REPETITIONS IN STURMIAN STRINGS

Frantisek Franék

Department of Computing & Software
McMaster University
e-mail: franya@cas.mcmaster.ca

Ayse Karaman

Department of Computing & Software
McMaster University
e-mail: karamaa@mcmaster.ca

W. F. Smyth

Department of Computing & Software
McMaster University
e-mail: smyth@mcmaster.ca

School of Computing
Curtin University of Technology
e-mail: smyth@cs.curtin.edu.au

ABSTRACT

In this paper we apply a simple representation of Sturmian strings, which we call a
“reduction sequence”, to three algorithms. The first algorithm accepts as input a
given finite string = and determines in time O(|z|) whether or not z is Sturmian.
The second algorithm is a modification of the first that, in the case that xz is
Sturmian, outputs a reduction sequence for a superstring w of z that is a prefix of
an infinite Sturmian string. The third algorithm uses the reduction sequence of u
to compute all the repetitions in » in time 6(|u|), thus extending a recent result
for Fibonacci strings. The third algorithm is also based on a characterization of the
repetitions in a Sturmian string that describes them compactly in terms of “runs”.
Finally, for every integer r > 4, we show how to construct an infinite Sturmian
string that contains maximal repetitions of exponents 2,3,... ,r — 1, but none of
exponent r.
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1 INTRODUCTION

An infinite Sturmian string is a string on {a, b} that extends to infinity in one direc-
tion (to the right, say) and that for every positive integer k contains exactly k + 1
distinct substrings of length k (out of a total of 2% possibilities). A string that for
some integer k contains exactly k distinct substrings is necessarily a repetition of
a primitive prefix z[1..k]P. Thus infinite Sturmian strings can be thought of as the
strings of minimum variation that are also interesting. In fact, they are very inter-
esting: they derive from the Sturm sequences of numerical analysis via Christoffel
1



[3] and Morse/Hedlund [12], they have been much studied [14,13,11,10,9,8,1], and
there are numerous quite different ways of characterizing them.

We will find it useful to recall one of these characterizations: an infinite string z
on {a, b} is Sturmian if and only if z satisfies the following conditions:

x x is aperiodic — that is, no suffix of x is a repetition;
x x is balanced — that is, if ¢,(u) denotes the number of a’s in any substring u of
x, then for any substring v of z such that |v| = |u],

|pa(v) — da(u)| < 1.

In this paper we discuss algorithms on Sturmian strings, and we focus therefore on
finite Sturmian strings — that is, on finite substrings of infinite Sturmian strings.
Specifically, given a finite string z, we show how to compute in time O (|z|) whether
or not x is Sturmian; and given a finite prefix u of an infinite Sturmian string, we
show how to compute all the repetitions in « in time © (Ju|). The efficiency of these
algorithms depends on a simple representation of infinite Sturmian strings closely
related to results given in [5].

Section 2 describes this representation, which we call a “reduction sequence”, and
explains its essential properties. Section 3 presents a simple algorithm that uses the
idea of a reduction to determine whether or not x is Sturmian. Section 4 describes
a modification of this algorithm that in addition outputs the reduction sequence of
a superstring u of z, where u is a finite prefix of an infinite Sturmian string. In
Section 5 we show how the reduction sequence of u can be used to compute all the
repetitions in u in linear time. Finally, Section 6 raises some open problems.

2 A REPRESENTATION OF STURMIAN STRINGS

Some of the material in this section has already been developed in a different form
in [5], and in a quite different context. Since an understanding of the material and
its context is necessary to an understanding of our algorithms, we provide in this
section a brief overview of the main ideas.

We begin with three simple observations about Sturmian strings:

(1) An infinite Sturmian string s contains exactly one of the substrings aa and bb.
Therefore every infinite Sturmian string consists either of repeated occurrences
of a separated by single occurrences of b, or of repeated b’s separated by single
a’s. We speak then of the repeating letter and the single letter. Without loss
of generality, we shall suppose throughout this paper that the single letter is
b, and we shall use the term block to denote any occurrence of a?b in s, ¢ > 0,
that cannot be extended to the left in s. For example, a Sturmian string

s = baabaaabaabaabaaab - - - -

contains blocks b, aab and aaab.

