

A Post-Analysis Framework for Mining Generalized
Association Rules with Multiple Minimum Supports†

Fu-lai Chung and Chung-leung Lui
Department of Computing

The Hong Kong Polytechnic University
Hunghom, Kowloon, Hong Kong.

{cskchung, cscllui}@comp.polyu.edu.hk

ABSTRACT
Mining association rules at multiple concept levels leads to the
discovery of more specific and concrete knowledge from data.
Nevertheless, setting an appropriate minimum support for cross-
level itemsets is still a non-trivial task. There exists a dilemma
that if minimum support is set too high, low-level itemsets do not
have enough support and may not be embedded by the high-level
rules. On the other hand, if the minimum support is set too low,
too many rules among which many are too general to the users
will be mined. To address the problem, a post-analysis framework
for mining generalized association rules with multiple minimum
supports is proposed. A post-processing algorithm is applied to
Srikant and Agrawal’s generalized association rules (cumulate
algorithm) so that low-level rules can have enough minimum
support while the number of high-level rules is prevented from
combinatorial explosion. Encouraging simulation results on a
synthetic transaction database were observed and reported.

Keywords
Generalized association rules, multiple minimum supports,
generality.

1. INTRODUCTION
In recent years, the rapid growth in size and number of databases
far exceeds human abilities to effectively and efficiently analyze
such data. Therefore, it is necessary to devise an automated
mechanism for better understanding and characterization of the
huge amount of data on hand, in particular, using known
phenomena and trends as well as discovering new and interesting
knowledge. Knowledge discovery in databases (KDD) is
generally considered as an emerging field of databases and
machine learning. It is “the nontrivial extraction of implicit,
previously unknown and potentially useful information in data”
[11]. An interesting sub-field of it is the problem of discovering
association rules. Generally, an association rule can be viewed as
a relation over attributes and has the form X→Y, where X and Y
are set of items, called itemsets. Given a transaction database,

where each transaction is a set of items, the intuitive meaning of
an association rule is that data of the database which contain the
items in X tend to also contain the items in Y. Each rule is
quantified by support and confidence. Support is the percentage of
all transactions containing all items from X∪Y and confidence is
the percentage of all transactions containing all items from X also
contain all items from Y. The problem of mining association rules
is to find all rules that satisfy a user-specified minimum support
(minsup) and minimum confidence (minconf) [1]. One of the
limitations in mining association rules is that of granularity [3,10].
Rules at lower level may not have minsup. For example, given a
set of supermarket transactions, while an association rule
{Beer}→{Nuts} achieves minsup and minconf, this rule may not
be found, if the data is represented at a different granularity. The
database may contain items such as brand X beer, brand Y beer,
and brand Z nuts etc. At this finer level of granularity, there may
not have any association (e.g., {brand X beer}→{brand Z nuts})
that achieves minsup or minconf and consequently the
{Beer}→{Nuts} association will remain undiscovered.

Generalized association rules [10] and multiple level association
rules [4,5] were proposed to address the above problem by
assuming a taxonomy (is-a hierarchy) over the attributes [4,10].
Associations can then be mined from the items and nodes of the
taxonomy. For example, different brands of beer and nuts could
be grouped into a generalized term, called beer and nuts in
taxonomy respectively. Consequently, the {Beer}→{Nuts} could
be mined as a generalized or multiple level association rule. Both
methods facilitate the representation of a rule at all concept levels.
Unfortunately, support in taxonomy is upward closed. Owing to
this property, there exists a dilemma when setting minsup in
generalized association rules. First, if minsup is set too high, low-
level rules may not have minsup and they will not appear in high
levels. Second, if minsup is set too low, this will cause
combinatorial explosion, producing too many rules [8]. In fact,
multiple level association rules [5] can set different minsup at
each level, but the values have to be set manually and the way to
do so lacks theoretical support . More importantly, it is a difficult
task to set different minsup for each cross-level itemset.

In this work, rather than developing a sophisticated mining
algorithm, a post-analysis framework for finding frequent itemsets
with multiple minimum supports is proposed. The minsup of each
itemset can be different, depending on its level of concept. Hence,
low-level itemsets have smaller minsup, while high-level itemsets
have larger minsup. This property leads to mining both low-level

† This work is supported by The Hong Kong Polytechnic
University Research Studentship, project no. G-V722

and high-level rules in a simple and efficient manner. The paper is
organized into five sections. The generalized association rules
and upward closure property are introduced in Section 2. Section
3 presents the post-analysis framework for mining frequent
itemsets with multiple minimum supports. The experimental
results are reported in Section 4 and the final section concludes
the paper.

