by

Lemma 2.12(c),
2n; + [K/n] +b-x=2K+1 ... (4.2)

it follows that the triples (ni-l’ni'ni+1) and
(ni+1,ni+2,ni+3) are both fat. Hence, if b > 0, the
transformation

(ni+1’ni+2) — (ni+1—1,n. +1)

i+2
is feasible and increases the size of S by
[K/(n;=x)] + ¢ = n, >0,

a contradiction. Therefore b = 0 and so, since
Dy g Bi4n 2 K, x = 0. Thus for K = 8, (4.2) can hold

only if n, = 1. Lemma 4.1 then implies that at least

one of a or c, say a, is zero. . But then the
transformation
(ni_1,ni,...,ni+3) = (K, 1,K,1,K+c) — (K,2,K-2,K+c)

1s feasible and increases the size of § by
2K + ¢ - 3 > 0, again a contradiction. Therefore the

original assumption (4.1) must be false, and (a) is

true. This completes the proof. n
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Lemma 4.3 For D=7, K=8, let § = SD(u) be a vertex sequence

of an edge-maximal graph G ¢ €e(n,*,*,D,K). Then no ‘% ¥

internal term of S is one.

I
Proof Suppose on the contrary that S contains an internal term
n, = 1. Lemma 2.12(b) together with Lemma 4.1 implies ﬁf
then that 13 }

. mln{hi-l’ni+1} = K.

First consider the case 3 = i =< D-3. Lemma 4.2(a)

can exceed K, it follows that i

implies that n; , > 1 and n.., > L Hence the . .é w
transformations } i
‘ : 1
Ty (ni-l’ni’ni+1) — (ni_l-l,ni+1,ni+1), ﬂw-w
‘ii
- Tt (By_pnpmyy) = ey gangln -1, “ N
f' |
rfj' |
are feasible and alter the edge count by (ni+1—ni_2) and k|
(ni—l_ni+2)' respectively. Therefore, since S ig '1
maximal, n;_, =mn, ., and Dy,p =0y ,. Thus %
a
‘ L
(ni_z,ni_l, s ,ni+2) = (;\+a, 1{1’0, Ly ATC, NTQ) |
with a 2 ¢ 2 0 and d = b = 0. Since, as pointed out '“ﬁi
above, Lemma 4.1 implies that no two non~ad jacent terms Ll !
N
|
8
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b =c =0 and min{a,d} = 0.

Without loss of generality, take a = 0. Then the

transformation

Ty ¢ (ni~2'ni-1’ni’ni+1’ni+2) = (K,K, 1,K,K+d)

— (X, 2,K-2,K+1,K+d)

is feasible and increases the edge count by

K +d -2 > 0. This proves that for 3 = i = D-3,

n, > 1.
i

The remaining cases are n2 = 1 and nD_2 = 1, which by

symmetry are equivalent. Suppose then without loss of

generality .that n, = 1. It follows from the

edge-maximal property of G that n, = K, since n, = K and

the transformation

/

T, (nz,ng) — (n2+1,n3-1)

is feasible and by Lemma 2.7 alters the edge count by
K - n. Therefore, without loss of generality, it may be

supposed that

(no.nl,nz,ns.n4) = (1,K,1,K,K+a),

where a = 0. Observing that n, = 1, consider the
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sequence

S’ = (nz,ns,...,nD,nl,nO]

formed by a feasible transformation of S, This sequence
has the same size as S, and is therefore edge-maximal.

By Lemma 4.2(c), n, 5 > 1. Since the transformation

Tg (nD-z'nD—l’nD’nl) = (nD_z,K,l,K) — (nD_z,K—l.Z,K)

is feasible and increases the size by K =~ nD—2‘
p-3 * 2

since otherwise by Lemma 2.7 the size could be increased

it

follows that n, , = K. Observe then that n

by the feasible transformation

Ty (nD_z,nD_l) — (nD_z—l,nD_1+1).

Hence for D =z 7 the transformations

t7 : n4 — n4—1 and nD_2 —> nD_2+1,

18 : n4 — n,+1 and n

4 —n -1,

D-2 D-2
are both feasible. Thus the size can again be
increased, again a contradiction, so that the only

remaining possibility is D = 7. In this case S can,

without loss of generality, be taken to be




97 J’|.'.i

s =(1,K1,KK,K+b,K, 1),
where b =z 0. But the sequence
(1,K,2,K-2,K,K+b+1,K, 1)

yields a graph with more edges, a contradiction. This

completes the proof of the lemma. ]

Observe that, for this result, the assumption D = 7 is

necessary, since for D = 8 the sequence
(1,K,1,K,K+a,K, 1)

will in fact be maximal for sufficiently large a: see Table
2.4, for example. The next result establishes a lower bound of

3 for the internal terms of an edge-maximal vertex sequence:

Lemma 4.4 For D=7, K= 8, let S = SD(u) be a vertex sequence
of an edge-maximal graph G ¢ Eé(n,*,*{D,K). Then

every internal term of S exceeds two.

Proaaf  Snnnnee on the contrary that S is an edge-maximal vertex
sequence with an internal term IH_ = 2; further that

!

nJ > 2 for 1 = j = i-1. Two cases need to be

considered:
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Case 1 (i=2)

Here for some a = 0, n, = [k/2] + a and by Lemma 4.2(b),
n, > 2. If ng = 2, then n, = [K/2] and . = [k/2]. In
this case, it may be assumed, " without 1loss of

generality, that S contains the subsequence

-ng) = (K, 2, [K2], [K/2], 2, [K/2]+b),

(.ql,nz, ..

where b =z 0. But then the transformation

Ty Dy, o n2+1 and n, — n3—1 ... (4.3)

is feasible and increases the size. This contradiction |

establishes that n_ > n, = 2. Hence (n3,n n5) is a fat .ﬁi"

5 2 4’

triple, so that the transformation (4.3) is feasible and L

by Lemma 2.7 alters the size by K—n4.
S is edge-maximal, n, = K. Now since ng > 2, 1t follows iléﬂ
from Lemma 2.7 and the edge-maximality of S that a = 0; '

Therefore, since

hence

5

|
o
- . il
(nl,n seee,nl) = (K,2,fK/2],K+b,n5), .: 1
i

where b = 0. If n5 = K-2, the transformation g
i

]

T, ¢ n, —n, +n. +b and n, — K-n

is feasible and increases the size by 2(n5+b), an

e




impossibility. Hence n5 =K-1 4+ ¢, ¢ = 0. Now since

D = 7 and the transformations

T (n4,n5) — (n4i1,n5$1)

3 M
are feasible, it follows from Lemma 2.7 that n, = [K/Z].

But then the transformation

Ty (nl,n2,...,n8) = (K,2,[K/Z],K+b,K-1+c3[K/2])

— (K, K+bre, [K/2],2,K-1, [K/2])

is feasible and increases the edge count by K+b+c-2 > 0,
a contradiction. This proves that n, > 2 and also

(because of symmetry) that Ny > 2.

Case 2 (3=isD-3)
Since D =2 7 and since & could be considered in reverse
order, it may without loss of generality be supposed

that i < D-3. Since n; = 2, it follows that
n,_, = [K2]+a  and n; ., = [K/2]+b,
whera a = 0 h = 0, and Lemma 4.2(a) implies that
n > 2 and n, > 2,

i-2 i+2

Since, by assumption, n‘j >2for 2 s j=i-1, the triple
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(n, .,n. ,,n. ) is fat. Hence the transformation
i-3"71-2""i-1 ,

== n ,-1 and n, — n +1
i-1 i i
is feasible and alters the edge count by 0 o It

follows therefore that

n_, = rK/2]+c,

where ¢ = b,

It is now shown by contradiction that 0y .n = 3. Suppose

that ni+3 < 3. Then, since K = 8, it follows from Lemma

2.12(a) that D .a is internal, and therefore from Lemma

4,3 that ni.*_:3 = 2. Hence

) = (2, [Kr2]+b, [K/2]+x, 2, [K/2]+y)

o Biag
for some x = 0, y = 0. By Lemma 2.7, it may without
loss of generality be supposed that b = 0. Now if

X > 0, the transformation

Tg By 5 = n,_5*x and Do = By
is feasible and alters the size by
x(n, .+a+c-2) = 0. o {4.4)

i-3
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If 1 =3, thenn, ., =1, ¢ = |K2]|, and it follows from

(4.4) that a + [K/2] = 1, an impossibility. For i = 4,
ny o = 3 by hypothesis, so that by (4.4), a + c + 1 = o,
again an impossibility. Hence x = 0, and the size can

be increased by the feasible transformation

T (ng.ng, 000y ,500;, 2) = (2, [K2], [K/2],2)

7° i
— (3, [K2]-1, [K/2]-1,3),

a contradiction. This proves that D43 > 2 and hence

that (ni+1,ni+2,ni+3) is a fat triple.

The result of the preceding paragraph implies that the

transformation

TB : ni - ni+1 and n1+1 - ni+1-1

is feasible; furthermore, it increases the size by

(n,_,-n, ). It must therefore be true that
i-1 7i+2

n o = [K/2]+d,

for some d = a Moreover, since n.1+ = 3, it follows

3
that Nyq = [K/Z]; that is, b = 0. Hence

(n,

1Dy .,ni+2) = ([K/2]+c,rK/2]+a,2,fK/B],[K/2]+d).
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The next task is to prove that a = 0, If a > 0, then

(n;_osn, 50y ) is a fat triple; since d = a, G would
have removable vertices in levels i-1 and i+2 unless
(ni+2,ni+3,ni+4) were a lean triple. Hence by Lemma
4.1, (ni+2,ni+3,ni+4) must be lean, and

(ny oom; aony ) = ([K/2]+d, 2+e, [K/2]-f)
for some e > 0, £ > 0 such that

f-(e+d) = 2[K/2]-K+1 > 0. .. (4.8)
Now the transformation

Ty ¢ (n;_j.np,n, ) = ([K2]+2,2, [K/2])

9
— ([K/2]+a+f—e,2+e,[K/Z]-f)

is feasible and increases the edge count by

(f-e) (f+c) + fla-d) = f(f-e-d) + [f(at+c)-ec] ...(4.8)

>0,

by (4.5). This contradiction establishes the fact that

a = 0. Indeed, since the expression (4.6) is positive
even when a = 0, it alsp establishes the fact that
(ni+2,ni+3,ni+4) ig fat.
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-.A similar argument shows that for i = 4, n, = 3 and

i-3
(ni_4,ni_3,ni_2) is a fat triple. But then the edge-

magimal graph G has removable vertices in levels i-2 and
i+2, by Lemma 4.1 a contradiction. This establishes the

lemma for i = 4,

Suppose then that i = 3. Since n, ., = [kr2]+q,
B n % 3, and (n1+2,ni+3,ni+4) is a fat triple, it must
be true that ni+2 contains a removable vertex. if

Digag > Bypq = [K/2], then since by Lemma 4.3 D,e = 2,

it follows that ni+4 also contains a removable vertex,

=n . Let

contrary to Lemma 4.1. Hence n. ., 141

4

n.

j+3 = 2%e, n, ., = [K2]-f,

for some e = 1, £ = 0. Further, let

cr
l

2[K/2] +d+e-f+2-K-1. . (4.7)

Then n, contains
i+2

r = min{d+1,t}

removable vertices. The transformation

—> n, ,+r and n —n,. .rT

10 * Mi-g i-1 i+2 1+2
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alters the edge count‘by ——

r( |[K/2]-d-e+r) = 0 .
Hence
e+d-r= [K2]. ... (4.8)

If D = 7, then Dy = K and the edge count can be

increased’by the transformation

Ty, ¢ (LK, [K2],2, [k/2], [K/2]+d,K, 1)

— (1,K, [K/2]-2,3, [K/2], [K/2]+d+1,K, 1).

