
Overloading, Overriding

Jessie Li
2006-11-10

Outline
Polymorphism, Method binding
Overloading
• Overloading Based on Scopes
• Overloading based on Type Signatures
• Coercion and Conversion
• Redefinition
• Polyadicity
• Multi-Methods
Overriding
• Notating Overriding
• Replacement vs. Refinement
• Deferred Methods
• Overriding vs. Shadowing
• Covariance and Contravariance
• Variations on Overriding

Polymorphism

• Polymorphism translates from Greek as many forms
(poly: many morph: forms)

• Polymorphic variable: a variable that is declared as one type but holds a
value of a different type.
Example :
Class Shape {

…
}
Class Triangle extends Shape {

…
}
Shape s = new Triangle();

• Java: all variables can be polymorphic.
• C++: only pointers and references can be polymorphic.

Method Binding

• Determining the method to execute in response to a message.
• Binding can be accomplished either statically or dynamically.

Static Binding
• Also known as “Early Binding”.
• Resolved at compile time.
• Resolution based on static type of the objects.

Dynamic Binding
• Also known as “Late Binding”.
• Resolved at run-time.
• Resolution based on the dynamic type of the objects.

Scopes and Type Signatures

• What is Scope?
– A scope defines the portion of a program in which a name can be used or
the way in which the name can be used.

•What is Type Signature?
– is a description of the argument types associated with a function, the order
of arguments, and the return type.

Overloading Based on Scopes

• same method name in different scopes.
• the scopes cannot overlap.
• No restriction on semantic similarity.
• No restriction on type signatures.
• Resolution of overloaded names based on class of receiver.

Example
Class Cards {
Draw(){…} //Draw an image of the card on the screen

}

Class Game {
Draw(){…} //Remove a card from the deck of cards

}

Overloading Based on Type Signatures

• same method name with different implementations having different type
signatures.
• Resolution of overloaded names is based on type signatures.
• Occurs in object-oriented languages (C++, Java, C#, Delphi Pascal)
• Occurs in imperative languages (Ada), and many functional languages.

Class Example {
//same name, three different methods
Add(int a) { return a; }
Add(int a, int b) { return a + b; }
Add(int a, int b, int c) { return a + b + c; }

}

• C++ permits any method, procedure, or operator to be overloaded
parametrically.
• Java does not allow operators to be overloaded.
• In Delphi Pascal “overload” must be explicitly declared.

Delphi Pascal: explicitly declare overload

Type
example = class
pubic

function sum(a:Integer): Interger; overload;
function sum(a,b:Integer): Integer; overload;

end;

Overloading and Method Binding

Resolution of Overloaded Methods
• Method binding at compile time.
• Based on static types of argument values.
• Methods can’t be overloaded based on different return types alone.

Class Parent {…}
Class Child : public Parent {…}

void Test (Parent *p) { cout << “In Parent” << endl; }
void Test (Child *c) { cout << “In Child” << endl; }

Parent *value = new Child();
Test(value);
What is the output?
// “In Parent”

Coercion and Conversion

• Used when actual arguments of a method do not match the formal
parameter specifications, but can be converted into a form that will match

• Coercion – an implicitly change in type
Example double x = 2.5;

int i = 3;
x = i + x; //integer i will be converted to real

• Conversion – a change in type explicitly requested by the programmer
Example x = ((double) i) + x;

• When do Overloading and Coercion happen?
Example:1. integer + integer

2. integer + real 1+2+3+4 (overloading only)
3. real + integer 1+4 (combination)
4. real + real 4 (coercion only)

Substitution as Conversion

Resolution rules (when substitution is used as conversion in overloaded
methods)

• If there is an exact match, execute that method.
• If there are more than one matching methods, execute the method that
has the most specific formal parameters.
• If there are two or more methods that are equally applicable, the method
invocation is ambiguous, and a compiler error will be reported.
• If there is no matching method, a compiler error will be reported.

Substitution as Conversion
• Used when there is parent-child relationship between formal and actual
parameters of a method

Dessert void order (Dessert d, Cake c);
void order (Pie p, Dessert d);
void order (ApplePie a, Cake c);

Pie Cake

ApplePie ChocolateCake

order (aDessert, aCake);
order (anApplePie, aDessert)
order (aDessert, aDessert); // compiler error, no match
order (aPie, aCake); // compiler error, two match
order (anApplePie, aChocolateCake)

Redefinition
When a child class defines a method using the same name as a method
in the parent class but with a different type signature.

Class Parent {
public void Test (int a) {…}

}

Class Child extends Parent {
public void Test (int a, int b) {…}

}

Child aChild = new Child();
aChild.Test(5);

How is it different from overloading?
Different type signature in Child class.

Redefinition

Two approaches to resolution
Merge model
• used by Java, C#
• method implementations found in all currently active scopes are merged into a
single collection and the closest match from this list is executed.
• in the example, parent class method will be executed.

