Managing Design Processes

- Organizational Design to Support Usability
- Four Pillars of Design
- Development Methodology
- Ethnographic Observation
- Participatory Design
- Scenario Development
- Social Impact Statements
- Legal Issues
Organizational Design to Support Usability

- Competitive products with similar functionality?
 - Usability engineering is critical
 - Result: usability labs
 - Expert reviews
 - Usability tests
- User-interface architects, usability engineering managers (but typically no CUOs yet)
- Evidence, data may be required to show the business case for usability to managers
- Studies show usability testing can pay dividends
Organizational Design to Support Usability

- General usability labs, but per project user-interface architects
 - Centralized expertise, decentralized application
 - Different application domains...

- User-interface-building tool choice is vital to success
Organizational Design to Support Usability

- Characterization of design (Rosson and Carroll, 2002):
 - Design is a process
 - Not a state, or static
 - Design process is non-hierarchical
 - Not strictly bottom-up or top-down
 - Design is radically transformational
 - Some temporary solutions may have no role in finale design
 - Design involves discovery of new goals
- Bottom-line: design is *dynamic*
Four Pillars of Design

- Successful user interface design process involves:
 - User-interface requirements
 - Guidelines documents & process
 - User-interface software tools
 - Expert reviews & usability testing
Four Pillars of Design

- User interface requirements
 - Soliciting, clearly specifying user requirements always important development!
 - Methods to solicit, specify different across organizations
 - Common goals however, such as clearly specified:
 - user community
 - tasks that users perform
 - Without properly defined requirements, we might be solving the wrong problem!
Four Pillars of Design

• User interface requirements
 • Don't make human operator actions into user interface requirements
 – e.g. User must purchase a ticket within 1 minute (incorrect)
 – e.g. System will go to standby mode if ticket not purchased within 1 minute (correct)
 • Consider ethnographic observations to determine user-interface requirements
Four Pillars of Design

• Guidelines documents and processes
 • User-interface architecture should create set of working guidelines
 • Guidelines can be created for:
 – Words, icons, graphics
 – Screen-layout issues
 – Input and out devices
 – Action sequences
 – Training
 • Guideline creation == group work, involve everyone -> gains visibility, builds support!
Four Pillars of Design

- Guidelines documents and processes
 - Controversial guidelines?
 - Expert review, review by co-workers
 - Test them empirically in the lab
 - Concerns: enforcement, exemptions and enhancements
 - Flexibility from “rigid practice” to “subject to change”?
- Multiple levels of guidelines for organization-wide standards, application-specific standards?
Four Pillars of Design

• Guidelines documents and processes
 • “Four Es”
 – Education
 • How to train users of guidelines?
 – Enforcement
 • What process to verify interface adheres to guidelines?
 – Exemption
 • How to exempt new creative ideas quickly?
 – Enhancement
 • What process to review, update guidelines?
Four Pillars of Design

• User-interface software tools
 • Problem: development expensive, going back on design decisions is too
 • Give customers early stage feedback
 - Printed versions...
 - On-screen displays...
 - Prototype menu, form-fill systems...
 - PowerPoint slides, Flash, Ajax....
 • How will software development tools support UI aspect of project?
Four Pillars of Design

• Expert reviews and usability testing
 • Not that different an idea from other things really!
 – You rehearse a play before opening night...
 – You practice before the big game...
 • Carry out small and large pilot tests of the UI
 • Have the UI reviewed by UI, domain experts
 • Experiments, tests with expected users, record results meticulously
 • Surveys, interviews, automated analysis tools
Development Methodologies

- Estimated 50% of software projects fail to reach goals (Jones, 2005)
 - Bad communication often to blame...
- Software-engineering methodologies are effective in facilitating software dev. process
 - But have they been as effective at understanding users, creating usable interfaces?
- Agile development responsive to user-interface development, usability needs
Development Methodologies

● Different development methodologies might include...
 ● Approaches to specify detailed deliverables
 ● Incorporate cost/benefit, ROI analysis
 ● Management strategies
 ● UI design only one part... may have to co-exist with software-engineering methodologies

● Many, many methods exist, are advocated for different reasons
Development Methodologies