2. GENERALIZED ASSOCIATION RULES
AND UPWARD CLOSURE PROPERTY

Given a set of transactions D, a set of taxonomies τ and a user-
specified minimum interest (called min-interest), the problem of
mining gneralized association rules is to find all interesting
association rules that have support and confidence greater than the
user-specified minsup and minconf respectively. The problem of
mining generalized association rules can be decomposed in three
major steps [10]:

1. Find all sets of items (itemsets) whose support is greater than
the user-specified minsup. Itemsets with minsup are called
frequent itemsets.

2. Use the frequent itemsets to generate the desired rules. The
general idea is that, if say, ABCD and AB are frequent
itemsets, then we can determine if the rule AB→CD holds by
computing the ratio conf = support(ABCD)/support(AB). If
conf ≥ minconf, then the rule holds.

3. Prune all uninteresting rules from this set.

Among the above processes, we are focusing on how to generate
frequent itemsets with multiple minimum supports at step one. An
efficient algorithm [10] for finding all frequent itemsets where the
items can be from any level of the taxonomy was proposed.
However, the minsup of all itemsets are the same. Single minsup
implicitly assumes that all items in different level of taxonomy are
of the same nature or have similar frequencies in the database.
Unfortunately, this assumption is definitely invalid in practice.
Support is upward closed over taxonomy. If an item satisfies the
minsup, all its ancestors also satisfy the minsup. Owing to this
upward closure property, the following dilemma exists:

1. If minsup is set too high, we may not discover rules at lower
levels, because those rules may not have minsup. Moreover,
we cannot make sure that those rules have been represented
at higher levels, because they may not have minconf.

2. If minsup is set too low, this will cause combinatorial
explosion, producing too many rules [8]. Most frequent items
(especially for the high level ones) will be associated with
one another in all possible ways and many of them are too
general and ambiguous to the users.

For example, let us consider the following taxonomy. Item
Clothes is the root of the taxonomy, and it has two children. They
are Jackets and Shirts. The support of itemsets {Jackets, Boots1}
and {Shirts, Boots} are 5% and 10% respectively. Meanwhile, the
support of {Clothes, Boots} must be ≥ 10%, may be 20%. If there
are some rules like {Clothes}→{Boots}, {Jackets}→{Boots}, and
{Shirts}→{Boots} with confidence 50%, 80%, and 90%
respectively. Now, we want to find associations with minsup 15%,

1 Boots is an item in another taxonomy

and minconf 60%. There is no rule being discovered, because low-
level rules do not have minsup while high-level rules do not have
minconf. If we change minsup to 5%, we find two rules instead.
Thus, the number of discovered rules grows exponentially, e.g., a
rule {Clothes}→{Food} with support = 6% and confidence =
80% is also discovered, but it is not an interesting one.

3. MINING FREQUENT ITEMSETS WITH
MULTIPLE MINIMUM SUPPORTS

Over a taxonomy (or a concept hierarchy), high-level item is
implicitly having higher support than its lower level items in
accordance with the upward closure property. Now, suppose item
x’ is an ancestor of item x, such that the minsup of an itemset {x’}
should be larger than that of itemset {x}. If minsup({x’}) and
minsup({x}) denote the minimum supports of itemsets {x’} and
{x} respectively, then minsup({x’}) > minsup({x}). Thus, we
define minsup(t) for the independent minsup of an itemset t, where
t is a variable. The notation minsup (without the bracketed
information) holds the same meaning in [10], but not for all
itemsets. It is just for the itemset whose items are all at the leaf-
level of taxonomy. Hence, minsup(t) ≥ minsup.

In [10], efficient algorithms for finding large itemsets of
generalized association rules are based on level-wise search. Let
k-itemset denote an itemset with k items. All the potential large
itemsets at level k are generated from large itemsets at level k-1.
However, under the concept of multiple minimum supports, there
has a problem in the existing algorithms. For example, consider
the following itemsets {1}, {2}, and {1, 2} and their minimum
supports are:

 minsup({1}) = 10%
 minsup({2}) = 20%
 minsup({1, 2}) = 10%

If we find that itemsets {1} and {1, 2} have enough minsup but
itemset {2} has not, then itemset {1, 2} cannot be generated using
the existing algorithms, even though {1, 2} is a large itemset.
Thus, it is necessary to propose a new method for solving the
above problem. Now, we have two directions to explore efficient
mining of generalized association rules with multiple minimum
supports. One choice is making of a derivative algorithm from the
existing algorithms in [10], but it may lead to the destruction of
level-wise characteristic in the algorithms. Another choice is to
apply a post-processing method to extract out the large itemsets t
with minsup(t) after generating the itemsets with single minsup,
where minsup ≤ minsup(t), using the algorithms in [10].

