LOGIC PROGRAMMING

- Chapter 9 of the book

Logic

- Propositional Logic
 - Propositions:
 * true and false are propositions.
 * Propositional variables are propositions.
 * If \(p \) and \(q \) are propositions, then:
 - \(p \land q \), \(p \lor q \), \(p \rightarrow q \), \(p \leftrightarrow q \) and \(\neg p \)
 are propositions.
 * Precedence on connectives: \(\neg > \land > \lor > \rightarrow > \leftrightarrow \)
 - Examples: How do you formalize the following English sentences?
 * Provided that Marvin stays Nancy leaves.
 * Marvin stays but Nancy leaves.
 * Marvin stays although Nancy leaves.
 - Each proposition can be interpreted as either true or false.
 * Semantics methods
 * Syntactic methods
 - Propositional logic is decidable.

- Predicate Logic - First order predicate calculus
 - A predicate "is a quantified proposition with variables".
 - Quantifiers are \(\forall \) (for all) and \(\exists \) (exists).
 - A predicate is satisfiable if for some particular assignment of values to its variables the predicate is true.
 - A predicate is valid if for all assignment of values to its variables the predicate is true.
 - Examples:
 * \(parentof(x, y) \) is the same as \(\forall x, \forall y, parentof(x, y) \)
 * \(fatherof(x, y) \)
 * \(speaks(x, y) \)
 * \(prime(n) \)
 * \(\forall x (speaks(x, Japanese)) \)
 * \(\exists x (\exists y (speaks(x, y))) \)
 * "Not every child can read" is equivalent to "There is at least one child who cannot read."
 - The Incompleteness Theorem of Goedel, proven in 1930, demonstrates that first-order logic is in general undecidable.

Paradigm

- Declarative programming paradigm
 - The programmer declares the goals of the computation rather than the detailed algorithm by which these goals can be achieved.
- Logic programming is based on:
 - unification (Robinson, 1965) and
 - resolution (Robinson, 1965)
- Two important features of logic programming are:
 - non-determinism and
 - backtracking
- Popular in artificial intelligence
- Applications:
 - Natural language processing
 - Theorem proving
 - Databases
 - Expert systems
- PROLOG is a logic programming language (Colmerauer, 1972)
• Equivalences can often be used to simplify formulas, to obtain equivalent formulas of a certain syntactic form, also called normal forms.

• An advantage of normal forms is that certain questions can often be easier answered. Conjunctive and disjunctive forms are especially useful in this sense.

• A propositional formula is said to be in conjunctive form if
 1. it contains only the logical connectives \neg, \land and \lor,
 2. no logical connective occurs inside of a negation.
 3. no conjunction occurs inside of a disjunction.

• We speak of a disjunctive form if the last condition is replaced by the condition that no disjunction occur inside any conjunction.

• For example, $\neg(p \land q)$ is neither in disjunctive nor conjunctive form, whereas $p \lor (q \land r)$ is in disjunctive form, but not in conjunctive form.

Logic Programming

• A **Horn clause** $\neg p_1 \lor \cdots \lor \neg p_n \lor q$ is logically equivalent to the implication $(p_1 \land \cdots \land p_n) \rightarrow q$.

• If the implication is known to be true, and one wishes to prove q, then it sufficient to show that p_1, \ldots, p_n are all true; an observation that provides the logical basis for logic programming.

• A **logic program** is a set of Horn clauses, each containing exactly one positive literal (and zero or more negative literals). Such Horn clauses are usually written as backward implications

 $$ q \leftarrow p_1, \ldots, p_n $$

 and called **program rules**. More specifically, q is called the **head** of the rule, and the sequence p_1, \ldots, p_n the **body** of the rule. (Each rule must have a head, but the body may be empty and in that case the rule is called a **fact**. For instance $q \leftarrow$ is a fact.)

Notations

• A Horn clause is written as:

 $$ q \leftarrow p_1, \ldots, p_n $$

 It means the same as:

 $$ \neg p_1 \lor \cdots \lor \neg p_n \lor q $$

• If $n = 0$, the clause is: $q \leftarrow$.

 $q \leftarrow$ is the same as q.

• $\leftarrow p$ is the same as $\neg p$.

• A literal is either a predicate or the negation of a predicate.

• Disjunctions of literals, $L_1 \lor \cdots \lor L_n$, are also called **clauses**.