(2) To the right of the leftmost occurrence of the single letter b, every infinite
Sturmian string s is a concatenation of short blocks (a?b) and long blocks (a?*1b)
for some specific integer p > 1 — it is easy to see that no other block, except



possibly for the leftmost one, can exist without causing s to be unbalanced in
the sense defined above.

Furthermore, after the first block (that is, to the right of the leftmost b), s
consists either of repeated occurrences of short blocks separated by single oc-
currences of long ones, or else repeated occurrences of long blocks separated by
single occurrences of short ones. For if only single occurrences of each block
occur, s has a repetitive suffix (a?baP™'b)> and so is aperiodic; while if both
aPb and aPt'b repeat, there necessarily exist two substrings u = baPba?b and
v = aPbaPT! of length |u| = |v] = 2p + 3 such that ¢,(v) — ¢o(u) = 2, an
imbalance.

We speak then of the repeating block and the single block. We call p the signature
of s; note that p + 1 = |aPb| is the length of a short block.

(3) As suggested in (2), the leftmost block of a (finite or infinite) Sturmian string
is to some degree arbitrary: if a Sturmian string s contains only short blocks
and long blocks, then s’ = a%bs is Sturmian for any integer q € 0..p, since the
prefix a?b cannot disrupt the balance; if moreover the leftmost block of s is
short or if long blocks in s are repeating blocks, then s’ = a?*1bs must also be
Sturmian. To put it another way, if the leftmost block of a Sturmian string is
removed, the remaining suffix is still Sturmian.

These observations suggest the idea of a reduction of a string; that is, a mapping
that takes each repeating block into the repeating letter a and each single block
into the single letter b, of course based on a prior determination of which block is
single and which repeating. A reduction may then be thought of as the inverse of
a morphism, « say, on {a,b} such that

a:a—alb; b—a®b

where (q,q') is fixed at either (p,p + 1) (repeating block is short) or (p + 1,p)
(repeating block is long). We therefore, by a slight abuse of notation, use the
symbol a~! to denote a reduction. A reduction is defined for any string on {a, b}
that contains only blocks whose lengths differ by at most one; in particular, by
observation (3) above, a reduction is defined for at least that part of every infinite
Sturmian string s that occurs to the right of the first occurrence of b. A string x
on {a, b} is said to be reducible to y if and only if z = ua(y) for some choice of the
morphism «, where u is either empty or a block. Thus every Sturmian string s is
reducible. If in fact a~! is defined for every block in s including the first one, so
that a(a~"(s)) = s, we say that the reduction is ezact.

As an example of a reduction, consider an initial segment of an infinite Sturmian
string

s = abababaababababaabababaababababaababababaababababaabababaab- - - - .
Then with signature p = 1, the first reduction
a~!(s) = aaabaaabaabaaabaaabaaabaab - - - -

where the short block has been replaced by a, so that with p = 2, the second
reduction
a~?(s) = aabaaab - - - -



where the short block has been replaced by b. Both of these reductions are exact.
Now however observe that, because only the first 59 letters of s have been specified,
we cannot with certainty describe any further reduction, since a~2(s) might for
example be

aabaaabaaaab - --- or aabaaabaab - --- ,

both Sturmian strings but with differing signatures (3 and 2, respectively). Observe
further that, in the first of these strings, the initial block aab is neither short nor
long; it is a partial block that would have to be excluded from the next reduction.
Thus, in this case, any further reduction of aabaaabaaaadb could not be exact in the
sense defined above.

The following theorem shows that every infinite Sturmian string gives rise to an
infinite sequence of reductions.

Theorem 2.1 An infinite string z is Sturmian if and only if it is reducible to a
Sturmian string.