Therefore D > 7. Now two subcases specified according

to the value of r are considered.

(a) r=t<d+1

Here equation (4.7) yields
d-t+e-f=K- 2[K/2] -1<0,

from which, since d = t, it follows that e < ¥, The

transformation

T : (

12 Lng) = ([K2],2, [K/2], [K/2]+d)

n2, n3, .
— ([K/2]+f+t-e, 2+e, [K/2]-F, [K/2]+d-t)
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is feasible and increases the edge count by

(t+f-e) (|K/2|+f+t) - d(f+t)
z (d+1}([K/2|+Ff+t) - d(f+t)

> 0,
a contradiction. Consequently t = d + 1.

(b) r=d+1

In this case, by (4.8),

that ig,

Dy q = rK/Z.I + y,

for some y = 3, Now since Dia z 2, G has removable

vertices in level i + 3 whenever (n. n, n, is a
( i+3'7i+a’ 1+5)

fat triple. It may therefore, without loss of

generality, be assumed that (n J is lean.

. n, n,
i+3' 77144 i+5

Then for some g = 0,

g = [K/2]-g, n =1, . ... (4.9)

i i+6

y-f-g=K+1-3[kez2]. ...(4.10)
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In view of (4.9), it may be assumed that D44 is as

small as possible; that is,

([kr2]-£-1) ([K/2]-g+1) < K.
Since ni+4ni+5 z K, it follows that f = g and hence that
([K/2]-g) ([&/2]+y) = K.

Thus by (4.10) the quantity

}\=d+f+g=|-K/2-|-y+22d+1,

and the transformation

T (nz,nB,...,ns) = (fK/2],2,[K/2],[K/2]+dJ

13
— ([K/2]+A, [K/2]+y, [K/2]-£, [K/2]-g)

is feasible and increases the edge count by

(d+f+g) (A-f) + A|K/2] > AlA+|K/2]-£) > 0.

This contradiction completes the proof of the lemma. -

Lemma 4.4 establishes a crucial lower bound on the order of
internal terms of a vertex sequence of an edge-maximal graph of

ﬁé. In order to establish a sharper upper bound than that
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implied by Lemma 4.1, recall the definition (2.17) of « = [2v]

and the related definitions of « o and Ka = K+l-a given in

1l 2'
Section 2.3. Then the following result can be stated and proved

as an application of Lemma 4.4.

Lemma 4.5 For D=7, K2 8, let S = SD(u) be a vertex sequence
of an edge-maximal graph G e €e(n,*,*,D,K). Then if
any internal term ni of S exceeds Ka’ ni contains a

removable vertex.

Proof  Supose on the contrary that S contains a term

"where 2 > 0 and 2 = i = D-2. Suppose further that n,
contains no removable vertex. Then at least one of' the

following conditions must hold:

(i) (ni—z‘ni—l’ni) is fat;
(ii) (ni—l’ni’ni+1) is fat;

(iii) (n.,n,

i 1+1’ni+2) is fat;

(iv) min{ni_l,ni+1} = [K/(Ka+a)].

Condition (i) cannot hold since it would imply that

!
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hence that n < K. Similarly, condition (iii)

i-2%i-1

cannot hold. Now suppose (iv) is true, and observe that

it suffices to consider only the case n,_ 4, =0y, Let
f(K,a) = K/(K;+a—1).
For fixed X, f(X,a) attains its maximum at a = 1. Hence

n,_, < f(Ka) = £(K, 1),

so that by Lemma 4.4, f(K,1) > 3; that is,

K < 3{a-1)/2,

an inequality which does not hold for any K = 8. Hence~

condition (iv) cannot hold.

The only femaining possibility is condition (ii). Since

(i) and (iii) are not possible, it follows that

n. > n, n, >n, ..
i-2 i+1 and i+2 i-1

But then since (iv) does not hold, this means that the

transformation

T : (ni_l,ni) — (ni_

1+1,ni—1)
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is feasible and increases the size, a contradiction

which completes the proof of the lemma. [

A sharper upper .bound on internal terms of an edge-maximal

vertex sequence is then a corollary:

Lemma 4.8 For D=7, K= 8, let S = SD(a) be a vertex sequence
of an edge-maximal graph G ¢ Ge(n,*,*,D,K}. Then no

two non-adjacent internal terms exceed Ka'

Proof  Suppose on the contrary that S contains terms

where 2 = i = D-2, 2 = j = D-2, and |i~j| > 1. But then
by Lemma 4.5, both ni and n‘j contain a removable vertex,

in contradiction to Lemma 4.1. . ]

A second consequence of Lemma 4.4 (also a consequence of Lemma

4.3) is the following fundamental property:

Lemma 4.7 For D=6, K= 8, let S = SD(u) be a vertex sequence

of an edga-mavimal granh G = ¥ (n,*,* D,K). Then
~r —r e

n1 = nD_1 = K.

Proof By Lemma 2.1(a), n, = n. = 1; further, by Lemma 2.12(a),

0 D

n, z K and Dy_4 z K. Then consider the 4-tuple
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(1,n1.n2.n3J,.

and suppose that n, = K+a for some a > 0. By Lemma 2.7

the transforma.t ion

T, (nl,nz) — (nl-a.n2+al
increases the size of S by A = a(na-l), a positive
quantity unless n, = 1. Since by Lemma 4.4, n, z 3 for

D = 7, it may be supposed that n, = 1l and D = 8. It

follows that
S = (1,K+a,K+b, 1,K+c,K+d, 1),

where b =2 0, ¢ =2 0, 4 = 0. But by Lemma 4.1, the
assumption a > 0 implies that ¢ = d = 0. Hence the

transformation

Tyt S — (1,K,K+a+b,k,1,K,1)
increases the edge count by (a+b)(K~1), a contradiction.
Therefore a = 0 and n, = X, as required. The same

argument shows that Ny = K. - |

I
The basic properties of edge-maximal vertex sequences of 't»’e

established by the above lemmas will now be applied in a further

sequence of lemmas leading to the proof of Theorem 2.5. Much of
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this work will be concerned with the order of triples within a
vertex sequence, hence the following definitions. A triple T of
a vertex sequence S will be said to be maximal (respectively,
minimal} if no triple of S has order greater (respectively,
less) than that of T. Similarly, an internal triple T of S wili

be said to be maximal internal (respectively, minimal internal)

if no internal triple of S has order greater {respectively,
less) than that of T. Note that a minimal internal triple is
not necessarily lean, and recall that an internal triple exists

if and only if D = B.

Lemma 4.8 For D=6, K28, let S = SD(u) be a vertex sequence
of an edge-maximal graph G ¢ Ee(n,*,*,D,KJ. Then if
two adjacent terms n, and D of S contain =a

removable vertex, 3 < i < D-3.

Proof Observe first that by virtue of Lemmas 2.1(a) and £.7,

1 <1< D-1. Suppose then that i = 2, so that both n

2
and n, contain a removable vertex. But this implies
that n4 = K, since otherwise by Lemma 2.7 one of the
feasible transformations

T (K,n n.n) = (Kn+l,n-1n)
1 TTTE T3 T, T2 T3 Tt
T, (K,nz,na,n4) — (K,n2—1,n3+1,n4],
would increase the edge count. For D = 6, n, = K

4

implies that n4 contains a removable vertex, in
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contradiction to Lemma 4.1; for D = 7, n4 = K

contradicts Lemma 4.6, It follows that i # 2 and, by

the same argument, that i = D-2.

Suppose therefore that i = 3. Applying Lemma 2,7 as in

the preceeding paragraph then yields the conclusion that

n2 = n5. Furthermore, n4 z K, since otherwise the
feasible transformation T would increase the edge
count. Suppose that n4 contains exactly A removable

vertices, and consider the feasible transformation

(K| nzp n3p n4p n2) - (K, n2+1, n3+A"'1,n4—A., nz) 3

which changes the edge count by K - (n4-h). For D = 8,

n, = =K, while for D=7, n, =n. = 3 by Lemma 4. 4;

2 = 05 2 5

in either case it follows that n4 - A < K, so that TS in

fact increases the edge count. This contradiction
forces the conclusion that i # 3, and the same argument

shows that i # D-3. This completes the proof. a

Observe that this lemma establishes Theorem 2.5 for D = 7; in
fact, for D = 6 it establishes the slightly stronger result that
at most one term of an edge-maximal vertex sequence contains a

removable vertex. The next lemma is really a more precise form

of Lemma 4.1.
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Lemma 4.9 Suppose that an edge-maximal vertex sequence
S = SD(u) of a graph G ¢ @é(n,*,*,D,K) contains an
internal term n, which has A > 0 removable vertices.
Then the order t; of the triple T, = (ni-l’ni’ni+1)

satisfies

where tj is the order of any triple

T. = (n, .

3 J—l’nJ’nj+1) disjoint from T..

Proof A transformation which moves A vertices from ni to n‘j
changes the edge count by

o0 - []

If for some value of J, ti < tj + A, then Q,J > 0,

contradicting the assumption that S isg edge-maximal . x
The triple T.1 of Lemma 4.9 is clearly a maximal triple. The
next few lemmas establish important properties of minimal

internal triples.

Lemma 4.10 For D=6, K = 8, let (x,v¥,2) be a minimal internal

triple of an edge-maximal vertex sequence S. Then y

does not contain a removable vertex.
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Suppose on the contrary that y does contain a removable
vertex. Then by Lemma 4.9 (x,y,z) is a maximal triple,
and so all interﬁal triples of S are maximal.
Cghsequently n4 = n1 = K, nD_4 = nD_1 = K, and ni+3 = n,
for every 2 = i = D-5; in other words, S is 3-recurring.
Since by Lemma 4.1 y occurs at most once in 8, it
follows that D = 8; further, these conditions also imply
that for D = 6 or 7, more than one term of S contains a

removable vertex, contrary to Lemma 4.8. Then for

D = 8,
S =1(1,Kzxvy,2xXK,1),

where y = K contains A > O removable vertices. Then
y-A = K. If y-A2 = K, it follows without loss of
generality that (z,x) = (K,1), hence that the feasible
transformation

T S — (1,K,K+2,K,1,K,1,K, 1)
increases the edge count by A(K-1) > 0; for y-A < K, the
feasible transformation

T, S — (1,K,z+A,x,y-A,2,x%x,K,1)

increases the edge count by A(K-y+A) > 0. These
contradictions force the conclusion that D # 8, and the

proof is complete. ]
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Lemma 4.11 For Dz 7 and K= 8, let 8 be a minimal internal

Proof

)

triple of an edge-maximal vertex sequence S. Then 8

contains a removable vertex if and only if B is fat.

Necessity is obvious. To prove sufficiency, suppose
that 8 = (x,y,2) is of order t > K+1 and contains no
removable vertex. . Without loss of generality assume
that x = z. By Lemma 2.12(b), y = [K/z], and in fact

y = [K/z], since otherwise y would contain a removable

vertex.

_Now suppose that x > max(y,z), and observe that the term
to the left of x in S must either be n1 =Kor w=zz
(since B is minimal). Hence x must contain a removable

vertex, a contradiction. Then it must be true that

x = max{y, z}.

