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Given a nonempty string u and an integer e ≥ 2, we call ue a rep-
etition ; if u itself is not a repetition, then ue is a proper repetition.
Given a string x, a repetition in x is a substring

x[i..i+e|u|−1] = ue,

where ue is a proper repetition and neither x
[
i+e|u|..i+(e+1)|u|−1)

]
nor x[i−|u|..i−1] equals u. We say the repetition has period |u| and
exponent e; it can be specified by the integer triple (i, |u|, e). It is well
known [2] that the maximum number of repetitions in a string x = x[1..n]
is Θ(n log n), and that the number of repetitions in x can be computed
in Θ(n log n) time [2, 1, 10].

A string u is a run iff it is periodic of (minimum) period p ≤ |u|/2.
Thus x = abaabaabaabaab = (aba)4ab is a run of period |aba| = 3. A
substring u = x[i..j] of x is a run or maximal periodicity in x iff
it is a run of period p and neither x[i−1..j] nor x[i..j +1] is a run of
period p. The run u has exponent e = b|u|/pc and possibly empty tail
t = x[i+ep..j] (proper prefix of x[i..i+p−1]). Thus
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x = b a a a b a a b a a b a b a

contains a run x[3..12] of period p = 3 and exponent e = 3 with tail t = a
of length t = |t| = 1. It can be specified by a 4-tuple (i, p, e, t) = (3, 3, 3, 1).
and it includes the repetitions (aab)3, (aba)3 and (baa)2 of period p = 3.
In general it is easy to see that for e = 2 a run encodes t+1 repetitions;



for e > 2, p repetitions. Clearly, computing all the runs in x specifies all
the repetitions in x. The idea of a run was introduced in [9].

Let rx denote the number of runs that actually occur in a given string
x, and let ρ(n) denote the maximum number of runs that can possibly
occur in any string x of given length n. A string x = x[1..n] such that
rx = ρ(n) is said to be run-maximal.

In [7, 8] it was shown that there exist universal positive constants k1

and k2 such that
ρ(n)/n < k1−k2 log2 n/

√
n,

but the proof was nonconstructive and provided no way of estimating
the magnitude of k1 and k2. In [7], using a brute force algorithm, a table
of ρ(n) was computed for n = 5, 6, . . . , 31, giving also for each n an
example of a run-maximal string; for every n in this range, ρ(n)/n < 1
and ρ(n) ≤ ρ(n−1)+2. In [5] an infinite sequence X = {x1,x2, . . . .} of
strings was described, with |xi+1| > |xi| for every i ≥ 1, such that

lim
i→∞

rxi/|xi| =
3
2φ

,

where φ = 1+
√

5
2 is the golden mean. Moreover, it was conjectured that in

fact
lim

n→∞
ρ(n)/n =

3
2φ

. (1)

Recently a different and simpler construction was found [6] to yield an-
other infinite sequence X of strings for which the ratio rxi/|xi| ap-
proached the same limit; in addition, it was shown that for every ε > 0
and for every sufficiently large n = n(ε), 3

2φ −ε provides an asymptotic
lower bound on ρ(n)/n.

In 2006 considerable progress was made on the estimation of an upper
bound on ρ(n)/n:

∗ ρ(n)/n ≤ 5.0 [12];
∗ ρ(n)/n ≤ 3.48 [11];
∗ ρ(n)/n ≤ 3.44 [13];
∗ ρ(n)/n ≤ 1.6 [3].

Thus the problem may be stated as follows:

Is conjecture (1) true?
If not, then characterize the function ρ(n)/n.

Help may be found in recent work studying the limitations imposed on
the existence and length of runs in neighbourhoods of positions where
two runs are known to exist [4, 14].
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