Proof See [5] and [7]. O

Note that, in order to fully determine a reduction of s, it suffices to specify a pair
(p, \), where p is the signature of s and X the letter of a~!(s) that every short block
of s maps into. Adopting the notation s, = a~"(s) with sy = s by convention, we
may then define a reduction sequence of a given infinite Sturmian string s to be an
infinite sequence of pairs

<(pn;/\n) | n > ]->7

where p,, is the signature of s,_; and A, is the image in s,, of short blocks in s,,_1.
Then a reduction sequence of the Sturmian string

s = abababaababababaabababaababababaababababaababababaabababaab - - - -

given in the example above is

((1,a),(2,b),....),
corresponding to reductions

o~ (s) = aaabaaabaabaaabaaabaaabaab - - - -
a~?(s) = aabaaab - - - -

Clearly every infinite Sturmian string s gives rise to exactly one reduction sequence,
so that we may speak of the reduction sequence of s. In order to describe the
relationship between Sturmian strings and reduction sequences more precisely, we
need the following definition: if every reduction in the reduction sequence of s is
exact, then s is said to be block-complete. Thus, informally, block-complete infinite
Sturmian strings are those for which no reduction gives rise to an irreducible prefix.
As our first formal result shows, each reduction sequence corresponds to one and
only one block-complete Sturmian string, and so uniquely identifies it.

Lemma 2.2 No two distinct block-complete infinite Sturmian strings have the
same reduction sequence.



Proof Suppose on the contrary that there exist two block-complete Sturmian
strings s and ¢t with the same reduction sequence. Let i denote the first
position such that s[i] # t[i], and observe that since s and t are block-
complete, they must therefore have the same first letter, so that ¢ > 1.
Without loss of generality, suppose that s[i] = a, t[i] = b, so that s has
a long block where t has a short block. Now consider the effect of apply-
ing the same reduction to both s and ¢, assuming, again without loss of
generality, that a short block maps into b, a long block into a. Since both
s and t are block-complete, for some integer j > ¢ there will be prefixes
a ! (s[1..5]) = ua and o' (¢[1..7]) = ub of a~*(s) and a~*(t) respectively,
with 43 = |ua| < i. In other words, the effect of the reduction has been
to duplicate at position i; in two distinct block-complete Sturmian strings
a~!(s) and a~!(t) the condition that initially existed at position i of s and
t. Since i1 < i, these reductions can be carried out at most a finite number
of times, a contradiction since a reduction sequence is infinitely long. O

We turn now to a consideration of the morphism « rather than its inverse a~!; in

particular, we consider the series of expansions resulting from a partial reduction
sequence

{(p1, A1), (p2,A2), -, (Pr, Ak)),

for any integer k > 1. Since the sequence of k reductions a~! is well-defined by
this sequence, it follows that the k expansions, executed in reverse order, are also
well defined. Denoting by «; the morphism defined by (p;, \;), i = 1,2,... , k, we
consider the compound morphism

a®) (a) :al(a2(...ak(a)...)).

Since
a*+1) (a) = (a2 ( e (ak+1(a)) .. ))

and every a;(a) has the prefix a, we see that a*)(a) is necessarily a prefix of
ok (a) for every k. Thus

lim a® (a)
k—o00

exists and defines the unique block-complete infinite Sturmian string corresponding
to the reduction sequence

<(pn:/\n)> | n > 1>-

Thus, in view of Lemma 2.2, we have established a 1-1 correspondence between
reduction sequences and block-complete Sturmian strings.

Referring to the above example, consider the truncated sequence
((1,a),(2,0))

for k = 2: (2,b) defines the mapping
as(a) = aaab,

since @ maps into a long block, and then compounding with (1,a) yields

o (az(a)) = abababaab,
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since @ now maps into a short block. Observe that a; (a2(a)) is as expected a prefix
of the example string s.

3 DECIDING WHETHER z IS STURMIAN

In this section we outline a simple algorithm that, given an arbitrary string = on
{a, b} of length n, determines in time O(n) whether or not z is Sturmian. Thus
we provide a means of identifying a finite Sturmian string without any explicit
reference to the infinite Sturmian string of which it is a substring. The algorithm
makes use of the fact, established in Theorem 2.1 for infinite strings, that a string
can be Sturmian only if it reduces to a Sturmian string.