By Lemmas 4.3 and 4.4, every term of S is at least 3; in
particular, since K = 8, it follows that 3 = z = [Kr2]-1

(z = [K/Z] would contain a remcvable vertex). Therefore
2y + z = 2I'K/z'|+z = K+1 < xty+z,
so that y < x = max{y,z}. Since by assumption x = z it

must therefore be true that % = z =. [K/21-1. If

X < [K/2]-1, then
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t = 2x + [K/x] = K+1,

in contradiction to the original assumption that B is
fat. On the other hand, if x = [K/2]-1, then as above x

must contain a removable vertex, also a contradiction. =

Lemma 4.12 For D=7 and K = 8, let 8 = (x,y,2) be a mninimal

Proof

internal triple of an edge-maximal vertex sequence
S. If S contains the 3-recurring 4-tuple (g8,x),

then B is lean.

By Lemma 4.10 applied to the minimal internal triples
(X,¥,2) and (y,z,x), neither y nor z can contain a.
removable vertex; by Lemma 4.1, x cannot contain a
removable vertex. Then B does not contain a removable

vertex, and therefore, by Lemma 4.11, is lean. ]

Lemma 4.13 For D=2 7 and K = 8, let B be a minimal internal

Proof

triple of order t of an edge-maximal vertex
sequence S which contains a maximal triple of order

t’. Then t’ > t.

Since clearly t’ = t, suppose that t’ = t. Then every
internal triple of S has order t’. Since by Lemma 2.1
the order of (no,nl,nz) exceeds K+l1, it follows that
t’ > K+1, hence by Lemma 4.11 that every internal triple

contains a removable vertex, in contradiction to Lemma

4.10. Then t’ > t, as required. [ ]
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lemma 4.14 For D=7 and K2 8, let 8 = (x,y,2) be a minimal
internal triple of an edge-maximal vertex sequence

S. Then xz = K.

Proof Consider the 5-tuple (u,8,v) of S, and observe that if
u < 2, B can be minimal only if u = n1 = K, so that
z > K and xz > K, as required. Similarly if v < x.
Then suppose that u =z z, v =z ¥, and further that xz < K.
But by Lemma 2.12(b) it must therefore be true that

u >z, v>x, and hence, since S is edge-maximal, that

neither of the transformations

Tl : (X,Y,Z] - (X+1,Y‘1,Z),

T (x,y,2) = (x,y-1,2z+1),

2 :

is feasible. It follows that z = x and y = [Ksx].

Observe now that since xz = x° < K, [Kx] > x;

furthermore, since K = 8,
X+ y+z=2x+ [K/x] < K+,

in contradiction to Lemma 2.12(c). This contradiction

establishes the lemma. ]

The next result is a near-converse of Lemma 2.5 and identifies
an important criterion for determining whether or not a glven

triple is minimal internal. The proof depends on Lemmas

4.12-4. 14,
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Lemma 4.15 For D = 7 and K = 8, suppose that an edge-maximal

Proof

vertex sequence S contains a triple 8 = (x,y,z)
embedded in a 5-tuple (u,B8,v), where u = z and

v = X. Then B is a minimal internal triple of S.

Observe first that by virtue of the condition u = =z
together with Lemmas 2.1 and 4.3, B is not the triple
(nl,nz,n3). Nor, by a similar argument, is it

(

nD—B'nD—z'nD-l)' Hence 8 is internal.

Suppose then that B is not minimal, and let
B’ = (x',y',2’) be the leftmost minimal internal triple
of S. It follows that the term preceding x’ in S is
either n, = K or else exceeds z’. Without loss of
generality, it may be supposed that B’ precedes S8 in S.
Observe that if B8’ and B8 have two terms ¥y’ = x and
z’ = y in common, then since 8 is not minimal, z > x’,

while by hypothesis, u = X’ = z. Hence B’ and 8 have at

mest one term in common.

Suppose then that z’ = x, so that u =y’ = 2. Since B’

is minimal, it follows that x* < y. Then let
v=v + 2w =32 + 4 where A > u = 0. Consider the
transformation

T CX’:y’.Z’,X’H,y’—u,VJ = X',y 2", %,y +A-u, v),
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which by Lemma 2.7 increases the edge count by Al{v-z').

By Lemma 4.14, x’z’ = X, so that T, is feasible, and

hence, to avoid contradicting the hypothesis that S is

edge-maximal, it must be assumed that v = z’. It
follows that the term y’* + A - p in the transformed
sequence S’ must contain A - pu removable vertices.

Since B’ is minimal also in $‘, it follows from Lemma

4,12 that 8’ is lean. But then the transformation

v L . ’ -
Tyt Y A-u—-y, Ny 5, =0y 5 ¢+ A - U
must increase the edge count, a contradiction. Hence B

and B’ must be disjoint.

Now let t and t’ = t-s, s > 0, be the orders of B and
B’, respectively, and imagine a transformation T3 of S
as follows. First remove the triple 8 so that u = z and
v = x are adjacent; then use t’ of the removed vertices
to form a new triple (x’,y’,z’) adjacent to the existing
B’. The result is a feasible vertex sequence S’. Next
add the remaining s vertices to the middle term of a

maximal triple of S, yielding a vertex sequence with

s(t”-t’) + (u-z)(v-x)

more edges than S, where t” is the order of a2 maximal

triple of S’. Since u =z z, v =z X, and since by Lemma
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4.13, tZ¥ > t’, S”* has more edges than S, a

contradiction. It follows that B must be 2 minimal

internal triplg of S. "

Lemma 4.16 For D = 7 and K = 8, let S be an edge-maximal vertex
sequence. Then B = (nz,ns,n4) (respectively,
B = (nD_4,nD_3,nD_2)) is a minimal internal triple

of S if and only if n_. = n, (respectively,

5
hpg = p o)

2

Proof By symmetry the proof for (n2,n3,n4) implies the result
for (nD_4,nD_3,nD_2). Hence suppose first that ng < n,,
and let the order of B be t. Then the order of
(na,n ,n5) is less than t, so that f cannot be minimal

internal. This proves necessity.

To prove sufficiency, suppose that ng = n, and further
that B is not minimal internal. Then by Lemma 4,15,
n, > K and hence contains a removable fertex. Therefore
by Lemma 4.10 a minimal internal triple B’ of S isg
disjoint from f. Further, by Lemmas 4.1 and 4.11, B’

. . .
can be fat only if B’ = (ns,ne,n7J and N contains a

removable vertex. But in this case, since 5 is

edge-maximal, it follows from Lemma 2.7 that ng = ng, =3e)

T

that vertices can be transferred from n5 to n4 without

affecting the edge count. Thus it may without loss of

generallity be supposed that B’ is lean,
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Now let t = K+1+s, where s > n4—K, and imagine

rearranging S as in the proof of Lemma 4.15. Remove B
from S and use K+1 of the rémoved vertices to form a
lean triple 8° adjacent on the right to the existing B’;
the remaining s vertices are added to . The result is

a feasible vertex sequence having

s(n5+n6-1) - (n4-K)(n5-n2)

= (n4-KJ(n2+n6-1) >0

more edges than S, a contradiction which completes the

proof. |

In order to state the next lemma, further definitions are
convenient. For every 2 = i = D-2, let Bi denote the triple

(n,_,»n;,n;.,). Then for j-i = 2 an internal (j-i+1)-tuple

Si 4 = (ni,...,nj) of a vertex sequence S is said to be compact
if every triple Bk’ i+1 = k = j-1, is minimal internal; further,
Si 3 is said to be maximal compact if it is compact and neither

Bi ner Bj is minimal internal. S is said to be regular if it

contains exactly cne maximal compact k-tuple.

Lemma 4.17 For D= 7 and K = 8, every edge-maximal vertex

sequence is regular.
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Suppose the contrary, and let S denote a non-regular
vertex sequence which, over all non-regular edge-maximal
vertex sequences for given - n, D, and K, contains a
maximal c?ﬁpact tuple S:’J of greatest length. Let
B = (x,y,2) denote the rightmost triple of S:,j and let
B’ = (x',y’,z’) denote a minimal internal triple of S
which is not in S:,j' Without loss of generality, it
may therefore be assumed that S contains the S-tuples
(u,8,v) and (v’,B’,v’) where v > x and u’ > z’. Hence,

if B and B’ overlap, the only possibility is that

y=u, z=x'. In this case, for some A > 0, S must

‘contain the tuple

(U, %,¥,2, XA, y-A, v’ ),
which can be transformed to
(u,x,¥,2,%y,v’')

yielding a feasible vertex sequence S’ with v/-z = 0
¥»*
more edges than S. But this implies that Si 3 was not

of greatest length, in contradiction to the original

assumntian, Hence  th

L H

triplas g and B’ must be

disjoint.

Imagine therefore the following transformation of S.

Remove B’ so that u’ and v’ are adjacent, and then from
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the vertices of B’ form a triple (x,y,z) and insert it
between B aﬁd V. Since by Lemma 4.1@, xz = K, this
transformation yields a feasible vertex sequence S‘ with
(u'-z’)(v'—x’) =z 0 more edges than S. But as above this
means that Si ] was not of greatest length, =a

contradiction which proves the lemma. ]

Lemma 4.

Procf

18 For D= 7 and X = 8, let S:,j be the maximal compact
tuple of an edge—ma#imal vertex sequence S. Then
i =3 and j =z D-3. Further, if i = 3 (respectively,
J = D-3), then n, (respectively, nD;z) contains

a removable vertex,

It suffices to prove the result for Ii. Suppose then
that i = 4, and denote by (x,y,z) the initial triple

* *
) of S, .. Since S, ., is maximal compact,
2 i i,J

3 1

(ng.my 1004,

it follows that n, . > z and further, by Lemma 4.17,

i~1

that n,_, *+ n; 4 > y+zZ. Therefore the transformation

T e (ni—S'ni-Z’ni—l’X) — (ni_s.ni_2+ni_1—z,z,x)

is feasible and by Lemma 2.7 increases the edge count by

¥
(n, ,~x)(n, .-z}, Since S, . is maximal compact, this
i-3 i-1 i,J
quantity must be negative, so that n.l_3 < X. Then since
by Lemma 4.7, n, = K > %, it follows that i # 4. But

for i =25, it must be true that
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nj < nj+3,

for every 2 = j = i-3, since otherwise by Lemma 4.15 a
triple (nj+1,nj+2,nj+3} would be minimal internal, in
contradiction to the regularity of S. In particular,
this ‘means that n, < n

2 .5

(nz,ns,n4) is minimal internal, again in contradiction

hence by Lemma 4.16 that
to the regularity of S. Hence i = 3.

) Finally, observe that if i = 3, then since N, > ng, I,

must contain a removable vertex. [ ]

It is clear from Lemma 4.18 that in an edge-maximal vertex
sequence, every internal triple, with the possible exception of
(nz,na,n4) ‘or (nD;4,nD_3,nD_2) (but not both), is minimal

internal. To complete the proof of Theorem 2.5, then, one

further result is required:

Lemma 4.19 For D = 7, K = 8, every minimal internal triple of

an edge-maximal vertex sequence is lean.