- Rapid contextual design method (Kaufmann, 2005):
 - Contextual inquiry
 - Plan\prepare\conduct field interviews, review business practices
 - Interpretation sessions and work modelling
 - Group meetings, discussions, draw conclusions
 - Model consolidation and affinity diagram building
 - Take resulting conclusions to larger target population, gain more insight, consolidate models, create work patterns
Development Methodologies

• Rapid contextual design method (Kaufmann, 2005) con't:
 • Persona development
 – Develop fictitious characters to represent different users, bring their needs to focus
 • Visioning
 – Use media to revive and walkthrough all the data from perspective of personas
 • Storyboarding
 – Initial user-interface concepts, business rules, automation assumptions
Development Methodologies

- Rapid contextual design method (Kaufmann, 2005) con't:
 - User environment design
 - Single, coherent representation built from storyboards
 - Interviews and evaluations with paper prototypes, mock-ups
Ethnographic Observation

• Ethnography:
 • Qualitative method to listen, observe the knowledge, workings and system of meanings of a group

• Traditional ethnographers emerse themselves in a culture for weeks or months

• UI designers do for days or hours
 • To obtain relevant data
 • Focus is to change, improve UI
Ethnographic Observation

- Challenges to ethnographic observation
 - Misinterpretation of observations
 - Disrupt normal practices
 - Overlooking important information
- Steps: preparation, field study, analysis, reporting
 - Require situational interpretation
 - Learning the technical, non-technical codes
 - Data collection: qualitative and quantitative
Ethnographic Observation

- Benefits of ethnographic observation:
 - Increased trust \ credibility
 - Designers learn complexities of target environment
 - Designer-user working relationships develop
 - Users may become active participants in design
Participatory Design

- Participatory design
 - “Direct involvement of people in the collaborative design of the things and technologies they use”

- Positives
 - Brings accurate info into the process...
 - But the “investment” in the implementation seems to most influence\increase user acceptance

- Negatives
 - Costly, lengthened implementation period
 - Bruised egos over rejected designers
 - Incompetent users may influence design
Participatory Design

• How to select users? Carefully...
 • Competitive process
 – Emphasizes seriousness
 • Repeated meetings
 • Clear guidance on roles, influence
Scenario Development

- Distribution of task frequencies and sequences is helpful knowledge
- Task frequency
 - Table with user communities, tasks
 - Each box contains relative frequency of tasks per user
- Task sequence
 - Flowchart
 - Transition diagram
 - Thickness of line can indicate frequency
Scenario Development

- Day-in-the-life scenarios
- Write scenarios down, act them out
 - Particularly important for co-operative interfaces (e.g. Control room)
 - Common or rare situations can be represented
 - Novice and expert users
 - Personas can be used
- Example scenario: Microsoft – Health Future Vision
 - Seamless integration of I/O into environment, etc.
Social Impact Statement for Early Design Review

● Social impact statement
 ● Statement of anticipated impacts on users
 ● Risk minimizing if circulated among stakeholders

● Concerns like...
 ● Privacy invasion
 ● Restriction of information
 ● Poor security
Social Impact Statement for Early Design Review

- Potential outline (Schneiderman & Rose, 1996):
 - Describe new system, benefits
 - Identify stakeholders, goals
 - Address concerns, potential barriers
 - Security, privacy
 - Potential layoffs, job changes?
 - Individual rights vs societal good
 - Outline development process
 - Estimated schedule
 - Migration?
 - Measuring success
Social Impact Statement for Early Design Review

• Concerns:
 • Evaluation by who?
 – Review panel, managers, designers, end users, anyone affected
 – E.G. regulatory agencies
 – Public meetings? Opportunities to propose alternatives?
 • Enforcement how?
 – Review panel typically enforces
 • Effort, cost, time in-line with project?
Legal Issues

• Privacy concerns
 • Medical, legal, financial
 • Protect from unapproved access, illegal tampering, inadvertent loss
 • Laws can be complicated, hard to understand

• Safety, reliability
 • Life-or-death decisions
 • Lawsuits possible

• Copyright protection, patent protection
 • Can users take info, images, music?
Legal Issues

- Freedom of expression
 - Can users say whatever they want?
 - Can users access whatever they want?
 - Who is responsible for libel, defamation of character, etc?
- Accessibility
 - For disabled users
References