In observation (3) of Section 1, it was remarked that if z is a Sturmian string,
finite or infinite, it must break down into blocks, of which the first may be partial.
Observe further that a finite Sturmian string  may also have a partial last block
a’ for some j € 1.p+ 1. For example, 2 = abaaabaaaabaa is a substring of a
Sturmian string, hence by definition Sturmian, but the first block ab and the last
block aa are both partial. Given an arbitrary nonempty string = on {a,b}, we call
the prefix ending with the first occurrence of b, if any, the head of x, written h(z);
if b does not occur in z, then h(z) = ¢, the empty string. Similarly, we call the
suffix beginning after the final occurrence of b, if any, the tail of z, written t(x); if
b does not occur in z, then ¢(z) = x. The core of z, written ¢(z), is the string that
remains after the head and tail are removed. In the above example, h(xz) = ab,
t(x) = aa, and ¢(x) = aaabaaaadb. Note that each of the head, tail and core can be
the empty string; for example, if = a/ for some integer j > 0, h(z) = ¢, t(z) = =
and ¢(z) = ¢; while if * = a/b, h(z) = x and t(x) = c(z) = ¢.

First we describe an algorithm that determines whether or not a given nonempty
string « on {a,b} is Sturmian, then go on in Section 4 to show that this algorithm
can be modified to enable the reduction sequence of a superstring u of z to be
computed in the case that z is in fact Sturmian. The algorithm depends on a
simple observation: since h(z) and ¢(x) may be partial blocks, they are of interest
only if they contain more than p occurrences of a (p + 1 occurrences imply a long
block, more than p+1 imply that  is not Sturmian); otherwise, h(z) and t(z) may
be discarded, since they cannot influence the decision on whether or not a later
reduction of z is Sturmian. For example, the strings aaabab--- and ababaaa - --
cannot be Sturmian because p = 1 for both of them and three consecutive a’s occur
in head and tail, respectively. On the other hand, aababaabaa can be a Sturmian
string only if it is assumed that h(z) = aab is a complete long block and that
t(z) = aa is followed by b, thus a prefix of a long block.

Algorithm STURM(x) consists of the following four steps:

(1) Compute the signature p of z if possible:
In this step true is returned if the core of x is empty,
false if there is no valid signature. Otherwise, if there
is mo exit, then after this step p is determined and a
reduction can be performed on x.

(2) Compute A, the letter that every short block maps into:



The repeating block, if there is one, should map into a.
Hence if the repeating block is short, A < a; otherwise,
A+ b

(3) Adjust the head and tail of x as required:
If the head is not a long block, it is deleted; if the tail
has at most p occurrences of a, it is deleted; if the tail
is aPT!, b is appended to turn it into a long block.

(4) Recursively apply the algorithm to the (p, A) reduction
of x:
Here we make use of the fact that x can be Sturmian
only if its reduction is Sturmian.

Step (1) may be expanded for clarity:

(1.1) Compute pyin, the smallest number of adjacent occur-
rences of a within the core:
For this calculation, any shorter run of a’s in h(zx) or
t(x) is ignored. Note that py,i, = 0 if bb occurs in x or
if there are fewer than two occurrences of b in x.

(1.2) Compute pyaz, the longest run of adjacent a’s in x:
This calculation includes runs of a’s in h(z) and t(z).
(1.3) If ¢(x) =€, then return true:
This is the case in which x = a’ or a/*ba’?, both Stur-
mian strings. Therefore the original given string must
by Theorem 2.1 have been Sturmian.

