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ABSTRACT 
Mining association rules at multiple concept levels leads to the 
discovery of more specific and concrete knowledge from data. 
Nevertheless, setting an appropriate minimum support for cross-
level itemsets is still a non-trivial task. There exists a dilemma 
that if minimum support is set too high, low-level itemsets do not 
have enough support and may not be embedded by the high-level 
rules. On the other hand, if the minimum support is set too low, 
too many rules among which many are too general to the users 
will be mined. To address the problem, a post-analysis framework 
for mining generalized association rules with multiple minimum 
supports is proposed. A post-processing algorithm is applied to 
Srikant and Agrawal’s generalized association rules (cumulate 
algorithm) so that low-level rules can have enough minimum 
support while the number of high-level rules is prevented from 
combinatorial explosion. Encouraging simulation results on a 
synthetic transaction database were observed and reported. 

Keywords 
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1.  INTRODUCTION  
In recent years, the rapid growth in size and number of databases 
far exceeds human abilities to effectively and efficiently analyze 
such data. Therefore, it is necessary to devise an automated 
mechanism for better understanding and characterization of the 
huge amount of data on hand, in particular, using known 
phenomena and trends as well as discovering new and interesting 
knowledge. Knowledge discovery in databases (KDD) is 
generally considered as an emerging field of databases and 
machine learning. It is “the nontrivial extraction of implicit, 
previously unknown and potentially useful information in data” 
[11]. An interesting sub-field of it is the problem of discovering 
association rules. Generally, an association rule can be viewed as 
a relation over attributes and has the form X→Y, where X and Y 
are set of items, called itemsets. Given a transaction database, 

where each transaction is a set of items, the intuitive meaning of 
an association rule is that data of the database which contain the 
items in X tend to also contain the items in Y. Each rule is 
quantified by support and confidence. Support is the percentage of 
all transactions containing all items from X∪Y and confidence is 
the percentage of all transactions containing all items from X also 
contain all items from Y. The problem of mining association rules 
is to find all rules that satisfy a user-specified minimum support 
(minsup) and minimum confidence (minconf) [1]. One of the 
limitations in mining association rules is that of granularity [3,10]. 
Rules at lower level may not have minsup. For example, given a 
set of supermarket transactions, while an association rule 
{Beer}→{Nuts} achieves minsup and minconf, this rule may not 
be found, if the data is represented at a different granularity. The 
database may contain items such as brand X beer, brand Y beer, 
and brand Z nuts etc. At this finer level of granularity, there may 
not have any association (e.g., {brand X beer}→{brand Z nuts}) 
that achieves minsup or minconf and consequently the 
{Beer}→{Nuts} association will remain undiscovered. 

Generalized association rules [10] and multiple level association 
rules [4,5] were proposed to address the above problem by 
assuming a taxonomy (is-a hierarchy) over the attributes [4,10]. 
Associations can then be mined from the items and nodes of the 
taxonomy. For example, different brands of beer and nuts could 
be grouped into a generalized term, called beer and nuts in 
taxonomy respectively. Consequently, the {Beer}→{Nuts} could 
be mined as a generalized or multiple level association rule. Both 
methods facilitate the representation of a rule at all concept levels. 
Unfortunately, support in taxonomy is upward closed. Owing to 
this property, there exists a dilemma when setting minsup in 
generalized association rules. First, if minsup is set too high, low-
level rules may not have minsup and they will not appear in high 
levels. Second, if minsup is set too low, this will cause 
combinatorial explosion, producing too many rules [8]. In fact, 
multiple level association rules [5] can set different minsup at 
each level, but the values have to be set manually and the way to 
do so lacks theoretical support . More importantly, it is a difficult 
task to set different minsup for each cross-level itemset. 

In this work, rather than developing a sophisticated mining 
algorithm, a post-analysis framework for finding frequent itemsets 
with multiple minimum supports is proposed. The minsup of each 
itemset can be different, depending on its level of concept. Hence, 
low-level itemsets have smaller minsup, while high-level itemsets 
have larger minsup. This property leads to mining both low-level 
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and high-level rules in a simple and efficient manner. The paper is 
organized into five sections.  The generalized association rules 
and upward closure property are introduced in Section 2. Section 
3 presents the post-analysis framework for mining frequent 
itemsets with multiple minimum supports. The experimental 
results are reported in Section 4 and the final section concludes 
the paper. 