It is apparently that the second choice is simple and direct for
finding frequent itemsets with multiple minimum supports. It is to
first generate all itemsets S with single minsup using the Cumulate
algorithm proposed in [10], and then apply a post-processing step
to extract the set of itemsets � where each itemset � in � has
independent minsup(�). Note here that all minsup(�) ≥ minsup, so
� ⊆ S. Now, the problem is how to determine the minimum
support of each itemset independently and dynamically. Here, we
propose a post-processing algorithm based on the concept of
generality for solving the problem, and sketch the whole mining
process for discovering frequent itemsets with multiple minimum
supports.

Taxonomies

Transactions Cumulate
Algorithm

itemsets with
single minsup

Pre-computing
generality of each

item

itemsets with
multiple minsup

Computing
minsup for

individual itemset

Filtering itemsets
by individual

minsup

Post-processing
Algorithm

Figure 1. A post-analysis framework for mining itemsets with
multiple minsup

In accordance with the framework in figure 1, the post-processing
algorithm can be divided into three parts. The first step is to
generate a list that pre-computes the generality of each item (no
matter it is interior node or leaf node item). Second, each itemset
discovered from the Cumulate algorithm [10] is assigned an
individual minimum support using the itemset’s generality.
Finally, it is a simple task to extract out those itemsets that have
individual minimum support in the last step.

3.1 Generality
Generality of an item indicates its level of concept over the
taxonomy. Before proceeding to introduce generality, let us
review the background theory of concept generalization. Concept
generalization of an item means forming a general concept
description (non-left node items) of a class of objects (leaf node
items) given a set of concept trees (taxonomies) [6,7,9].
Intuitively, very different items generalize to an expression that is
very far from each of them, while identical items generalize to
themselves. That calls for the notion of generality of an item. For
instance, Figure 2 depicts a taxonomy that describes the concept
hierarchy of drink .

any_drink

non-alcoholic alcoholic

juice milk

apple_juice orange_juice

beer brandy

VSOP OXFOV
Figure 2. Taxonomy of drink

Under the above theory, each item (no matter it is non-leaf node
or leaf node) is associated to a predicate that describes both
concepts and objects within the same class. If two items are under
the same predicate, we call they have common predicate [7].
Given items with the following description, (predicate object), we
can determine their generalized form and generality. Now, let us
consider the following four items with reference to the concept
tree in Figure 2. For example, the items mi are in the following
form

m1: (drink apple_juice)
m2: (drink milk)
m3: (drink orange_juice)
m4: (drink beer)

They are similar, as characterized by the same predicate drink .
Since each of these four items is characterized by the same
predicate, they can be generalized into general terms at higher
concept level. Let us also consider the following generalizations
G(mi , mj) of two items mi and mj:

G(m1, m3): (drink juice)
G(m1, m2): (drink non-alcoholic)
G(m1, m4): (drink any_drink)

Note here that juice, non-alcoholic, and any_drink are all values
from the structured domain in Figure 2, and that juice is less
general than non-alcoholic and non-alcoholic is less general than
any_drink . While orange_juice is an instance, juice is a
generalization with 2 instances and any_drink is a generalization
with 7 instances. Thus, we could define the degree of generality
of an argument g(a), as the ratio of the number of argument’s
instances to the total number of instances from argument’s
domain [7], that is:

a"" of domainthe ofinstance of number
a"" ofinstance of number)g(=a (1)

For example,

g(juice) = 2/7
g(non-alcoholic) = 3/7
g(any_drink) = 7/7

In fact, mining generalized association rules from the items and
nodes of the taxonomy is a form of using generalized concept to
represent a rule. In particular, any item in the non-leaf nodes of
taxonomy is a generalized form of its descendants. This
generalized form (non-leaf node item) can be measured by its
generality to indicate its level of concept over the taxonomy. This
definition applies also to an itemset. The generality of an itemset
is computed by taking the minimum value of the generalities of all
its items, because number of count of an itemset is restricted by its
item that is the less frequent one in the database. Let t be an
itemset, and xi be an item in t. The generality of t is defined as:

g(t) = min[g(x1), g(x2),…, g(xn)] (2)

For example, the generality of itemset t1 and t2:

t1: (drink apple_juice) (drink alcoholic)
g(t1) = min(0, 4/7) = 0

t2: (drink juice) (drink non-alcoholic)
g(t2) = min(2/7, 3/7) = 2/7

Note also that the predicate of each item xi can be different.