(1.4) If prin = 0 O Praz — Pmin > 1, then return false:
x is not Sturmian if it contains bb or if there exists a
block longer by more than one letter than a short block.
(1.5) p < Pmin.
Theorem 3.1 Algorithm STURM(x) correctly determines in time O(|a:|) whether
or not a given nonempty finite string = on {a, b} is Sturmian.
Proof It is clear from the expanded version of Step (1) that the signature of x
is computed correctly. Similarly in Step (2), A is correct when a repeating
block exists and otherwise is arbitrarily set to b. Step (3) correctly adjusts
the head and tail of z, and Step (4) is the recursive application of STURM
to the reduction of z. To see that the algorithm performs this reduction
correctly, observe that = may take only the following forms:
(a) z = a’ for some j > 0;
(b) z = a’tba’? for some j; > 0, j» > 0;
(¢c) 2 = a?bva’ for some j € 0..p + 1 and some nonempty string v of
signature p > 1;
(d) = = a’tbva’® for some j; € 0..p, j» € 0..p+1, and some nonempty string
v of signature p > 1;
(e) z has an undefined signature.
Cases (a) and (b) are handled by Step (1.3), case (e) by Step (1.4). Cases
(c) and (d) are processed by Step (3), and it is straightforward to verify
that, in each of these cases, the reduction o' yields

0< |a ! (z)| < |z|/2,



so that STURM(x) must terminate with one of the forms (a), (b) or (e). We
conclude that STURM(x) is correct.

Now consider Steps (1)-(3). Step (1) requires two counts to be maintained:
one for the minimum run of a’s (within the core), the other for the max-
imum run of a’s (in the entire string). Step (2) requires that in the core
the repeating block, if it exists, be identified as short or long; while Step
(3) requires only that counts be kept of the a’s in the head and tail, a task
already included in Step (1). Thus Steps (1)-(3) altogether can be imple-
mented to require at most a single scan of the current reduction of x. Since
as we have seen a reduction of = decreases the length of = by at least a
factor of 2, it follows that the total length of string scanned by all recursive
calls of STURM(x) is less than 2|z|. Therefore STURM(x) executes in time
O(lz)). O

Suppose now that z is in fact a finite Sturmian string. In this case, STURM(x)
will at each recursive step compute a signature p and corresponding A; thus it
reduces x by a sequence of well-defined reductions (p, A), eventually yielding one
of the trivial forms described in Step (1.3) that correspond to reductions (j,a) and
(max(ji, j2), a), respectively. Taking into account the possibility that the head and
tail may be discarded at each stage, we see that for some integer k£ > 1, STURM(x)
determines a reduction sequence

((p1, 1), (P2, A2), -+, (Prs Ak))

corresponding to a prefix u of a block-complete Sturmian string. It is tempting to
suppose (as we did at first) that u must be a substring of . But as the following
example shows, this is not necessarily the case.

Consider the string
x = aaab aab aaab aab aaadb aab aaa.

STURM(x) would in this case return true, determining in the process a reduction

sequence
<(27 a)) (]‘7 a)) (37 a))

that in fact reduces z to the letter a. However, if this reduction sequence is applied
to a, the result is

u = aab aaab aab aaab aab aaab aab aab aaab,

a block-complete prefix of an infinite Sturmian string but neither a substring nor a
superstring of ! This phenomenon results from adjustments to the head and tail
of x as specified in Step (3) of the algorithm, and Step (3) can in fact be modified
to ensure that the reduction sequence at least specifies a substring of z. But even
with such a change, STURM(x) provides no basis for determining what we really
want: the reduction sequence of a block-complete superstring of z. To achieve this
objective, somewhat more sophisticated modifications are required, as explained in
the next section.

4 COMPUTING THE REDUCTION SEQUENCE



The problem with the algorithm STURM(x) described in Section 3 is not that it
yields an incorrect reduction sequence. In fact, the reduction sequence, so far as it
goes, corresponds exactly to some superstring of the given string z: each reduction
(p, A) is correct for the current core and consistent with the current head and tail.
Thus the mismatch between z and the reconstituted string u derives from the fact
that at the lowest level of recursion, no account is taken of the number of times
that the head and tail have previously been deleted by Step (3) of the algorithm.
If there are sufficient deletions, it may happen, as in the example of Section 3, that
u will not be long enough and so may only overlap with z rather than being a
superstring of it.