Proof Suppose there exists a minimal internal triple
B = (x.v.z) whose order t > K+1. Then for D = 8 there
must by Lemma 4.18 exist a 4-tuple (x,y,z,x) or
(z,x%,y,2z). In either case, by Lemma 4.12, B is lean.
Suppose then that D = 7 and observe that, by Lemmas

4.10, 4.11, and 4.1 exactly one of the terms x, =z
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contains a removable vertex. Suppose without loss of

generality that x contains a removable vertex. Then

S = (I,K,x,y,z,nS,K,l) or (1,K,n2,x,y,z,K,1).
'In the first case, since B is minimal internal, ng = X.
Suppose then that ng > X and recall that by Lemma 14,
xz = K. But x and N must therefore both contain
removable vertices, in contradiction to ‘Lemma B 4.1.
Hence n5 = X, so that by Lemma 4.12, 8 is lean. In thé
second case, since x contains a removable vertex,
(nz,x,y) cannot by Lemma 4.10 be minimal internal; hence

n2 > z also has a removable vertex by Lemma 4.14, a

situation which by Lemma 2.7 can arise only if y = K;

but then y also contains a removable vertex, in

contradiction to Lemma 4.1. -]

For D = 7, Theorem 2.5 is an immediate consequence of Lemmas
4.18 and 4.19, which imply moreover that the (D-4)-tuple

(

) is 3-recurring and that only n can possibly

DosreeenBp o D-2

contain a removable vertex; as discussed earlier, Lemma 4.8
implies Theorem 2.5 for D = 8 and, together with Lemma 4. 10,
;stablishes in this case also that only Do can contain =
removable vertex. Thus the main result of this section
corresponds very closely to Theorem 2.1 for the class @V, a

result which was very easily proved; it is curious that the

lproof should be so much more difficult for graphs of ﬁe.
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Theorem 2.5 For D=6 and K = 8, every edge-maximal graph
G ¢ @e(n,*,*.D,K) has a vertex sequence in which

every internal | triple except possibly

(nD_4,nD_3,nD_2) is lean. . |

A final remark: it seems likely that a very similar, but rather .
more complicated, development can be carried out for graphs of
ﬁe(n,*.S,D,K), vielding a result closely analogous to Theorem
2.5. The main complications would derive from the fact that
conditions (a) and (c) of Lemma 2.12 are expressed in terms of

8, while condition (b) is expressed in terms of K.

4.2 Structure of Edge-Maximal Graphs over @e(n,*,¥,D,K)

This section completes the analysis of edge-maximal
K-edge-connected D-critical graphs (D = 8) by establishi'ng a
collection of results (Theorems 4.1 and 2.86-2.10) which specify
the structure of these graphs. The first of these results,
Theorem 4.1, is a counterpart for k = 7 of Theorem 2.5, which
was proved in Section 4.1; the remainder explore the further
consequences of Theorem 2.5, in order to specify thé precise

structure of edge-maximal graphs.

In order to formulate a precise statement of the
characterization theorem for K = 7, further terminology will be
convenient, Recall first from Section 2.3 the definitions of

the terms lean and fat for doubles, and the introduction of the
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i+ @0d «,. Then a double (x,y) will be said to

be smooth if |x-y| = 1; otherwise, rough. Correspondingly, a

quantities «, «

vertex sequence will be said to be smooth if every internal
double 1is smooth, and regular if every double of one of the
internal (D—4]-‘tu131es (n2,...,n.D_3), (n3;...,nD_2) is lean and
smooth, and if each terminal double is of order K+1. Table 4.1
1’ and a2 for K = 7. Observe that
with the exception of K = 3 and K = 7, the smooth doubles

displays the values of o, «

(ocl,ocz) and (az,ocl) represent the only possible lean doubles;
however, for K = 3 or 7, the lean smooth doubles (2,2) or

(3,3), respectively, also occur, and the doubles (« ocz) or

1’

(az,ocl) are rough.

Values of o, Ays Ay (K=17)

-~
=]
23
R

~ QU WA
DO G WN
[\JNNN.HI—‘I—‘
B WWN W -

Table 4.1

As for K-connected graphs (Section 2.2), the statement of a
characterization theorem for K = 7 is facilitated by the
definition of certain sets of tuples. Accordingly, for integers

|
rzland 0 =s = 1, define




128

#(0,r,s) : the set of all (2r+s+2)~tuples S = (n )

1 Poragen
which satisfy the following conditiohs:
* S contains r+s+2 terms 2 and r terms 1;

* oy o=

1 nr+s+2 =2

* S contains no double of order less than 3.

This set corresponds _to arrangements for K = 2, where as
indicated in Table 4.1, “1 = 1 and “2 = 2. It is not difficult
to see that every tuple of ¥(0,r,0) contains exactly one fat
double (2,2), while #(0,r,1) contains at least two tuples which
contain the triple (2,2,2). Thus for t =z O the following

definitions are Jjustified:

#{t,r,0) : the set of all tuples formed from elements of
¥(0,r,0), by adding t vertices in all possible ways

to the fat double;

F(t,r,1) : the set of all tuples formed from elements of the
subset of #(0,r,1) which «contain the triple

{x,y,2) = (2,2,2), by adding t vertices to y.

Examples of these sets are as follows:

#(0,1,0) = {(2,1,2,2),(2,2,1,2)};

¥(2,1,0) = {(2,1,4,2),(2,1,3,3),(2,1,2,4), (4,2,1,2), (3,3, 1, 2),
(2,4,1,2)};

¥(0,1,1) = {(2,1,2,2,2),(2,2,1,2,2),(2,2,2,1,2) };

?(3,1,1) = {(2,1,2,5,2),(2,5,2,1,2)}.
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The characterization theorem for K = 7 may now be stated: .

Theorem 4.1

For Dz6and K = 7, suppose S is a vertex
sequence of a graph G € €e(n,*,*,D,K). Then G is
edge-maximal if and only if one of the following

conditions is satisfied:

(a) for K = 1, G 1is edge-maximal over
ﬁv(n,*,*,D,K);_

(b) for K = 2, s = (1,8,1), where
S’ ¢ #(n-(3r+2s+4),r,s), r = [(D-3)/2], and
s = (D-3) mod 2;

(¢) forK=4orforK = 3 amd D odd, S is
regular;

(d) for K=3,5, 6, or 7 and D even, -5 =
(1,K t, (x,0-x)7,K, 1) or (1,K, (x,a~x)",¢,K, 1),
where r = [(D-3)/2], t.= n-2(K+l)-ra = «,
and x is an integer chosen in the range

[e azI so as to minimize

1’

(r-1)%% + [t-K-(r-1)alx. .

Conditions (a) and (b) of Theorem 4.1 relate to special cases

vhich arise for K = 1 and 2, respectively; while conditions (¢)

and (d) express precisely the requirement that excess vertices

are added either to n., or to n

o D-2° A special case of Theorem

4.1, stated in Caccetta & Smyth (18987a), asserts that a vertex-
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minimal graph is edge-maximal if its vertex sequence S is smooth
or if, for even D, its recurring double is (az,al).

The proof of Theorem 4.1, while not as lengthy as the proof of
Theorem 2.5, requires consideration of numerous detailed special
cases . and, from a mathematical point of view, does not add
significantly to the methodology developed to deal with the case
K = 8. What will be given here, therefore, is an outline of the
proof, which highlights the main steps and provides some 1hsight

into the origins of the conditions (a)-(d). As in the case of

Theorem 2.5, the proof of Theorem 4.1 begins with a series of

lemmas or propositions which provide information about a vertex

sequence S = (1,n1,n . 1) of an edge-maximal graph of

"nD—I.
@e(n,*,*,D,K), D=zgB, K=17.

Propositicn 4.1 At most two adjacent terms of S contain

removable vertices.

{This is Lemma 4.1, already proved in Section

4.1.}

Proposition 4.2 S contains no non-terminal term less than al.

{This result separates the range 1 = K = 7
into subranges: 1 = K = 3, for which @ =1

and 4 <= K = 7, for which @, = 2.}




Proposition 4.3

Proposition 4.4

Proposition 4.5

Preposition 4.6
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For K =1, S is a vertex sequence of an edge-

maximal graph over ?V(n,*,*,D,l).

{Because ﬁ&(n,*,*,D,l) = @é(n,*,*,D,l). See

Theorem 3.2, especially condition (d).}

For K =2 3, or for K = 2 and D even,

Py =0y =K

{For K = 4, this result is a consequence of
the fact that.K > %y while for K ; 3 the
result follows from the fact that the smooth
lean double (2,2) generally yields higher edge
count than (3,1) or (1,3). For K = 2, the
result follows from the form of the set of
tuples #(t,r,s) specified in Theorem 4.1,

since the t excess vertices are added into the

middle term of the triple (2,2,2).}

For K= 3, or for KX =2 and D even, at most
one term of S, n, or nD-2’ contains =a

removable vertex.
{Equivalent to Theorem 2.5.}

For Kz 3, orf for K =2 and D even, the size

*
m of 8§ is given by




*
m {x) =

Proposition 4.7
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(5] + o) + (] + w0 + f-nmericann,

where r = |(D-3)/2], t = n - 2(K+1) - ra, and

(x,a-x) is the recurring double of S.

{By Propositions 4.4 and 4.5, it may without
loss of generality be supposed that S takes
the form (1,K,(x,a-x)r,t,K.1]. Since for each
choice of K, the only possible choices of x

range between « and ¢ the resulting

i 2'
*
expression for m (x) leads directly to the
function to be minimized in condition (d) of

Theorem 4.1.}

For K=4, or for X =2 3 and D odd, S is

regular.

{Rough doubles occur only for X = 3 and 7;
then (3,1) and (1,3) (respectively, (4,2) and
(2,4)) yield lower edge counts than (2,2)

(respectively, (3,3)) when D is odd.}

Turning now to the case ¥ > R}, rerall from the dizcussion in

Section 2.3 that when D mod 3 # 0, every vertex-minimal vertex

sequence is edge-maximal (Theorems 2.6 and 2.7(a)). Thus to

complete the consideration of vertex-minimal graphs, condition

(b) of Theorem 2.7 remains to be established. (Recall the
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definitions of the quantities «, Xys O and Ka given in Section
2.3.)
Theorem 2.7 For Dz6 and K = 8, a vertex-minimal graph

(x,y,2) = (a2+§,a

Proof

G e @é(n,*,*,D,K) is edge-maximal if and only if
one of the following conditions is satisfied:
(a) D mod 3 = 0;

(b} G has a vertex sequence (2.19) where

(o, e, K ), if K = 18, 19,20, 22-24, 28, 27, 36;
-2,K -1), if K = 38,49
1 o )

(a2+2,a1—1,Ka-1), otherwise.

Setting a = 0 in (2.21), define

glx,z) = f(x,y,2z;:0) = K{x+z) - xz.

The values of %, y, and z which maximize g(x,z) will be

determined.