• Since a conjunction $\alpha_1 \land \cdots \land \alpha_n$ is true under a given truth assignment if, and only if, each formula α_i is true, and each formula is equivalent to a conjunctive (normal) form, we may conclude that each formula can be represented in logically equivalent form as a collection of clauses.

 – For example, $p \iff q$ can be represented by the two clauses, $\neg p \lor q$ and $p \lor \neg q$.

• If a clause contains at most one positive literal, then it is called a **Horn clause**.

 – For example, $\neg p \lor \neg q$ and $\neg p \lor \neg q \lor r$ are Horn clauses, but $p \lor q$ is not a Horn clause.

• An interesting aspect of Horn clauses is that they can be interpreted as program rules and used for computation, as is done in logic programming.
Unification

- **Unification** is a pattern-matching process that determines what particular instantiation can be made to variables to make two predicates equal. This instantiation is called a substitution.

- Examples:
 - How to make `brotherof(John, x)` and `brotherof(y, Bill)` equal?
 With the substitution: `x \rightarrow Bill, y \rightarrow John`
 - How to make `b` and `b` equal?
 With the substitution: `id` (identity)

Logic program

Propositional case

- is a propositional logic program of five rules. The first three rules have an empty body and represent facts.

- In addition to the program rules one needs to specify a goal (or a list of goals) that we want to prove.
 Example: If we want to prove `c`, the goal is `c`.

- A computation with a logic program represents an attempt to derive the goal from the program rules (in an indirect way by deriving a contradiction in the form of the "empty clause" (represented by \(\bot \)) from the negation of the goal).

- The logical inference rule underlying such computations is called resolution.

Logic program

With variables

- is a logic program of six rules. The first five rules have an empty body and represent facts (about the British royal family).

- The last rule defines the **grandparent relation** in terms of the **parent relation**: a person `x` is a grandparent of `y` if there is a third person `z`, such that `x` is the parent of `z`, and `z` the parent of `y`.

- The use of variables, such as `x`, `y`, and `z`, which denote individuals goes beyond the scope of propositional logic, but is crucial for the usefulness of logic programming.

- Informally, the rule `G(x, y) \leftarrow P(x, z), P(z, y)` may be thought of as a schema representing all clauses
obtained by substituting specific values for the variables, e.g.,
\[G(V_i \text{ct}, G, V) \leftarrow P(V_i \text{ct}, E, \text{VII}), P(E, \text{VII}, G, V) \]
x = \text{Vict}, y = E, VII, z = G, V

- In addition to the program rules one needs to specify a **goal** (or a list of goals) that we want to prove. **Example:** If we want to prove that the grandfather of George V is Victoria then the goal is \(G(\text{Victoria}, \text{George V}) \).

- A computation with a logic program represents an attempt to derive the goal from the program rules (in an indirect way by deriving a **contradiction** in the form of the “empty clause” \(\square \) from the negation of the goal).

- The logical inference rule underlying such computations is called **resolution**.

Resolution

Propositional case

- The propositional version of resolution for Horn clauses is:

 \[
 \text{From } \leftarrow p_1, \ldots, p_n \quad \text{and } \quad p_1 \leftarrow q_1, \ldots, q_k
 \]

 \[
 \text{derive } \leftarrow q_1, \ldots, q_k, p_2, \ldots, p_n
 \]

 \[
 \therefore \leftarrow q_1, \ldots, q_k
 \]

- What is the rule if \(n = 1 \) and \(k = 2 \)?

 \[
 \leftarrow p_1
 \]

 \[
 p_1 \leftarrow q_1, q_2
 \]

 \[
 \therefore \leftarrow q_1, q_2
 \]

- What is the rule if \(n = 1 \) and \(k = 0 \)?

 \[
 \leftarrow p_1
 \]

 \[
 p_1 \leftarrow
 \]

Resolution

With variables

- Assume we want to prove that Victoria is the grandmother of George.

- The negation of the above goal is written as a negative clause

 \[
 \leftarrow \neg G(\text{Victoria}, \text{George V})
 \]

- We have also seen that suitable values may be substituted for the variables in the last program rule, so that the head is \(G(\text{Victoria}, \text{George V}) \) (\(x = \text{Vict} \) and \(y = G. V \)).