Indeed, in the example
x = aaab aab aaab aab aaab aab aaa

of Section 3, the slightly altered reduction sequence

<(27 a)’ (]‘7 a)’ (47 a))
yields a superstring

u = aab aaab aab aaab aab aaab aab aaab aab aab aaab

of x. This new reduction sequence merely adds one a to the first expansion, taking
account of one deleted head and thus ensuring that u is a superstring,.

In order to record the number of times that the head h(z) and the tail ¢(z) are
deleted, we introduce two counters Ay and Ay, respectively. These counters will
be updated in Step (3) and then used in Step (1.3) (when the core c¢(z) = €) to
adjust the final reductions. Thus we can derive a new algorithm REDUCE(x) from
STURM(x) by making the following changes:

Step (0) Initialize Ap, < 0, A < 0.

Step (1.3) If ¢(z) = €, then return true and output the final re-
ductions with sufficiently large signature:
if h(z) =ethen {z=4d’}

J i+ AL+ A
output reduction (j,a)
else {z = a/ ba’?}
J1 < Ji+ A
J2 4 J2 + Ay
if 51 > j» then
output reductions (ji,b), (1,a)
else
output reductions (jz2, a), (1, a).

Step (2) After A has been computed, output the current reduc-
tion (p, A).
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Step (3) Adjust the head h(z) and tail ¢(z) of z, incrementing
the counters Aj, and A; as deletions occur of head and
tail, respectively:
if h(z) = a’b for some 0 < j < p then

if the adjacent block is a single block then
h(z) < repeating block
else
delete h(x)
Ap+ Ap+1
if t(x) = aP*! then
t(x) « aPt1b
elseif t(z) # € then
if the adjacent block is a single block then
t(x) < repeating block
else
delete t(x)
At «— At + 1.

Thus the new algorithm REDUCE(x) uses the counters to ensure that the reconsti-
tuted string w is long enough to always be a superstring of x. Hence

Theorem 4.1 Given a finite Sturmian string x, Algorithm REDUCE(x) correctly
computes in time O (|z|) a reduction sequence of a superstring u of
x that is a prefix of a block-complete Sturmian string.

Proof The asymptotic time requirement of REDUCE (x) is exactly the same as that
of STURM(x), and so is linear in |z|. The string u corresponding to the
reduction sequence must by definition be block-complete. As we have seen
above, the reduction sequence computed by REDUCE(x) corresponds to a
superstring of z. O

Note that REDUCE(x) does not compute u, only the reduction sequence of u; thus
even though the algorithm executes in time O (|z|), it remains possible that |u] is
actually supralinear in |z|. In fact, if we imagine a string « whose every reduction
has signature p with h(z) = b and t(z) = a at each step, then the final reduction
computed by Step (1.3) could have as many as

Ay + A = 2log, n
additional a’s that after log, n expansions would yield a string u with

p2 log, n _ n2

additional letters.

5 COMPUTING THE REPETITIONS

In this section we describe another simple algorithm that, given the reduction se-
quence of a finite block-complete prefix w of an infinite Sturmian string, computes
all the repetitions in w in time © (|u|). We begin with some useful definitions.
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Following Crochemore [4], we define a repetition in a given string z of length n
to be a triple (i,q,r) of positive integers with the following properties, where u =
zli.i+q—1]:

x u" =z[i.i+rqg—1];

* r>2;

* u is primitive (not itself of the form v", v nonempty, r > 2).

u is said to be the generator of the repetition, ¢ its period, and r its exponent. If in
addition

* either i < q or else u # z[i — ¢..i — 1], and

* either n <i+ (r+1)g—1orelse u# z[i +rq..i + (r +1)g — 1],

then the repetition is said to be mazimal. Observe that for r > 2, the repetition
(i,q,r) implies repetitions of rotations of u; that is, of substrings u; = z[i + j..i +
q + j — 1] for every integer j € 1..g — 1. Specifically, the implied repetitions are
(i+7,q,7—1). This remark suggests the following definition: a run in z is a 4-tuple
(i,q,r,t) satisfying the following properties:

x for every integer j € i..i +t — 1, (j,¢,r) is a maximal repetition;

« either i =1 or else z[i — 1] # x[i + ¢ — 2J;

x either n =i +t+rq—2orelse zi +t] #z[i +t+rqg—1].