2. GENERALIZED ASSOCIATION RULES 
AND UPWARD CLOSURE PROPERTY 

Given a set of transactions D, a set of taxonomies τ and a user-
specified minimum interest (called min-interest), the problem of 
mining gneralized association rules is to find all interesting 
association rules that have support and confidence greater than the 
user-specified minsup and minconf respectively. The problem of 
mining generalized association rules can be decomposed in three 
major steps [10]: 

1. Find all sets of items (itemsets) whose support is greater than 
the user-specified minsup. Itemsets with minsup are called 
frequent itemsets. 

2. Use the frequent itemsets to generate the desired rules. The 
general idea is that, if say, ABCD and AB are frequent 
itemsets, then we can determine if the rule AB→CD holds by 
computing the ratio conf = support(ABCD)/support(AB). If 
conf ≥ minconf, then the rule holds. 

3. Prune all uninteresting rules from this set. 

Among the above processes, we are focusing on how to generate 
frequent itemsets with multiple minimum supports at step one. An 
efficient algorithm [10] for finding all frequent itemsets where the 
items can be from any level of the taxonomy was proposed. 
However, the minsup of all itemsets are the same. Single minsup 
implicitly assumes that all items in different level of taxonomy are 
of the same nature or have similar frequencies in the database. 
Unfortunately, this assumption is definitely invalid in practice. 
Support is upward closed over taxonomy. If an item satisfies the 
minsup, all its ancestors also satisfy the minsup. Owing to this 
upward closure property, the following dilemma exists: 

1. If minsup is set too high, we may not discover rules at lower 
levels, because those rules may not have minsup. Moreover, 
we cannot make sure that those rules have been represented 
at higher levels, because they may not have minconf. 

2. If minsup is set too low, this will cause combinatorial 
explosion, producing too many rules [8]. Most frequent items 
(especially for the high level ones) will be associated with 
one another in all possible ways and many of them are too 
general and ambiguous to the users. 

For example, let us consider the following taxonomy. Item 
Clothes is the root of the taxonomy, and it has two children. They 
are Jackets and Shirts. The support of itemsets {Jackets, Boots1} 
and {Shirts, Boots} are 5% and 10% respectively. Meanwhile, the 
support of {Clothes, Boots} must be ≥ 10%, may be 20%. If there 
are some rules like {Clothes}→{Boots}, {Jackets}→{Boots}, and 
{Shirts}→{Boots} with confidence 50%, 80%, and 90% 
respectively.  Now, we want to find associations with minsup 15%, 

                                                 
1 Boots is an item in another taxonomy 

and minconf 60%. There is no rule being discovered, because low-
level rules do not have minsup while high-level rules do not have 
minconf. If we change minsup to 5%, we find two rules instead. 
Thus, the number of discovered rules grows exponentially, e.g., a 
rule {Clothes}→{Food} with support = 6% and confidence = 
80% is also discovered, but it is not an interesting one. 

3. MINING FREQUENT ITEMSETS WITH 
MULTIPLE MINIMUM SUPPORTS 

Over a taxonomy (or a concept hierarchy), high-level item is 
implicitly having higher support than its lower level items in 
accordance with the upward closure property. Now, suppose item 
x’ is an ancestor of item x, such that the minsup of an itemset {x’} 
should be larger than that of itemset {x}. If minsup({x’}) and 
minsup({x}) denote the minimum supports of itemsets {x’} and 
{x} respectively, then minsup({x’}) > minsup({x}). Thus, we 
define minsup(t) for the independent minsup of an itemset t, where 
t is a variable. The notation minsup (without the bracketed 
information) holds the same meaning in [10], but not for all 
itemsets. It  is just for the itemset whose items are all at the leaf-
level of taxonomy. Hence, minsup(t) ≥ minsup.  