Hierarchical model
• used by C++
• each currently active scope is examined in turn to find the closest matching
method
• in the example, compilation error in Hierarchical model
(redefining both methods in the child class solve the error)

Delphi Pascal - can choose which model is used
merge model - if overload modifier is used with child class method.
Hierarchical model - otherwise.

type
Parent = class
Public

procedure Example(A: Integer);
end;
ChildWithOneMethod = class (Parent)
public

procedure Example (A, B: Integer);
end;
ChildWithTwoMethod = class (Parent)
public

procedure Example (A, B: Integer); overload;
end;

var
C1: ChildWithOneMethod; C2: ChildWithTwoMethod;

begin
C1 := ChildWithOneMethod.Create;
C2 := ChildWithTwoMethod.Create;
C1.Example(42); // error:not enough parameters
C2.Example(42); // OK

end

Polyadicity
• What is Polyadicity?

Polyadic function: that can take a variable number of arguments.
printf(“%s”, strvar);

printf(“%s, %d”, strvar, intvar);

• Easy to use, difficult to implement

• Example:
– printf in C and C++;

– writeln in Pascal;

– + operator in CLOS
(+ 2 3)
(+ 2 3 4 5 6)

Optional Parameters

One technique for writing Polyadic functions.
• Provide default values for some parameters.
• If values for these parameters are provided then use them, else use the
default values.
• Found in C++ and Delphi Pascal
function Count (A, B: Integer; C: Integer 0; D: Integer = 0);
begin

Result:= A + B + C + D;
end

begin
Writeln (Count(2, 3, 4, 5)); //can use four arguments
Writeln (Count(2, 3, 4)); // or three
Writeln (Cound(2, 3)); // or two

end

Multi-Methods

• combines the concepts of overloading and overriding.
• Method resolution based on the types of all arguments and not just the
type of the receiver.
• Resolved at runtime.

Resolution of overloaded function by the types of all arguments would introduce problem:
function add (Integer a, Integer b) : Integer { … }
function add (Integer a, Real b) : Real { … }
function add (Real a, Integer b) : Real { … }
function add (Real a, Real b) : Real { … }

Number x = … ; // x and y are assigned some unknown values
Number y = … ;
Real r = 3.14;

Real r2 = add(r, x); // which method to execute?
Real r3 = add(x, y); // is the assignment type-safe?

Multi-Methods

How to solve the problem? Double dispatch
• a message can be used to determine the type of a receiver.

• To determine the types of two values, the same message is sent twice,
using each value as receiver in turn.

• Then execute the appropriate method.

Overloading Based on Values

• overload a method based on argument values and not just types.
• Occurs only in Lisp-based languages - CLOS, Dylan.
• High cost of method selection algorithm.

Example

function sum(a : integer, b : integer) {return a + b;}
function sum(a : integer = 0, b : integer) {return b;}

The second method will be executed if the first argument is the constant
value zero, otherwise the first method will be executed.

Overloading Summary

• Overloading is the compile time matching of a function invocation to one
of many similar named methods

• Two categories of overloading: scope based, type signature based

• Similar concepts: conversion and redefinition

• An alternative to overloading is the creation of polyadic functions

Overriding

A method in child class overrides a method in parent class if they have the
same name and type signature.

Overriding
• classes in which methods are defined must be in a parent-child
relationship.

• Type signatures must match.

• Dynamic binding of messages.

• Runtime mechanism based on the dynamic type of the receiver.

• Contributes to code sharing (non-overriding classes share same
method).

Overriding Notation
Java (smalltalk, object-c)

class Parent {
public int test (int a) { … }

}
class Child extends Parent {
public int test (int a) { … }

}

C++

class Parent {
public:

virtual int test (int a) { … }
}
class Child : public Parent {
public:

int test (int a) { … }
}

Overriding Notation
Object Pascal

type
Parent = object

function test(int) : integer;
end;
Child = object (Parent)

function test(int) : integer; override;
end;

C# (Delphi Pascal)

class Parent {
public virtual int test (int a) { … }

}
class Child : Parent {
public override int test (int a) { … }

}

Replacement vs. Refinement

Overriding as Replacement
• child class method totally overwrites parent class method.

• Parent class method not executed at all.

• Smalltalk, C++.

Overriding as Refinement
• Parent class method executed within child class method.

• Behavior of parent class method is preserved and augmented.

• Simula, Beta

Constructors always use the refinement semantics of overriding.

Replacement

Two major reasons for using replacement:

• in support of code reuse

• as a technique for optimization

Replacement in SmallTalk

In support of code reuse

<------------------ Code Reuse -----------------------> <----------------------->
Overriden method
as replacement

Person
GenerateReport

Trainee
GenerateReport

Director Manager

Replacement in SmallTalk

In support of code optimization

“class boolean” “class True”
{&} right {&} right
self ifTrue: [right ifTrue: [^true]]. ^ right
^ false

“class False”
{&} right
^ false

Boolean
& right

False
& right

True
& right

Refinement in Beta

• Always code from parent class is executed first.
• When ‘inner’ statement is encountered, code from child class is
executed.
• If parent class has no subclass, then ‘inner’ statement does nothing.