The second and third of these properties ensure that a run is noneztendible; that
is, it cannot be extended either to left or right to yield runs (i — 1,q,r,t + 1) or
(i,q,7,t + 1), respectively.

Now for a Sturmian string s we define a special kind of substring called an r-kernel,
that is, for an integer 7 > 1 and a (possibly empty) substring w of s, either one of
the following two forms: b(wa)"wb or a(wb)"wa. As we shall see, these forms arise
when we try to perform a reduction on a run in a Sturmian string. We show first
then that these forms can exist only in very special cases:

Lemma 5.1 An r-kernel can exist in a Sturmian string s only in one of the fol-
lowing three forms:

(a) baPb or baP*b, a p-kernel or (p + 1)-kernel with w = ¢;

(b) a%ba? for some 1 < ¢ < p+ 1, a 1-kernel with w = a?™;

(c) a(a?b)"(aP)a with w = aP;

where p is the signature of s. Further, a reduction performed on an
r-kernel of form (c) yields an r-kernel of form (a).

Proof Suppose u = b(wa)"wb is a substring of s with w # €. Since w is both
preceded and followed by b, it must have aP as both prefix and suffix. But
then, since waw occurs in u, it follows that a??*! occurs, an impossibility
in a Sturmian string. Thus w must be empty, and so the only possibilities
are those stated in (a).

Next suppose that u = a(wb)"wa. Observe that for r = 1, w may be any
one of €,a,...,aP, so that u takes the form (b). Observe further that for
r > 1, w # e. Consider then the case in which, for arbitrary » > 1, w
contains at least one occurrence of b. We argue as above that therefore w
has a? as both prefix and suffix, so that « has aPt! as both prefix and suffix.
Hence we may consider u' = ub, a substring of s formed from full blocks,
that we see contains the substring a?ba”b; thus a”b is the repeating block in
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u' that under a reduction would map into a. Applying the reduction o !
to u' then yields the substring

at(u) =b(at(w)a) ot (w')b,

for some w'. As we have just seen, this form is possible only if a=!(w') is
empty, hence only if w’ itself is empty, so that w = aP, as required for case
(¢). O

We say that a repetition or a run is nontrivial if it is not of the form a? or a?*!.
The following theorem shows that nontrivial repetitions in Sturmian strings derive
ultimately from expansions of kernels.

Theorem 5.2 Every nontrivial run (i, ¢, ,t) in a block-complete Sturmian string
s is an expansion of one of the following:

(a) a run of a~!(s) of exponent 7;
(b) an (r — 1)-kernel of a~!(s).

Proof Let u denote the generator of the first repetition (7,q,r) in the run R =
(i,q,7,t). Observe that since it is both nontrivial and nonextendible, R
must have prefix aPb or, if i = 1, possibly a?*t'b. There are two main cases:

(1) w has suffix b.

(1.1) If i = 1, u is an integral number of full blocks and so R must be
an expansion of a run of exponent r.
(1.2) If i > 1, nonextendibility implies that s[i — 1] = a. Hence

aR = a(a’b---b)"aPv

for some substring v. If v = ¢, aR is an expansion of an (r — 1)-
kernel, either b(wa)" twb or a(wb)” 'wa depending on whether
b maps into long blocks or short blocks, respectively. On the
other hand, if v # €, aR must be an expansion of one of the runs
bR' = b(wa)" -+ or aR' = a(wb)" ---.
Thus in case (1) the theorem holds.
(2) w has suffix a.