In [10], efficient algorithms for finding large itemsets of 
generalized association rules are based on level-wise search. Let 
k-itemset denote an itemset with k items. All the potential large 
itemsets at level k are generated from large itemsets at level k-1. 
However, under the concept of multiple minimum supports, there 
has a problem in the existing algorithms. For example, consider 
the following itemsets {1}, {2}, and {1, 2} and their minimum 
supports are: 

 minsup({1}) = 10% 
 minsup({2}) = 20% 
 minsup({1, 2}) = 10% 

If we find that itemsets {1} and {1, 2} have enough minsup but 
itemset {2} has not, then itemset {1, 2} cannot be generated using 
the existing algorithms, even though {1, 2} is a large itemset. 
Thus, it is necessary to propose a new method for solving the 
above problem. Now, we have two directions to explore efficient 
mining of generalized association rules with multiple minimum 
supports. One choice is making of a derivative algorithm from the 
existing algorithms in [10], but it may lead to the destruction of 
level-wise characteristic in the algorithms. Another choice is to 
apply a post-processing method to extract out the large itemsets t 
with minsup(t) after generating the itemsets with single minsup, 
where minsup ≤ minsup(t), using the algorithms in [10]. 

It is apparently that the second choice is simple and direct for 
finding frequent itemsets with multiple minimum supports. It is to 
first generate all itemsets S with single minsup using the Cumulate 
algorithm proposed in [10], and then apply a post-processing step 
to extract the set of itemsets � where each itemset � in � has 
independent minsup(�). Note here that all minsup(�) ≥ minsup, so 
� ⊆ S. Now, the problem is how to determine the minimum 
support of each itemset independently and dynamically. Here, we 
propose a post-processing algorithm based on the concept of 
generality for solving the problem, and sketch the whole mining 
process for discovering frequent itemsets with multiple minimum 
supports.  
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Figure 1. A post-analysis framework for mining itemsets with 
multiple minsup 

In accordance with the framework in figure 1, the post-processing 
algorithm can be divided into three parts. The first step is to 
generate a list that pre-computes the generality of each item (no 
matter it is interior node or leaf node item). Second, each itemset 
discovered from the Cumulate algorithm [10] is assigned an 
individual minimum support using the itemset’s generality. 
Finally, it is a simple task to extract out those itemsets that have 
individual minimum support in the last step. 

3.1 Generality 
Generality of an item indicates its level of concept over the 
taxonomy. Before proceeding to introduce generality, let us 
review the background theory of concept generalization. Concept 
generalization of an item means forming a general concept 
description (non-left node items) of a class of objects (leaf node 
items) given a set of concept trees (taxonomies) [6,7,9].  
Intuitively, very different items generalize to an expression that is 
very far from each of them, while identical items generalize to 
themselves.  That calls for the notion of generality of an item. For 
instance, Figure 2 depicts a taxonomy that describes the concept 
hierarchy of drink .  

any_drink

non-alcoholic alcoholic

juice milk

apple_juice orange_juice

beer brandy

VSOP OXFOV  
Figure 2. Taxonomy of drink 

Under the above theory, each item (no matter it is non-leaf node 
or leaf node) is associated to a predicate that describes both 
concepts and objects within the same class. If two items are under 
the same predicate, we call they have common predicate [7]. 
Given items with the following description, (predicate object), we 
can determine their generalized form and generality. Now, let us 
consider the following four items with reference to the concept 
tree in Figure 2. For example, the items mi are in the following 
form 

m1: (drink apple_juice) 
m2: (drink milk) 
m3: (drink orange_juice) 
m4: (drink beer) 

They are similar, as characterized by the same predicate drink . 
Since each of these four items is characterized by the same 
predicate, they can be generalized into general terms at higher 
concept level.  Let us also consider the following generalizations 
G(mi , mj) of two items mi and mj: 

G(m1, m3): (drink juice) 
G(m1, m2): (drink non-alcoholic) 
G(m1, m4): (drink any_drink) 