Since any vertex sequence may be reversed and still
retain its properties, it may without loss of generality

be supposed that x = z. Observe that

(i) glx-1,z+1) = g(x,z) + (z-x+1) > g(x,z);

(1i) glx-1,z) = g(x,z) ~ (K-x) < g(x,z).
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From (i) it follows that g(x,z) takes its maximum value
when z is a maximum, and from (ii)} that for fixed z, x
should also be a maximum. Further, 'sincg by Lemma
2.12(b), z = K, the selection of y then necessarily
fixes z and x: z should be as large as possible subject
to the constraint that x+y = «. Observe that y = 3,

since otherwise (x,y,z) could not be lean. Hence

=x =z =K

I3=y= al, u2= a~a1 -

subject to the condition

(al-l)(a2+13 < K. . (4.11)

The ©problem therefore reduces to determining the
circumstances in which there may exist positive integers

a and b such that

d = gla,+a+b,K -b) ~ gl K =05

%5

that is, in which the edge count does not decrease when

the choice y = @, ~a is made. Observe fhat since y = 3,

there can be no increase for values of K such that

@ = 3; in particular, for no K = 185. After some

algebra, it turns out that ’

d = b2 - (K ~a,-a)b + ale-1),
o 2
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a quadratic in b which is monoteonically decreasing in b

provided that
b = (K -« ~a)/2. ... (4.12)
o« 2

(Here the maximum value of b Jjust corresponds to the
case in which the two arguments of g are as near as
possible equal.) Since however x = z, it may further be

supposed that

K -b = a_+atb,

from which (4.12) follows. Therefore, since the

objective is to maximize d, it may be supposed that

b = 1, and the condition that the edge count decrease;m

then becomes

d=(a+1)<x+a2-1<=o.' .. (4.13)
Fa

Equations (4.11) and (4.13), together with

(al—a)(a2+a+13 = &, ... {4.14)

are then the basic constraints which must be satisfied

by a if the edge count is to increase,

From (4.13) the condition that d < 0 may be re-expressed

as a quadratic inequality in K:
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4K(a+2)2 < (K+a1)2-

By inspection of this inequality, it is clear that the

edge count can possibly increase only if

K 2'4(a+2)2 - 2&1. ...(4.15)

Rewriting (4.14) taking inte account (4.11), observe

next that

-a, + (a+1)o¢1 - ala+l) = K—a1a2 = a0,

* from which it follows after some algebra that for a > 1,
@, = a[ul—(a+1)] / (a-1),

or, since “1 = az,

o« = ala+l). ... (4.18)

(The same inequality holds also when a = 1.)

Substituting (4.16) into (4.15) leads to the conclusion
that

| K = 2a% + 14a + 16. ... (4.17)

On the other hand, since by (4.18) a = 2a(a+l), it

follows that 2vK + 1 = 2a(a+1); in other words, that
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K= a.2(a+1_)2 - ala+l) + 1/4. ...(4.18)

After a little manipulation, equations (4.17) and (4.18)

together imply that
a%+2a3 < 222+15a+18,

which is true only if a = 2. From (4.17) it follows
that the only values of K for which d may possibly not

decrease are
a=1, K=32; a=2, K= 582,

For a = 1, Table 4.1 shows the result of direct
calculation of d for 16 = K = 32 combined with
evaluation of the condition (4.14). Observe that d is

strictly greater than zero, while at the same time

(4.14) is satisfied in exactly those cases specified in
the theorem. Observe further that for every value of K

in Table 4.2,

(al-Z)(a2+3) < K, ... (4.19)
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Determination of feasible values of K (a=1)

K @, o, @ d (ml-ll(az) = K?
16 4 4 8 4 yes
17 3 8 2| 7 no
18 3 B 9 B no
19 4 5 8 4 yes
20 4 5 g 3 yes
21 3 7 10 B noe
22 4 B 10 4 yes
23 4 3] 10 3 yes
24 4 B 10 2 yes
25 5 5 10 0 no
26 4 7 11 3 yes
27 4 7 11 2 yes
28 4 7 11 1 no
29 5 5] 11 -1 -
30 5 B 11 -2 -
31 4 8 12 1 no
32 4 8 12 0 no

Table 4.2

leading to a similar calculation for a = 2 to cover the
range 33 = K = 52, This calculation reveals that only
in the cases K = 36 and K = 49 are (4.13) and (4.19)
both satisfied (d = 6 and 0, respectively); these are
the cases specified in (4.11). It has therefore been
shown that, for D mod 3 = 0, in order for a
vertex-minimal vertex sequence to be edge-maximal,
condition (b) must be satisfied. Conversely, it follows
also from the above argument that whenever (b) 1isg
satisfied, the sequence is edge-maximal. This completes

the proof. ]

To complete the characterization of edge-maximal vertex

sequences it 1s necessary now to consider graphs of @e that are
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not vertex-minimal; that is, such that the excess a > 0. By
Theorem 2.6 it is necessary only to consider cases in which
D med 3 # 2. The first result deals with D mod 3 = 0 and

l =3 = g~1.

Theorem 2.8 For Dz 6, Dmod 3 =0, and K = 8, suppose that a
graph G ¢ Ge(n,*,*,D,K) has a vertex sequence

(2.18) in which a = a-1. Suppose further that
* ¥

* .
integers a and a* are given, where a = a = 0

except as shown in the following table:

»*
K a a¢
16 2 2
19 2 2
20 1 2
22 2 2
23 1 2
24 1 1
26 1 2
27 1 1
36 2 2

Then G is edge-maximal if and only if the vertex
sequence (2.19) satisfies one of the following

conditions:
¥*
(a) 0=<a= a and (x,y,z) is specified by

Theoren 2.7(b);

(k) a* =a < o1 and {x,y,2) = (mZ’ul’Km);

(¢) a=wa-1and z =K.,
o

-
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As in the proof of Theorem 2.7, it may be supposed
without loss of generality that x = z = Koc' It is

convenient to consider transformations

T: (xy,2) = (x,y',2')

of the edge-maximal vertex sequence (2.19) (see also the
statement of Theorem 2.9). Observe first from (2.21)
that the cheoice x’ = x-1, z’ = z+1 results in a change

to the edge count represented by

Af = £(x-1,y,2+1;2) - f£(X,y,2;,2)

z+a-x-1, ... (4.20)

so that for a = 1, Af = 0. Thus it may always be
assumed that x is the minimum value consistent with
K-edge-connectivity.

Next consider the transformation v with (y’-y) + (x'-x)

= 0. Since in general
Af = K[(x’—x)+(z’—z)]—(x’—x)z’—(z’—z)x+a[{y’—y)+(x’—x)],

it is clear that if this transformation does not
increase the edge count when a = 0, it cannot increase
the edge count when a > 0. Now for a = Q Theorem 2.7

implies that, starting with (x,y,z) = (az,al,Ka), the
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only transformations v which increase the edge count are

of the form

T : (“2’“1'Ka) — (a2+i-1,a1-i,Ka—1), ‘ ... (4.21)

where 1 = 1 = 2. For a = 0, this transformation yields

Af = K - @, - (i+1)(a-a),
which for sufficiently large a becomes positive. Now
corresponding to the values of K specified in condition
{(b) of Theorem 2.7, the largest wvalue a* for which
Af = 0 may be calculated from (4.21), as well as the
changeover value a* at which Af first becomes positive.
These values turn out to be the oﬁes tabulated in the
statement of the theorem, so that condition (a) is

proved and condition (b) partly proved.

To complete the precof of (b), it is now demonstrated
that for a < K-z, the only transformations which can

possibly increase the edge count are those which

increase 2z, an impossibility since z = Ka' Suppose
firzt that z/ = =z. Since y = al, it follows that
y'=y = x-x’ > 0 may without loss of generality be

assumed, so that, for a < K-z,

Af = (K-z-a){x'-x) < 0. ... (4.22)
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Suppose then that z/ < z and y’ 2 y, so that x’ < x < =z

and

Af = (z+a-K)(y'-y) + (z+a-x’')(2’'-2), ...(4.23)

an expression which is strictly less than zero for every

transformation such that a = K-z. Hence.Af < Q for

Il

every transformation in which z/ = z and a < K-z

thus establishing condition (b).

To prove (c), observe that in the special case a a1,
the above argument implies that z = Ka' Further,
setting a = K-z in (4.22), observe that Af = 0 for any
transformation satisfying z* =z = Ka' [

Now suppose that a = o. Recall from (4.20) that for fixed y, x

takes the minimum value and z the maximum value consistent with

K-edge-connectivity; similarly, (4.22) implies that for a > K-z

and fixed z, %X and y take the minimum and maximum feasible

values, respectively. Therefore, since z = z = Ka. it must be
true that x = o, Since for a = -1, z = K“, it follows that

for a > o-1, the only transformations T which need to be

considered are those satisfying
% <%,y >y, z' <z ) . (4.24)

Moreover, since for x' = x, z’-z = y-y’ and

a-1,




Af = (K-x)(z'-2),

it follows that for fixed x, y and z take minimum and maximum

feasible values, respectively. Hence it may be supposed that
y' = [K/x’], ... (4.25)

and indeed that y = [K/x] for every edge-maximal graph. Then
(4.23) represents the increase in edge count resulting from a

transformation 7; this quantity exceeds zero if and only if
z+a > [K(y’'-y)+x’ (z'-2)]/(x-x"). ... (4.26)

Observe now that relations (4.24)-(4.28) are Jjust conditions

(a)-(c) of Theorem 2.9, which has therefore been proved:

Theorem 2.9 For D=8, Dmod 3 =0, and K = B, suppose that a
gfaph G ¢ Ge(n,*,*,D,K) has a vertex sequence
(2.19) in which a =z «. Then G is edge-maximzl if
and only if there exists no feasible

transformation
T (X,y,2) = (x',y',2"}

of (2.18) satisfying all of the following

conditions:
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(a) x' <x, ¥y >y, z' < z;
(b) x' = rK/x"];

(¢) x+a > [K(y'-yl+x’'(z'-z)1/(x—x'). n

In order to derive a more computationally useful form of this

result, it is convenient to adopt the notation

i=xx', 8(1) = y’'-y, 8{(i)-i = z-z*, ... (4.27)
all quantities which by (4:24) should be positive integers in
order that transformation 7 might possibly increase the edge
count. These quantities represent displacements from an initial

recurring triple (x,y,z) = (al,az,Ka).- (4.25) then becomes

3(1)

[K/(x-1)] - vy, ... (4.28)

and, setting

]

b(i) = (1) (K-x+i)/1 + (x-1), ... (4.29)

{(4.28) becomes

=
(-
)

L

et

z+a < b(i).

Note that {4.28) holds also for i = 0. It may therefore be
imagined that 1 successively takes the values 1,2,...,x-t, where

by Lemma 4.4, t = 3 for D =2 7, and otherwise t = 1. Since the
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corresponding sequence of values &(1) is monotone increasing in

i, it is possible to write

8(i) = V., ... (4.31)

where by (4.28)'v = 0, and by the definition of «

0 1’ 1
while for j = 1, vJ z 1, In fact, it follows from (4.28) that
for x-i = (V1+2K-1)/2, vy = 2. Observe also that for any value

of 1 such that vy z 2 and, for some A = 1, v, = v, = ...

i+l i+2
= Vien S 1, no transformation T for which x' = x-i1 can yield
maximum edge count, since then &(i+h) = &(i)+A, and so the

further transformation

T/ (x-1i,y+8(i),z+i=-8(i)) — (x=~i-h,y+8(1)+h,z+i-8(1))

is feasible, leaves z’ = 2z+i-8(i) unchanged, and hence, by

(4.22), increases the edge count.