3.2 Multiple Minimum Supports
Here, we propose a method to calculate multiple minimum
supports for different itemsets dynamically from their generalities.
Recall from previous sub-section that we can determine the
generality of each itemset separately by traversing the taxonomy
graph. Nevertheless, in order to increase the efficiency, we can
pre-compute the generality of each item and the generality of an
itemset can be deduced from generalities of all its items. Details
are described below.

3.2.1 Pre-computing generality of each item
Rather than calculating each itemset’s generality by traversing the
taxonomy graph, pre-computing the generality of each item can
speed up the algorithm significantly. We first generate a list of
item’s generality. It is a simple task to compute the generality of
each item (both non-leaf and leaf node). For example:

g(apple_juice) = 0/7 = 0
g(juice) = 2/7
g(non-alcoholic) = 3/7
g(any_drink) = 7/7 =1

and so on.

3.2.2 Computing minimum support for indivdual
itemset

Before computing the individual minsup(t), the first task is to
compute the generality of an itemset. Generality of each itemset
can be determined from the pre-computed generalities of all its
items. According to the item’s generality list, any combination in
itemset can be deduced from its generality, even though its items
are coming from different taxonomies. For example, we have the
following itemset:

t1: (drink apple_juice) (drink alcoholic)
g(t1) = min(0, 4/7) = 0

This generality value indicates the level of concept of the itemset.
The value of generality is ranging from zero to one, where values
zero and one denote an itemset at the lowest and highest concept
level respectively over the taxonomies. If the minsup(y) of an
itemset y at the lowest concept level is β, we call this lower-
minimum support. On the other hand, the minsup(x) of itemset x
at the highest concept level must be greater than β, because higher
minimum support for higher level itemsets can prevent
combinatorial explosion. So, we define lower- and upper-
minimum support for the lowest and highest concept levels
itemsets respectively and they will be specified by the users.

Definition 1: The lower-minimum support β is a user-defined
parameter. This is minsup for the lowest concept level itemsets.

Definition 2: The upper-minimum support α is a user-defined
parameter. This is minsup for the highest concept level itemsets,
and the value must be greater than lower-minimum support, i.e., α
> β.

For an itemset t, its generality is varying from zero to one. Based
upon α and β, the minimum support for each itemset t is
computed independently as:

minsup(t) = β + {(α-β) * g(t)} (3)

Here, minsup(t) varies from lower-minimum support to upper-
minimum support, depending on the generality of the itemset t.
For example, if α = 20, β = 10, and g(t) = 0.2, then minsup(t) = 12.
Subsequently, the itemsets in S can be filtered by their own
minimum support dynamically. Thus, each extracted itemset � in �
has its own minsup(�).

4. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
multiple minsup based generalized association rule algorithm
against the original one with single minsup [10]. Measurements in
terms of number of itemsets and number of rules will be reported.

4.1 Synthetic Data Generation
The synthetic data generation program was obtained from the
IBM Almaden Research Center
[http://www.almaden.ibm.com/cs/quest]. The essential idea
behind the synthetic data generation program is to first build a
taxonomy over the items. For any non-leaf node, the number of
children is picked from a Poisson distribution with mean µ equal
to fanout F. The program assigns children to the roots, then to the
nodes at the 2nd level, and so on, till run out of items. The program,
on the other hand, generates a table of potentially frequent
itemsets I, and then creates transactions by picking itemsets from I
and inserting them in the transaction. Details of the program can
be found in [2,10]. A set of sample parameter values for synthetic
data generation is shown as follows:

Table 1. Parameters for synthetic data generation with default
values

Parameter Value
|D| Number of transactions 100,000
|T| Average size of the transactions 5

|I| Average size of the maximal potentially
frequency itemsets 4

N Number of items 1,000
R Number of roots 10
L Number of levels 5
F Fanout at each node 3

Table 2. Parameters for running the experiments with default

values

Algorithm Parameter Value
Single minsup Minimum support 5%

Lower-minimum support 5% Multiple minsup
Upper-minimum support 5% - 15%
Minimum confidence 80% Both
r-interest 1.1

4.2 Performance Analysis
The performance of the proposed method with multiple minsup is
evaluated as follows. All parameters are set to the default values
as shown in Tables 1 and 2. We first ran the algorithm with single
minsup at 5% and 15%. Then, we fixed the lower-minimum
support β at 5% and varied the upper-minimum support α from
5% to 15%. From the results plotted in Figures 3 and 4, the
number of itemsets/rules found at α = 5% is exactly the same as

that of single minsup fixed at 5%. At α = 15%, the number of
itemsets/rules is more than single minsup with 15%. It is because
not all itemsets’ minsup are 15%. In fact, their minsup vary from
5% to 15%.