Note here that juice,  non-alcoholic, and any_drink  are all values 
from the structured domain in Figure 2, and that juice is less 
general than non-alcoholic and non-alcoholic is less general than 
any_drink . While orange_juice is an instance, juice is a 
generalization with 2 instances and any_drink  is a generalization 
with 7 instances.  Thus, we could define the degree of generality 
of an argument g(a), as the ratio of the number of argument’s 
instances to the total number of instances from argument’s 
domain [7], that is:  

a"" of domainthe  ofinstance  of number
a"" ofinstance  of number )g( =a  (1) 

For example, 

g(juice) = 2/7 
g(non-alcoholic) = 3/7 
g(any_drink) = 7/7 

In fact, mining generalized association rules from the items and 
nodes of the taxonomy is a form of using generalized concept to 
represent a rule. In particular, any item in the non-leaf nodes of 
taxonomy is a generalized form of its descendants. This 
generalized form (non-leaf node item) can be measured by its 
generality to indicate its level of concept over the taxonomy. This 
definition applies also to an itemset. The generality of an itemset 
is computed by taking the minimum value of the generalities of all 
its items, because number of count of an itemset is restricted by its 
item that is the less frequent one in the database. Let t be an 
itemset, and xi be an item in t. The generality of t is defined as: 

g(t) = min[g(x1), g(x2),…, g(xn)] (2) 

For example, the generality of itemset t1 and t2: 

t1: (drink apple_juice) (drink alcoholic) 
g(t1) = min(0, 4/7) = 0 

t2: (drink juice) (drink non-alcoholic) 
g(t2) = min(2/7, 3/7) = 2/7 

Note also that the predicate of each item xi can be different. 



  

3.2 Multiple Minimum Supports 
Here, we propose a method to calculate multiple minimum 
supports for different itemsets dynamically from their generalities. 
Recall from previous sub-section that we can determine the 
generality of each itemset separately by traversing the taxonomy 
graph. Nevertheless, in order to increase the efficiency, we can 
pre-compute the generality of each item and the generality of an 
itemset can be deduced from generalities of all its items. Details 
are described below. 

3.2.1 Pre-computing generality of each item 
Rather than calculating each itemset’s generality by traversing the 
taxonomy graph, pre-computing the generality of each item can 
speed up the algorithm significantly. We first generate a list of 
item’s generality. It is a simple task to compute the generality of 
each item (both non-leaf and leaf node). For example: 

g(apple_juice) = 0/7 = 0 
g(juice) = 2/7 
g(non-alcoholic) = 3/7 
g(any_drink) = 7/7 =1 

and so on. 

3.2.2 Computing minimum support for indivdual 
itemset 

Before computing the individual minsup(t), the first task is to 
compute the generality of an itemset. Generality of each itemset 
can be determined from the pre-computed generalities of all its 
items. According to the item’s generality list, any combination in 
itemset can be deduced from its generality, even though its items 
are coming from different taxonomies. For example, we have the 
following itemset: 

t1: (drink apple_juice) (drink alcoholic) 
g(t1) = min(0, 4/7) = 0 

This generality value indicates the level of concept of the itemset. 
The value of generality is ranging from zero to one, where values 
zero and one denote an itemset at the lowest and highest concept 
level respectively over the taxonomies. If the minsup(y) of an 
itemset y at the lowest concept level is β, we call this lower-
minimum support. On the other hand, the minsup(x) of itemset x 
at the highest concept level must be greater than β, because higher 
minimum support for higher level itemsets can prevent 
combinatorial explosion. So, we define lower- and upper- 
minimum support for the lowest and highest concept levels 
itemsets respectively and they will be specified by the users. 

Definition 1: The lower-minimum support β is a user-defined 
parameter. This is minsup for the lowest concept level itemsets. 

Definition 2: The upper-minimum support α is a user-defined 
parameter. This is minsup for the highest concept level itemsets, 
and the value must be greater than lower-minimum support, i.e., α 
> β. 