Imagine therefore computing a subsequence J of the sequence

Ix—t = {0,1,...,x-t} which has the property that for every

i & J, the transformation T specified by (4.27) and (4.28) may

possibly be edge-maximal. J then consists of every integer
1 € lx-t such that Vi+1 # 1, arranged in ascending order. Let
J= {j0=0,j1,...,jp}, and observe that for every 0 = A = p-1,

8(Jppy 1 dpey = 803,070, ... (4.32)

v, = 2,
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so that from (4.29), b(jh+1) = b(jh)' Then for 0 = h = p and

any integer A = 0, define the triple
Th(A) = (al—Jh,y+6(Jh),Z+th6(Jh)+A). ... (4.33)
and let

S, = (1,K,Th(0)r-1,Th(a),K,1) ' C..(4.34)
denote the corresponding regular vertex sequence, where as
before r = [D/3]-1 and a = a. (4.32) can be usea to determine
whether the size of Sh exceeds the size of SO. More generally,
after some calculation, it can be established that for
1 = h =p, the size of Sh exceeds the size of Sh—l if and only

it
E 3
a > a (h)
where

*
a (h) = (Kmay+j,) [805,)-8(5,_1)]/(3,d) 1)

+ lay=3,) = [K 4, 7800, ] ...(4.38)

We have proved
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Theorem 4.2 For D=6, Dmod 3 =0, K28, and a = «, let S be
a vertex sequence (2.19) of a graph
G e Qe(n,*,*,D,K}. Then G is edge-maximal if and
only if for some integer A& = 0,

* *
S =8, and a (h) = a = a (A+1),

h
where Sh is defined by (4.33) and (4.34), and

* .
a (&) is defined by (4.35). n

»*
Note that if a (R) is an integer, then both S,-, and S, are
: *
edge-maximal when a = a (A&). The recognition {or construction)
of an edge-maximal graph G thus reduces essentially to the

determination of the sequence J and the corresponding

- *
calculation of the functions a (#&), jh g J.

This section concludes with a proof of the characterization

theorem for D mod 3 = 1. With reference to the vertex sequence

(2.19), observe that in this case it suffices to consider

*

. *
n = X+a = Ka’ since for smaller values of n the result

=0y 5

is covered by Theorem 2.7(a) for vertex-minimal graphs.

Thooram 2 410 For D28, Dmed 3 =1, and K =2 8, suppose that a

graph G ¢ ﬁe(n,*,*,D,K) has a vertex sequence
W »* *
(2.19) in which n > K, Let j and k be the

values of j and k which maximize
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(i+.j){ -1[K-o¢2)/(i+J) - 1]}

over 0 = j = a1-3 and 1 = K = 2, where

i=1i(J,k) = |'K/(cc1-.j)‘|-oc2—j, for k = 1;

= K - [K/(«,=§)], for k = 2.

* * *
let i = 1i(J ,k ). Then G is edge-maximal if and

only if

* *

* *
(x,y,2) = (Ka—i v - e+l o +3 ).

1 2

Further, there exist integers a, = «~1 and

*
a = «~1 such that,

A

(a) for a = a,, (x,y,z) = (K@ 05)5

(b) for a a*, (x,y,2)

v

(az,al,Ku). n
Proof Recall from (2.22) that it is required to determine the

maximum of the function

fix,y,z;a) = K(2x+a) + az
*
= Kx + az + n K.
E
Since n is constant, this reduces to the problem of
maximizing Kx + az, from which it may be concluded that

y is always as small as possible. Thus y = « and in

1:
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fact, by Lemma 2.12(b),

y=mm{ﬁvﬂ,ﬁyﬂ}. ... (4.38)

*
Since n = at+x > Ka, it follows then that, in order to

maximize the edge count, only transformations of the

form

T (Ku,altaz) — (Ka“l,al-J,a2+1+J), ... [(4.37)

need be considered, where by (4.38),
i= [K/(x,=3)]-e,~§ or K -[K/(a =37,

and by Lemma 4.4, 0 =< j = a1-3. Observe that the change

in the edge count produced by (4.37) is

m(j, k) = (a+i](a2+i+j) - ax, - iK,
which may be written in the form
n(d,x) = (1+3) [a-alJ, k)], ... (4.38)
where
a3, k) = 1[(K-a,)/(1+3) - 1]. L..(4.39)
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Since m(0,1) = 0, it follows that

max {a(j,k)} = 0,
3.k

which establishes the main part of the theoren.

To establish condition (a), let J and k be the values of
J and k, respectively, which minimize (4.39). Observe

that for j = 0,

a(0,k) =K - aa -1,

a quantity which is minimized by the choice k = 2

(i = Kd—az) for which =a(0,2) = «-1. Then set
2y = al(j,k) = «-1, and observe that for a = a,,

(x,y,2z) = (Koc’“l’“z)'

To establish condition (b), observe that i+j attains its

maximum value X -g
o 2

hence that for sufficiently large a 2 a = o1, m(0,2)

if and only if j = 0 and k = 2,

is a maximum over all m(j, k), S0 that

(x,y,2z) = (az,al,Ka). This completes the proof. |

In connection with this result, it is tempting to suppose that
the functions m(j,k) or a(j,k) may be monotone in j. However
this turns out not in general to be true, as the following

table, based on the example of Table 2.5, indicates;
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Values of a(j,k) for K =70 (a = 17, a, = 7, o, = 10, Ka'= 54)

1 2
J k (x,y",2") a(j, k)
0 1 (54,7, 10) -
1 1 (53,6, 12) 29
2 1 (52,5, 14) 28
3 1 (49, 4, 18) 32.5
4 1 (44,3,24) 33.8
0 2 (10,7,54) 16
1 2 (12,6,53) 10.7
2 2 (14,5,52) 11.4
3 2 (18,4, 49) 13.8
4 2 (24,3, 44) 17.86

Table 4.3

4.3 Edge-Minimal Graphs over €e(n,¥,*,D,K)

In this section two results are presented which characterize
edgé—minimal graphs of @e for values of n which are large with
respect to the product DK. Examples are then given which
illustrate the difficulties involved in characterizing

edge-minimal graphs for smaller values of n.

Theorem 2.11 For even D = 4 and n = D(K+1)/2 + 1, a graph
G e €e(n,*,*,D,K) is edge-minimal if and only if

G is edge-minimal over Ev(n,*,*,D,l). n

Proof  Observe that for any positive integer t, n = D(t+1) + 1,
K = 1, and even D, the edge-minimal graphs of
?v(n,*,*;D,lJ given in Theorems 3.1 and 3.2 are all
t-edge-connected. The result then follows from the fact

that €e(n,*,*,D,K) < Ev(n,*,*,D,l). n
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On the other hand, for n = (D-1)t + 2, K = 1, and odd D = 5,
there exists, again by'Theorems 3.1 and 3.2, an edge-minimal
vertex sequence for G ¢ @V(n,*,*.D,l) of the form

(1,(2t—1,1)(D_5)/2

,t,t,1,2t-1,1).
G 1is therefore t—edge—connécted. Moreover, every t-edge-
connected edge-minimal graph of @V(n,f,*,D,1) has a vertex

sequence of this form. Hence:

Theorem 2.12 For odd D=5 and n = (D-1)K + 2, =a graph
G e €e(n,*,*,D,K) 1s edge-minimal if and only if
it has a vertex sequence which satisfies all of

the following conditions:

(a) n‘j =1, for j=D-t and j = 2,4,...,D-5;

(b) min{nD_4,nD_5} =z K;
(¢) for every 1 = j = (D-5)/2,
i . = 2K-1;
(1) DZJ
(ii) for every 1 = j* = (D-5)/2,

-1 Payroq | = 1

(1i1) = 1;

-
$d
-~

B
3
[+
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CHAPTER 5

UPPER BOUNDS ON THE DIAMETER OF GRAPHS OF ?v(n,m,a,ﬁ,K)

In this chapter the meth;dology of Chapters 3 and 4 is applied
first to graphs of ?v(n,*,S,D,K) in order to compute
m* = m*(n,S,D,K), the size of an edge-maximal graph of
?V(n,*,S,D,K). This result is then used to determine an upper
bound on the diameter of any graph of ?v(n,m,a,*,K), thus
extending a result of‘ Klee & Quaife (1976), .who effectively
determine an wupper bound on the diameter of graphs of

?v(n,*,a,*,K) (see Theorem 2.17). The references for this

chapter are Caccetta & Smyth (1988b, 1988c).

5.1 Edge-Maximal Graphs over ?v(n,*,S,D,KJ
Table 2.5 displays vertex sequences of the edge—maximal‘graphs‘
of §v= ?v(n,*,S,D,K), D = 5. Throughout this section the term
edge-maximal will always be used with respect to graphs of ?v,
and hence, by Lemma 2.4, will always specify a graph of
%V(n,*,a,D,K). For D = 8, 'recall- from Section 2.1 the
definition of an A-recurring vertex sequence. Further, the term
removable of Section 4.1 is here redefined to apply to a vertex
u of a graph G ¢ ?v(n,*,S,D,K) which has the property that
G-{u} e §§(n—1,*,6.D,K). Then two preliminary results may be

stated and proved:
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Lemma 5.1 There exists an edge-maximal vertex  sequence in

which every subsequence of adjacent disjoint lean

triples is 3-recurring.

Proef Consider a subsequence
B = (uxvyzx,y,2z,v),
vhere (x,y,z) and (x’,y’,z’) are lean triples. Recall
that by Lemma 2.5,
uz=zzzz', vz x’ =x
It is then easy to verify directly, using Lemma 2.8,
that the size of each of : !
2 PR
(u, (x,y,2)°,v) and (u,(x',y’,z’)° V)
is at least the size of B. |
Lemma 5.2 Let § = SD(u) be a vertex sequence of an

Proof

edge-maximal graph G ¢ §;(n,*,6,D,K). If any two
terms o, and nj of 8 contain a removable vertex of
G, then |i-j| = 1.

See Lemma 4. 1. ]
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A series of lemmas is now proved which allow the specification,

for given §V(n,*,6,D,K), of an edge-maximal vertex sequence.

First, however, another definition: a lean triple
(ni,ni+1,ni+2) is said to be isolated if (ni+1,ni+2,ni+3) is fat
and there exists a lean triple (nj,nj+1,nj+2), J> i+ 1.

Lemma 5.3 There exists an edge-maximal vertex sequence in

which no lean triple is isolated.

Proof Suppose that, corresponding to G ¢ ?v and for some
2 =1 = j-4 = D-8, there exists an edge-maximal vertex

)

sequence SD containing two lean triples (ni,ni+l,ni+2

and (n.,n

5 j+1’nj+2)' Consider the vertex sequence

¥ n ),

L
s’ =(..,n , i+3’°"‘nj—1’nj+3"'

o1 (PyoDy oDy o

where the unspecified terms before n.1 between n; .

i+3

and n, ., and after n. are identical with those in S.
J-1 J+3

Observe that the orders of S and S’ are equal and

_1’

further, by Lemma 2.5, that nJ._1 = nj+2, n‘j+3 = nj.
Suppose now that edges are introduced so that the graph
G’ giving rise to S’ sgatisfies Lemma 2.1(b).
Recall from the proof of Lemma 2.3 that this can always
be done so that the minimum degree of G’ is &. Then

G ¢ &, However, using Lemma 2.6 it follows that the

size of G’ exceeds that of G by
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(n ) ) = 0.

3=y ey
It has been shown that the edge count is at least as

great as the maximum if disjoint lean triples are made

ad jacent. =

4 For D =z 6, there exists an edge-maximal vertex
sequence in- which at most one of the triples

(n,,n,.n,), (nD—4'nD-3‘nD—2) is fat,

For D = 6 the result is trivially true. For D > B
observe that if both of the specified triples are fat

and m1n{n2,nD_2} > K, then n, and ny_, must both contain

a removable vertex, in contradiction to Lemma 5.2. It

may be supposed therefore that n, = K and that

(nz,nB,
by Lemma 2.7 choose n, = K, yielding

n4) is fat. Obsgerve that, since ng =z K, one may

(n2.n ,n4) = (K,K,K +a)

for some integer a = 1, where K’ = M - 2K. Then L4
contains a removable vertex, and it follows from Lemma
5.2 that no lewel othef than L. can possibly contain a
removable vertex. Thus for D > 7 it cannot be true that

(nD_4,nD_3,nD_2) is fat and ny , > K. For D = 7 observe

that by Lemma 2.7 the transformation
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(K,K,K’+a,n5) — (K,K,K’,n5+a)

does not decrease the edge count, while Ileaving

(nz.ns,n4) lean.