- This indicates that the given goal may be reduced to subgoals

 \[
 \leftarrow p(\text{Victoria}, \text{Edward VII}), P(\text{Edward VII}, \text{George V})
 \]

- Both subgoals are present as facts and hence can be deleted, which results in the empty clause \(\square \).

- We conclude that the original goal logically follows from the program clauses.
• Goals with variables are also possible.

 Example: If one specifies the goal

 \[\leftarrow G(Victoria, x) \]

 the result of the computation will be a list of all grandchildren of Victoria. A discussion of these aspects of logical programming is beyond the scope of this course.

• SWI prolog.

• On matrix:

 - Save your PROLOG programs in files.

 Example: Let’s consider the `likes.pl` file.

    ```prolog
    likes(john,mary).
    likes(mary,sue).
    likes(mary,tom).
    ```

 We just defined 3 facts in the `likes.pl` file.

 - To run PROLOG type: `pl`, then

  ```prolog
  ?- consult(likes).
  ```

 - You can now play with prolog:

 Who are the people Mary likes?

    ```prolog
    likes(mary,X).
    ```

 \(X \) is a variable and must be written using a capital letter.

 To have all the solutions to the `likes(mary,X)` goal, type `n` (for next) after each solution.

Examples of programs

• Explicit definition 1:

  ```prolog
  f(\alpha) = if \alpha = 0 \text{ then 1 else 5}
  ```

  ```prolog
  PROLOG:
  f(0,1).
  f(X,5) :- X>0.
  ```

• Explicit definition 2:

  ```prolog
  f(\alpha) = 2\alpha
  ```

  ```prolog
  PROLOG:
  g(X,Y) :- Y = 2*X.
  ```
Example:

PROLOG:
speaks(allen, russian).
speaks(bob, english).
speaks(mary, russian).
speaks(mary, english).
talkswith(Person1, Person2) :- speaks(Person1, L), speaks(Person2, L), Person1 \= Person2.

How to know who talks with who?

- **Recursive definition 1:**

 fact(n) = if n=0 then 1 else n*fact(n-1)

 PROLOG:
 factorial(0, 1).
 factorial(N, Result) :- N>0, M is N-1, factorial(M, SubResult), Result is N*SubResult.

- **Recursive definition 2:**

 fib(n) = if n=0 then 1 else if n=1 then 1 else fib(n-1)+fib(n-2)

 PROLOG:
 fib(0, 1).
 fib(1, 1).
 fib(N, R) :- N>1, N1 is N-1, N2 is N-2, fib(N1, R1), fib(N2, R2), R is R1+R2.

Tracing in PROLOG

- To trace a particular function \(f \) use:

 \[\text{trace}(f/2). \]

- Example:

 \[\text{trace}(\text{factorial}/2). \]

<table>
<thead>
<tr>
<th>(\text{factorial}(4, X))</th>
<th>N</th>
<th>M</th>
<th>P</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call: (7) \text{factorial}(4, _L173)</td>
<td>4</td>
<td>_L173</td>
<td>4*9</td>
<td></td>
</tr>
<tr>
<td>Call: (8) \text{factorial}(3, _L131)</td>
<td>3</td>
<td>_L131</td>
<td>3*9</td>
<td></td>
</tr>
<tr>
<td>Call: (9) \text{factorial}(2, _L144)</td>
<td>2</td>
<td>_L144</td>
<td>2*9</td>
<td></td>
</tr>
<tr>
<td>Call: (10) \text{factorial}(1, _L157)</td>
<td>1</td>
<td>_L157</td>
<td>1*9</td>
<td></td>
</tr>
<tr>
<td>Call: (11) \text{factorial}(0, _L170)</td>
<td>0</td>
<td>_L170</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The basic data structure in PROLOG is the list.
- [] is the empty list
- [X, Y] is a list with 2 elements
- [X, Y, Z] is a list with 3 elements
- [X|Y] denotes a list with head X and tail Y.

Some built-in functions on lists:
- append(?List1, ?List2, ?List3)
- length(?List, ?Int)
- reverse(+List1, -List2)
- member(?Elem, ?List)
- sort(+List, -Sorted) (to sort a list – it removes the duplicates)

Definition of functions on lists:
- member:
 member1(X,[X|_]).
 member1(X,[_|Y]) :- member1(X,Y).
- append:
 append([], X, X).
 append([X|T], Y, [X|Z]) :- append(T, Y, Z).