For an itemset t, its generality is varying from zero to one. Based 
upon α and β, the minimum support for each itemset t is 
computed independently as: 

minsup(t) = β + {(α-β) * g(t)} (3) 

Here, minsup(t) varies from lower-minimum support to upper-
minimum support, depending on the generality of the itemset t. 
For example, if α = 20, β = 10, and g(t) = 0.2, then minsup(t) = 12. 
Subsequently, the itemsets in S can be filtered by their own 
minimum support dynamically. Thus, each extracted itemset � in � 
has its own minsup(�). 

4. SIMULATION RESULTS 
In this section, we evaluate the performance of the proposed 
multiple minsup based generalized association rule algorithm 
against the original one with single minsup [10]. Measurements in 
terms of number of itemsets and number of rules will be reported. 

4.1 Synthetic Data Generation 
The synthetic data generation program was obtained from the 
IBM Almaden Research Center 
[http://www.almaden.ibm.com/cs/quest]. The essential idea 
behind the synthetic data generation program is to first build a 
taxonomy over the items. For any non-leaf node, the number of 
children is picked from a Poisson distribution with mean µ equal 
to fanout F. The program assigns children to the roots, then to the 
nodes at the 2nd level, and so on, till run out of items. The program, 
on the other hand, generates a table of potentially frequent 
itemsets I, and then creates transactions by picking itemsets from I 
and inserting them in the transaction. Details of the program can 
be found in [2,10]. A set of sample parameter values for synthetic 
data generation is shown as follows: 

Table 1. Parameters for synthetic data generation with default 
values 

Parameter Value 
|D| Number of transactions 100,000 
|T| Average size of the transactions 5 

|I| Average size of the maximal potentially 
frequency itemsets 4 

N Number of items 1,000 
R Number of roots 10 
L Number of levels 5 
F Fanout at each node 3 

 
Table 2. Parameters for running the experiments with default 

values 

Algorithm Parameter Value 
Single minsup Minimum support  5% 

Lower-minimum support 5% Multiple minsup 
Upper-minimum support 5% - 15% 
Minimum confidence 80% Both 
r-interest 1.1 

4.2 Performance Analysis 
The performance of the proposed method with multiple minsup is 
evaluated as follows. All parameters are set to the default values 
as shown in Tables 1 and 2. We first ran the algorithm with single 
minsup at 5% and 15%. Then, we fixed the lower-minimum 
support β at 5% and varied the upper-minimum support α from 
5% to 15%. From the results plotted in Figures 3 and 4, the 
number of itemsets/rules found at α = 5% is exactly the same as 



  

that of single minsup fixed at 5%. At α = 15%, the number of 
itemsets/rules is more than single minsup with 15%. It is because 
not all itemsets’ minsup are 15%. In fact, their minsup vary from 
5% to 15%. 

From Figure 5, on the other hand, the percentage of itemsets being 
removed from single minsup = 5% is about 23% when α = 15%, 
while the percentage of rules being removed from single minsup = 
5% is about 41% at α = 15%. This observation indicates that 
removing the itemsets with multiple minsup can effectively 
prevent combinatorial explosion in mining generalized association 
rules, because the number of itemsets was removed by 23% only 
while the number of rules being removed is 41%. This shows that 
the removed itemsets are the major sources in producing a lot of 
meaningless rules in the original algorithm. 

Note here that the execution time of the multiple minsup 
algorithm is similar to the single minsup algorithm, when the 
lower-minimum support is equal to minsup. It is because the post-
analysis step does not have to scan the database, and it only 
applies multiple minsup to remove itemsets from the domain of 
the original algorithm in [10]. In the above case, the execution of 
our approach is very similar to the single minsup algorithm with 
minsup = 5%, no matter how the upper-minimum support is 
changed. It is because the lower-minimum support was fixed. 
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5. CONCLUSIONS 
We have introduced a post-analysis framework for finding 
frequent itemsets with multiple minimum supports from large 
transaction databases. The proposed approach eliminates some of 
the limitations of most existing generalized or multiple level 
association rules mining algorithms, e.g., they make use of single 
minsup or set the value at each level manually. In our approach, 
on the other hand, low-level rules can have enough minsup, while 
the number of high-level rules is prevented from combinatorial 
explosion. 
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