From Figure 5, on the other hand, the percentage of itemsets being
removed from single minsup = 5% is about 23% when α = 15%,
while the percentage of rules being removed from single minsup =
5% is about 41% at α = 15%. This observation indicates that
removing the itemsets with multiple minsup can effectively
prevent combinatorial explosion in mining generalized association
rules, because the number of itemsets was removed by 23% only
while the number of rules being removed is 41%. This shows that
the removed itemsets are the major sources in producing a lot of
meaningless rules in the original algorithm.

Note here that the execution time of the multiple minsup
algorithm is similar to the single minsup algorithm, when the
lower-minimum support is equal to minsup. It is because the post-
analysis step does not have to scan the database, and it only
applies multiple minsup to remove itemsets from the domain of
the original algorithm in [10]. In the above case, the execution of
our approach is very similar to the single minsup algorithm with
minsup = 5%, no matter how the upper-minimum support is
changed. It is because the lower-minimum support was fixed.

0

500

1000

1500

2000

2500

3000

5% 6% 7% 8% 9% 10
%

11
%

12
%

13
%

14
%

15
%

Upper-minimum support

N
o

. o
f

It
em

se
ts

single minsup = 5%

single minsup = 15%

Figure 3. Number of itemsets discovered with different upper-
minimum supports

0

25

50

75

100

125

150

175

200

5% 6% 7% 8% 9%
10%

11%
12%

13%
14%

15%

Upper-minimum support

N
o

. o
f

R
u

le
s

single minsup = 5%

single minsup = 15%

Figure 4. Number of rules discovered with different upper-
minimum supports

0%

10%

20%

30%

40%

5% 6% 7% 8% 9%
10%

11%
12%

13%
14%

15%

Upper-minimum support

R
em

o
ve

d
 in

 P
er

ce
n

ta
g

e

Rules

Itemsets

Figure 5. Percentage of itemsets and rules being removed

from single minsup = 5%

5. CONCLUSIONS
We have introduced a post-analysis framework for finding
frequent itemsets with multiple minimum supports from large
transaction databases. The proposed approach eliminates some of
the limitations of most existing generalized or multiple level
association rules mining algorithms, e.g., they make use of single
minsup or set the value at each level manually. In our approach,
on the other hand, low-level rules can have enough minsup, while
the number of high-level rules is prevented from combinatorial
explosion.

6. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining

Association Rules between sets of items in large
databases,” Proceedings of the ACM SIGMOD Conference
on Management of Data, pp. 207-216,Wahington, D.C.,
May, 1993.

[2] R. Agrawal, and R. Srikant, “Fast algorithms for mining
association rules,” Proceedings of the VLDB Conference,
Santiago, Chile, Sep, 1994.

[3] A. Andrusiewicz and M. E. Orlowska, “On data
granularity factors that affect data mining,” Proceedings of
the 8th International Database Workshop, 1997.

[4] J. Han and Y. Fu, “Discovery of multiple-level association
rules from large databases,” Proceedings of the 21st VLDB
Conference, Zurich, Switzerland, 1995.

[5] J. Han and Y. Fu, “Mining multiple-level association rules
in large databases”, IEEE Transactions on Knowledge and
Data Engineering, Vol. 11, No. 5, 1999

[6] Y. Kodratoff, and J. G. Ganascia, “Improving the
generalization step in learning,” Machine Learning: An
Artificial Intelligence Approach, vol. 2, Los Angeles, pp.
215-244, 1986.

[7] Y. Kodratoff, and G. Tecuci, “Learning Based on
Conceptual Distance,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 10, No. 6, Nov
1988.

[8] B. Liu, W. Hsu, and Y. Ma, “Mining Association Rules
with Multiple Minimum Supports,” Proceedings of the
ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 337-341, San Diego, CA, USA, August,
1999.

[9] R. S. Michalski, and R. Stepp, “Learning by observation,”
Machine Learning: An Artificial Intelligence Approach, pp.
163-190, 1983.

[10] R. Srikant and R. Agrawal, “Mining generalized
association rules,” Proceedings of the 21s t VLDB
Conference, Zurich, Switzerland, pp. 407-419, 1995.

[11] J. M. Zytkow, “The KDD land of plenty,” AAAI Workshop
Notes – Knowledge Discovery Databases, Anaheim, CA,
pp. iii-vi, July 14, 1991.