A similar, slightly simpler argument establishes that the theorem holds
in this case also. O

In view of Lemma 5.1, Theorem 5.2 tells us that runs in Sturmian strings ultimately
reduce to trivial repetitions or to the special form a?ba?. To gain an understanding
of how these runs are formed and overlap each other, consider the fragment baaabaab
of a Sturmian string. This fragment contains four kernels: baaab, aabaa, aba, and
baab. Suppose now that the fragment is expanded using signature p = 1. There
are two possibilities:

baaabaab — aababababaabababaab (1,a)

— abaabaabagbabaabaabab  (1,b)

Here in the first line the runs (aba)?, (ababa)?, (ab)®a and (ab)?a are underlined,
expansions of the kernels aba, a®ba?, baaab and baab, respectively. In the second
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line the underlined runs (ab)?a, (abaab)?a, (aba)* and (aba)® are expansions of the
same kernels.

We see then that all the runs in a block-complete Sturmian string can be computed
from its reduction sequence by applying successive expansions to the initial string
a while at the same time tracking the expansions of the kernels a%ba?, baP’b and
baP*1b. Since the number of these expansions is linear in the length of the string,
we immediately have

Theorem 5.3 The number of runs in a finite Sturmian string is linear in the length
of the string. O

Furthermore, since all of the forms a?ba?, ba?b and baPt'b can be located in a linear
scan of each expansion, and since as we have seen the reduction sequence can be
computed in linear time, it follows that all the runs can also be computed in linear
time. Hence

Theorem 5.4 The runs in a block-complete prefix u of a Sturmian string can be
computed in time O (|ul). O

The preceding two theorems generalize results given for Fibonacci strings in [6], and
so greatly extend the class of strings for which a linear-time all-repetitions algorithm
exists. We omit here further details of the implementation of this algorithm.

We conclude by stating a final result that is also an easy consequence of Lemma 5.1
and Theorem 5.2, and that generalizes the well-known fact that Fibonacci strings
contain squares and cubes, but not fourth powers.

Theorem 5.5 Corresponding to every signature p that occurs in its reduction se-
quence, a block-complete infinite Sturmian string s contains max-
imal repetitions of exponents 2, p > 2, p+ 1 and p + 2, but no
maximal repetitions of any other exponent.

Proof Every expansion of the 1-kernel aba yields either
aPba? 1 baPb or aPTtbaPbaP i,

containing maximal squares (aPba)? or (a”b)?, respectively. Analogous max-
imal squares are also produced by every expansion of every 1-kernel a?ba?,
q > 1, that exists in s.

Expansions of ¢ and b yield maximal repetitions of exponents p and p + 1.
Subsequent expansions of these maximal repetitions yield further maximal
repetitions of the same exponents p and p+ 1, in accordance with Theorem
5.2(a).

Every expansion of the (p + 1)-kernel ba?*!b yields either

balbalb---albal™b or aba?'ba?™b---a?Thald,
N’ ~ v

e

p+1 times p+1 times

giving rise to maximal repetitions (ba?)P*? or (aba?)P™2, respectively, both
of exponent p + 2.
Thus maximal repetitions of exponents 2, p, p+ 1 and p + 2 exist in s as

claimed, and these exhaust the cases allowed by Lemma 5.1 and Theorem
52. 0O
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A classical string problem is the (a,r)-avoidance problem [15]: construct an infinite
string on an alphabet of size a that contains no repetitions of exponent r (but
that does contain repetitions of exponents 2,3,... ,7 — 1). From Theorem 5.5 it is
clear that the (2,r) problem can be solved for every r > 4 using Sturmian strings
and selecting appropriate terms in the reduction sequence. For example, the block-
complete Fibonacci string has reduction sequence

{(1,0),(1,0),....}

with signature p = 1 for every reduction; by Theorem 5.5 it therefore contains
maximal repetitions only of exponents 2 and 3.

6 FUTURE WORK

As mentioned in Section 4, it may happen that the superstring u of z computed
by Algorithm REDUCE(x) has length supralinear in |z|. Thus this paper leaves
unresolved the question of whether there exists a linear time algorithm to compute
a minimum-length block-complete superstring u of a given finite Sturmian string z.
We conjecture that there does exist such an algorithm, and we conjecture further
that |u| < 4|z|.

Finally, we remark that many of the results of this paper should be extendible to

much more general classes of strings: those on which recursive reductions can be
defined.
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