-2 = K, and
(nD-Q’nD—G’nD—ZJ fat. Using the argumen# of the
previous paragraph, it may be concluded that

{n ) = (K'+b,K,K)

p~4' Pp-3’ Pp-2

for some b = 1, hence that LD-4 contains a removable

vertex. This is possible only if D = 8 or 9.
For D = 8 observe that the transformation
{(K,K,K'+a,K,K) — (K,K,K’',K+a,K)

does not decrease the edge count and leaves (nz,ns,n4)

lean, while similarly for D = 9 the transformation
(K,K, K" +a,K’+b,K,K) — (X,K,K’,K +a+b,K,K)

does not decrease the edge count. Then for D =8, 9 the
triple (nz,na,n4J may without loss of generality be
supposed to be lean. Since all other cases have been

excluded, the result is proved. ]
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Lemma 5.5 For D= 7, there exists an edge-maximal vertex

Proof

sequence SD and an integer k = 3 such that
{a) the k—tuple (nz....,nk+1) is 3-recurring;

(b) every triple (if any) in the (D-k-1)-tuple

(nk,...,nﬁ:é) is fat.

By Lemma 5.4 it may supposed that (n2,n3,n4) is lean.
By Lemmas 5.1 and 5.3 it may further be supposed that
there exists a 3-recurring. j-tuple (nz,...,nj+1), Jj=z3,
such that for j* > j + 1 theré exists no lean triple

(n.,,n., J. Then it suffices to consider the

3 Byrea

Jand T, . = ( ).

triples Tj = (nj,nj+1,nj+2 541 nj+1,nj+2,nj+3

If

A':y

Tj and Tj+1 are both fat, the proof is complete and
k = j. Ir Tj is lean and Tj+1

true for k = j + 1. If Tj and Tj+1

result is true for k = J + 2. Finally, if Tj ig fat and

is fat, the result is

are both lean, the

Tj+1 is lean, observe that for J > 3,

(nj_z.n._l,nj) and T are adjacent but not

J
3-recurring, contrary to Lemma 5.1; on the other hand,

Tj-2 J+1

for j = 3, cbserve that

and it is then not difficult to see, using Lemma 2.8,
that the edge count is increased by the substitution

1'13 —_— ns; n2 e n5.
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Hence this last case cannot arise in an edge-maximal

vertex sequence. |

Lemma 5.6 For D= B, there exists an edge-maximal vertex

Proof

sequence in which no term other than Ny gives rise

to a removable vertex.

Observe first that for D = 8 we may by virtue of Lemma
5.2 suppose that at most L3 and L4 contain removable

vertices.

For D =z 7, Lemma 5.5 implies that there exists k =z 3

such that every

v
r
i

T, = (n.,r ), J

37 N e Nge2
Is fat, and every Tj’ J < k, is lean. If k = D-3,
there is no removable vertex and the theorem is true.
7/

Suppose then that k < D-3. It follows that at least one
of the following statements is true:

(a) Lk+2 contains a removable vertex;

{b) Do = 1.

Statement (b) is false because n o > n_g Then
statement (a) is true. Since no lean triple can give
rise to a removable vertex, it follows moreover that the

lemma is true for k+2 = D-2, Hence suppose that

k = D-B,
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Recall from Lemma 5.4 that for the fat triple

(b)

= (np_,.0p .05 5) two possibilities arise:

ipp > 1

This is the case which arises alsoc when D = B6.
Here LD_2 contains a removable vertex, so that by
Lemma 5.2, k = D=4 or D-5. In the former case the
proof is complete; the latter case i1s impossible,
since removable vertices can be transferred from
LD_5 to LD_4 until TD_3 is a lean triple; this

transfer must increase the edge count.

g = 1

In this case, as in the proof of:Lemma 5.4, Lemma

2.7 allows the supposition that
T,y = (K'+3,K,K), a = 1, where as before
K = M-2K, so that LD—4 contains a removable

vertex. Then by Lemma 5.2, k = D-8B or D-7, both of
which are impossible by virtue of transformations

similar to those used in Lemma 5.4, ) x

From these. lemmag follows the first main result of this section:

Theorem 2.13

)

For D = B, there exists an edge-mavimal oranh of
?v(n,*,S,D,K) with a vertex sequence in which

!
every internal triple except possibly

(nD_4,nD_3,nD_2) is lean. u
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This is essentially the same result found in Section 4.1
(Theorem 2.5) to hold for K-edge-connected graphs, and hence
gives rise to similar expressions (see equations (2.24)-(2.28)
of Section 2.4). In order to analyze these expressions, the

three values of D mod 3 need to be considered.

Observe first that for D mod 3 = 2, the maximization problem

. *
disappears, since x + y + a = n , a constant (see also Theorem

2.8). In ‘this case, then,

f =38n. ...(8.1)

Observe also that for 8 + 1 = 3K, the only possibility is that

*
M =3K, x=y=2z=XK, so that, for Dmod 3 =0 (n = a),

(8+2K)n" + (26-K)K; .. (5.2)

o}
i

¥
while for Dmod 3 =1 (n =K + a),
* * : * '
f =28n - (3-K)(n -K). ...(5.3)
It may be supposed therefore that M = &8+1 > 3K, so that

*
X +y + 2z =841 and n = n - (r+3)(8+1). Two c¢ases need

to be considered:
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Dmod 3 =0
* ’ :
In this case n = a = 0. Setting y = 8+1-x-z, K’ = 8+1-2K, it

is found after some manipulation that
»* *
f = (8+K’+2K)n + (8-n )x + (3-x)z. ...(5.4)

Suppose now that X takes the value required in order to maximize
(5.4). Since 8-x > 0, it follows that z must be as large as
possible; that is, y = K, z = K’+K~x. By substituting in (5.4),

one is led to consider
2 * *
glx) = x" - (n +K'+K)x + (8+K’+2K)n + (K’+K)S,

to be maximized by choice of x in the range [K,K’]. (In order
to determine this value, it is convenient temporarily to treat g

as a continuous function of x.) Since the derivative

#*
g% = 2x - (n +K’'+K)

is negative at x = K, and since g(K) > g(K‘), it must be true
that setting x = K maximizes g. Hence, substituting x = K,
z = K’ in (5.4}, observe that

* *
f = (8+K’+K)n + (K’8+8K-KK'), ...{(5.5)}

an expression which reduces to (5.2) when K’ = K (M = 3K),
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Dmod 3 =1
In this case x = K + a, for some 0 = ¢ =a, andn =K + a = K.

Then
* *
f=1(n+x)8 + (n -x)z. ...(5.8)

Suppose that x takes the value required to maximize (5.8).

»*
Since n -x =2 0, it follows that z must be as large as possible;

that is, y = k, z = 8+1-K-x. Then, substituting in (5.8),

consider
2 * »*
g{x) = x° - (n +1-K)lx + (28+1-K)n ,

to be maximized by choice of x e [K,K']. Thig function is

convex downward and assumes its minimum value at

‘xo = (a+1)/2 > 0.

Three subcases may be distinguished:

(a) 0 =a = 2K-1

In this case x K, and g(x) therefore achieves its

=
0
maximum value either at x = K+a (when a < X’-K) or at
¥ = K’ (otherwise).

(b} 2K =a =< K'-K-2

In this case K < %5 < (K'=K)/2, and since therefore

(K+a) - Xy > xO—K, it follows that g(x) achieves its

maximum value at x = K+a.
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(c) a = 2K and a = K'-K-1

Here Xy = (K'=K}/2, so that g(x) achieves its maximum value

at x = K.

Putting together these results, and making the appropriate

substitutions for x and z in (5.8), one finds that

* * *
f =f(n ,K,K'-3;0) = 28n , ...(8.7)
for a = 2K~1 and a = K'-X,
for 2K = a = K'-K-2;
»* »* »* »*
f = f(K',K,K;n =K’} = 28n -(8-K){(n -K’) ...(5.8)
for a = 2K-1 and a > K'-K;
* »* . »*
f = f(K,K,XK;a) =28n - (8-K')(n -K)}, ...(5.9)

for a =z 2K and a = K'-K-1.
Note that for K’ = K, (5.8) and (5.9) reduce to (5.3).
These results may be formally expressed as follows:

*
Theorem 2.14 For D = 5, the size m of an edge-maximal graph

of ?V(n,*,a,D,“) ig given by (2 281, uhera

{a) for Dmed 3 = O,

* *
f = (8+K+K')n + (K'8+8K-KK');
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(b) for D mod 3 = 1,
* #*
i) £ = 28n ,
for a = 2Kk~1 and a = K'-K, or
for 2K = a = K’'-K-2;
#* * *
(ii) £ =28n - (3-K)(n -K'),
for a = 2Kk-1 and a > K'-X;
* * *
(iii) £ =28n - (8-K')(n -K),
for a =z 2K and a =z K'-K-1;

* *
(¢} forDmod 3 =2, f = &n ;

and K’ = §+1-2K. L]

*
Theorem 2.15 For fixed n, &8, and K, the function m (n,3,D,K)

Proof

specified by (2.25) is monotone decreasing in D.

For D = 5§ inspection of Table 2.6 easily establishes
monctonicity. For D = 6 observe first that r = d-1 for
any three consecutive values D = 3d, 3d+1, 3d+2; then it
is tedious but not difficult to wverify that m*E is
monotone decreasing for constant r. When r increases by

one, the following computation results, corresponding to

Dmod 3 = 2:

* *
m {n,§,0,X) - m (n,8,D+1,K)

*

) o) ) )
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*

few] o) - 12

+ (6+K’+K)(n*—MV) + (K’6+6K-KK')}

M *
= zv + K{n +8-2K)

Thus monotonicity 1is established for D = B. To
establish that m*(n,a,B,K) < m*(n,a,S,K), it can easily
be verified fhat the value of m*(n,a,S,K) given in Table
2.6 equals the value of m*(n,a,s,K) specified by Theorenm
2.14 (r = 0). Then the preceding calculation is wvalid

also for D = 5. This completes the proof. |

5.2 Maximum Diameter of Graphs of ?v(n,m,a,*,K)
It is supposed throughout this section that a graph
G e ?v(n,m,a,*,K) is given, the results of Section 5.2 are used
*
to determine a sharp upper bound D on the diameter of G.
-1

*
Observe first from Table 2.6 that for m = Fn9 1, 1=D =3, and

L

*
D can immediately be determine by comparing m with

[\Vie]

]—1. For

2

Table 2.6 and the monotonicity property may be used again to

-— * E
m < [n 1}, the monotonicity of m implies that D > 3, hence

* *
determine whether D = 4 or B5. For D = 6, it becomes
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G(n,¥,7,K) = 2[_m*(n,6.D,K)—m], ...(5.10)

- * —
where r = ny and ¥ = &+1, so that n = n-2y-r. After some

manipulation, (5.10) becomes
—2 - 2 *
ro- (2n—47—Mv]r + [n(n-4y-1) + 8y~ - 2m + 2f ], ...(5.11)

_ *
a quadratic expression in r. Substitution for £ from Theorem

2.14 yields five functions Fj’ 1=j=85, as in (2.29):
F () = ro - (b +2(n-1)1F + [c n(n-3)-n],
where the coefficients bj and cj are specified by Table 2.7.
Then, as described in Section 2.4, the condition
FJ.(F)=0. 1= j=5,
yields the main result of this section:

Theorem 2.16 For a  graph of ?v(n,m,a,*,K), where

#*
m<m(n,d,5,K), the maximum diameter

*

* * * *
D =D (n,m,8,K) = nin(D,_,D.,,D_),
1’7 5
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where j’ = 2, 3, or 4 according as
a=n- ([D/3]-14_ -2y - K,

satisfies Theorem 2.14(b) (i), (ii), or (iii),
*
respectively; and the Dj’ 1 = j = 5, are

specified by (2.29), (2.30), and Table 2.7. M

Some of the implications of this theorem are discussed in
Section 2.4, where also Theorenm 2.17, due to Klee and Quaife
(1976), is quoted, specifying an upper bound on the diameter of
éraphs of ?V(n,*,S,*,K). Computer experiments confirm the
natural expectation that Thecrem 2.18 yields a much sharper
upper bound in most cases than Theorem 2.17 does, but the
immediate practical utility of Theorem 2.16 in a graph diameter
algorithm is nevertheless not clear. From an algorithmic point
of view, é reascnably good estimate of the diameter D of a given
graph G & §c(n,m,5.*,*) can be obtained in O(m) time (the time
required to read G into main memory) by considering.the vertex
sequence Sd[u) corresponding to a vertex u of maximum degree A;
then D = 2d and "usually" D is not much greater than d. This
observation ‘is the basis of a well-known algorithm due to
Cuthill and McKee (1989), later refined inftn a atandard 0O(m)
"pseudo-diameter" algorithm by Gibbs, Poole, and Stockmeyer
{1978). Related strategies for determining or estimating the
diameter have been proposed by Smyth and Benzi (1974) and Smyth

(1985}, but all such methods, like the classical algorithms of
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Dijkstra {19538) and Floyd (1962), either require O(n?) time in

the worst case or fail to guarantee the exact determination of
D. Thus Theorem 2.16 might be useful in special circumstances

in a graph diameter algorithm, but its main impof*tance would

appear to reside in the 1light it might shed on the general

relationship among the five parameters n, m, &8, D, and K.
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GLOSSARY OF TERMS & SYMBOLS

The purpose of this glossary is to provide a single reference
point for terminclogy and notation as a service to the reader
who may have forgotten =a previous definition.- A word of
warning: the definitions given here are designed to remind, and
are therefore not always expressed with full mathematical

rigour.

a : The number of excess vertices in a vertex sequence of a

graph of ﬁc.

o : IQVﬁq.

u @ The least integer such that al(a—al) = K.
o, a—al
b : The sum of the excess terms 61 and 6D—1 of a vertex

sequence of a graph of @V.

c A subscript denoting connectivity (¢ = v) or edge-

connectivity (c = e).
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T The class &(n,m3,D,K) . of diameter-critical graphs
corresponding to parameters n, m, &8, D, and K, where the
graphs are K-connected (respectively, K-edge-connected)

according as ¢ = v or e.
clump : One of the [k/2] elements of a partition of a k-tuple.

compact : An internal tuple T of a vertex sequence is compact if

" every triple of T is minimal internal.

complete : {1) A double (x,y) is complete if its size is [x;y].
(2) A k-tuple T is complete if every double of T is

complete,

connectivity : The least number of vertices which can be removed

from a graph and leave it disconnected.
critical : See lower (upper) P-critical (P-edge-critical).
-] : The minimum degree over all vertices of a graph.

8, The excess over K in the j-th term of a vertex sequence

[

of a graph of ﬁv, 1=j=D-1.

A : The maximum degree over all vertices of a graph.
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"D : The diameter of a graph.

D-critical : Diameter-critical of diameter D.

diameter : The maximum distance between any two vertices‘of a

graph.

diameter-critical : A graph ls diameter-critical if the addition
of any edge changes (decreases) the

diameter.

distance : The number of edges on a shortest path Jjoining two

given vertices.

double : Two adjacent terms of a vertex sequence.

edge-connectivity : The least number of edges which can be
removed from a graph and leave it

disconnected.

edge-minimal : A graph G is edge-minimal over a given class ¥ of
graphs if no other graph of ¥ has size less than
the size of G. Applied also to vertex sequences

of G.
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edge-maximal : A graph G is edge-maximal over a given class % of
graphs if no other graph of ¥ has size greater
than the size of G. Applied also to vertex

sequences of G,

exceptional : A vertex in level Lj(u) is exceptional it its

degree is less than n,_

+n, +n, - 1.
J=1  J

J+i

excess ! n—N,.
fat : Not lean.

feasible : (1) . A vertex sequence is feasible if it satisfies
Lemma 2.12.

(2) A transformation is feasible if it transforms a

feasible vertex sequence into another feasible

vertex sequence.

G : A graph.

g The class §é(n,m,6,D,K) of graphs corresponding to
parameters n, m, &, D, and K, where the graphs are
K-cuunected {(respectively, K-edge-connected) according

as Cc = vV or e.

graph : Finite, non-empty, connected, simple, undirected.
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f-recurring : (1) A k-tuple T is A-recurring if every A-th term
of T is the same.
4 ' (2) A vertex sequence Sd(u) is A~recurring if it

f contains an internal A-recurring (d-3)-tuple.

i : The size of a complete {D-1)-tuple (51,82,...,6D_1) of

the excess vertices of a graph of €v.

internal : A k-tuple (nj,n ) of Sd(u) is internal

j+1""’nj+k—1
if 1 < 3 < d-k.

j+1’nj+2) of a vertex sequence of

isoclated : A lean triple (nj,n

a graph of €v is isolated if (n ) is fat

J+1° P20 By43

and there exists a lean triple _(nj,,nj,+1,nj,+2),
Jr > g+l
K The (edge-) connectivity of a graph.
K : K+l-c. \

K-connected : A'graph i1s K-connected if its connectivity K’ = K.

K-edge-connected : A graph is K-edge-connected if its edge-~
;

connectivity K* = K.
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k4tup1e : (1) A subsequence (nj,n.

J+1""'nj+k—1) of S,(ul.

(2) A sequence (61,62,. .,ak) of non-negative
integers.
.th
Lj(u) : The J level of Sd(u).
lean : A k-tuple of Sd(u) is lean if its order is the least

possible value consistent with the parameters 8 and X.
In particular,

(1) for a graph of €V, a lean k-tuple has order kK;
(2) for a graph of ﬁe, a2 lean deouble has order «;

(3) for a graph of @E, a lean triple has order Mc.
length': The index of the last non-zero term in a vertex
sequence (the last non-empty set in a rooted level

structure).

level : The‘set of all vertices located at the same distance

from a specified vertex u.

level structure : See rooted level structure.

lower P-critical : A graph is lower P-critical if the removal of

any vertex changes the value of property P.
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lower P-edge—critical : A graph is lower P-edge-critical if the

removal of any edge changes the value of

property P.
m : The size of a graph.
M The minimum order of a triple in a vertex sequence of a

graph G ¢ ?C(n,*,a,*,K):

M = max{s+1,3K}, M_= 8+1.
v e
maximal : A triple T of a vertex sequence S is maximal if no

triple of S has order greater than that of T.

maximal compact : An internal tuple T = (nj,...,nj,) of a vertex
sequence is maximal compact if T is compact

and if neither of the triples (nj_l,nj,n 7,

J+1

(n +1) is minimal internal.

‘j:_lynj.rsn‘jl

maximal internal : An internal iriple T of a vertex sequence S
is maximal internal if no internal triple of

S has order greater than that of T.

minimal : A triple T of a vertex sequence S is minimal if no

triple of S has order less than that of T.
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minimal internal : An internal triple T of a vertex sequence S
is minimal internal if no internal triple of

S has order less than that of T.

mod : For integers x =0, y2 1, X mod y = x—ytx/y] is the

remainder after division of x by y.
n : The order of a graph.

n, °: The least order of a graph of €c(*.*,6,D,K); hence, for
c =v, n, = (D-3)K + 2(3+1).

.n, : The jth term in a vertex sequence.

non-trivial : A double (x,y) is non-trivial if x > Q and y > O.

order : (1) Thé order of a graph is the number of vertices in
it.

(2} The order of a k-tuple is the sum of its terms.

partition : A partition of a partitionable k-tuple is the set of

{k/2] doubles (62j—1’62j)’ 1 = j = |k/2], together

with the single term Bk when k is odd.
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partitionable : A k-tuple is partitionable if for eQery J

satisfying 1 = j = [k/2]-1, 62J and 623+1 are
not both non-zero.
peripheral : A vertex is peripheral if it is distance D from

some other vertex.

regular : (1) For K =7, a vertex sequence of a graph of
Eé(n,*,*,D,K) is regular if every double of one
of the internal (D-4)-tuples (n2,n3,...,nD_3},
(na,n ,...,nD_z) is lean and smooth, and if each

terminal double is of order K+1.
(2) For K= 8, a vertex sequence of a graph of
Eé(n.*f*,D,K) is reguiar if it contains exactly

one maximal compact k~tuple.

removable : A vertex u of a graph G ¢ ?c(n;*,S,D,K) is removable -

if G-{u} ¢ ?c(n—l,*,a,D,K).

return(X) : A pseudocode feature which assigns the value of X to
the function F currently being executed and then

exits from F; recommended for inclusion in future

computer languages.
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rooted level structure : Corresponding to a given vertex u of a

graph G, a rooted level structure is an

arrangement of the vertices of G into
subsets Lj(u), J =0,1,..., consisting
of the vertices distance exactly Jj from

u.
rough : Not smooth.
) : A vertex sequence.

Sd(ul : A vertex sequence of length d corresponding to a given

vertex u.

SD(u] : A vertex sequence of length D corresponding to a

peripheral vertex u.

: ¥ : A set of vertex sequences.
' o(a,k) : The least size of a complete k-tuple of order a.
size : (1) The size of a graph is the number of edges in it.

(2} A vertex sequence is smooth if every internal

double is smooth.

T : A transformation.
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term : A l-tuple of a vertex sequnce.

terminal : A kftuPlf (ni,n "ni+k—1) of Sd(u) is terminal

i+1"

if 1 = 0 or d-k+1.

transformation : An operation which carries a k-tuple into

another k-tuple of the same order.
triple : Three adjacent terms of a vertex sequence.
tuple : See k-tuple
u : A vertex,
. upper P-edge-critical : A graph is upper P-edge-critical if the
addition of any edge changes the value
of property 7.
v : A vertex.
vertex-minimal : A graph G ¢ @e is vertex-minimal if it has a
vertex sequence SD(u) satisfying one of the
following conditions:

{(for K = 7) Every internal double is lean.

(for K = 8) Every internal triple is lean.

Applied alsc to vertex sequences.
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vertex sequence : Corresponding to a given vertex u of a graph
G, a vertex sequence Sd(u) = (no,nl,...,n ),

where for every 0 = j = D, = ]Lj(u)l is the

g

number of vertices distance j from u.

(x,y,2) : The recurring lean triple in a vertex sequence.
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