Example

class Parent { class Child extends Parent {
public void printResult () { public void printResult () {

print(‘< Parent Result; ’); print(‘Child Result; ’);
inner; inner;
print(‘>’); }

} }
}

Parent p = new Child();
p.printResult();

< Parent Result; Child Result; >

Simulation of Refinement using Replacement
C++
void Parent::example (int a) {

cout << “in parent \n” ; }

void Child::example (int a) {
Parent::example(12); //do parent action
cout << “in child \n”; //then child action }

Java
class Parent {

void example (int a) {
System.out.println(“in parent”);} }

class Child extends Parent {
void example (int a) {

super.example(12); //super refers to parent class
System.out.println(“in child”); } }

Java: super refers to parent class, (Smalltalk, Object-C)
C#: uses keyword base.
Object Pascal, Delphi Pascal: use keyword inherited

Refinement Vs Replacement

Refinement
• Conceptually very elegant mechanism
• Preserves the behavior of parent.

(impossible to write a subclass that is not also a subtype)
• Cannot simulate replacement using refinement.

Replacement
• No guarantee that behavior of parent will be preserved.

(it is possible to write a subclass that is not also a subtype).
• Can be used to support code reuse and code optimization
• Can simulate refinement using replacement.

Deferred Methods

• Defined but not implemented in parent class.
• Also known as abstract method (Java) and pure virtual method (C++)
• Associates an activity with an abstraction at a higher level than it
actually is.

• Used to avoid compilation error in statically typed languages.

Shape
virtual Draw() = 0

Square
Draw()

Triangle
Draw()

Circle
Draw()

Deferred Method Example

C++
class Shape {
public:

virtual void Draw () = 0;
}

Java (C# and Delphi are similar)
abstract class Shape {
abstract public void Draw ();

Smalltalk (Objective-C is similar)
Draw
“ child class should override this”
^ self subclassResponsibility

(Smalltalk does implement the deferred method in parent class but when
invoked will raise an error)

Shadowing

What is shadowing?

class Silly {
private int x; // an instance variable named x

public void example (int x) { // x shadows instance variable
int a = x + 1;
while (a > 3) {

int x = 1; // local variable shadows parameter
a = a – x;

}
}

}

Shadowing vs. Overriding

Child class implementation shadows the parent class implementation of a method.
• A shadowing performed if no keyword provided for indication of overloading
• Resolution is at compile time based on static types
class Parent {
public: // no virtual keyword
void example () { cout << “in Parent” << endl; }

}
class Child : public Parent {
public:
void example () { cout << “in Child” << endl; }

}

Parent *p = new Parent();
p->example(); // in Parent
Child *c new Child();
c->example(); // in Child
p = c; // be careful here!
p->example(); // in Parent

Overriding, Shadowing and Redefinition

Overriding
• Same type signature and method name in both parent and child classes.
• Method declared with language dependent keywords indicating
overriding.

Shadowing
• Same type signature and method name in both parent and child classes.
• Method not declared with language dependent keywords indicating
overriding.

Redefinition
• Same method name in both parent and child classes.
• Type signature in child class different from that in parent class.

Covariance and Contravariance

• An overridden method in child class has a different type signature than
that in the parent class.
• Difference in type signature is in moving up or down the type hierarchy.

• Covariant change - when the type
moves down the type hierarchy in
the same direction as the child class.

• Contravariant change - when the
type moves in the direction opposite
to the direction of subclassing.

Parent
Test(covar:Mammal,
contravar:Mammal):boolean

Child
Test(covar:Cat,
contravar:Animal):boolean

Covariance and Contravariance

• Covariant change to a by-value parameter

Parent aValue = new Child();
aValue.test(new Dog(), new Mammal());// Run-time error

// No compile-time error

• Contravariance change to a by-value parameter
No errors

Covariance and Contravariance

• Covariant change in return type

// No compile-time or Run-Time errors

• Contravariant change in return type

Class Parent {
Mammal test () {

return new Cat();} }
Class Child extends Parent {

Animal test () {
return new Bird();}}

Parent aValue = new child();
Mammal result = aValue.test(); // error: a bird is not a mammal

• C++ allows covariant change in return type.
• Eiffel allows both covariant and contravariant overriding
• Most other languages employ novariance to avoid this problem.

Variation on Overriding

Java
• ‘final’ keyword applied to functions prohibits overriding.
• ‘final’ keyword applied to classes prohibits subclassing.

Example:
Class Parent {

public final void aMethod (int) {…}
}
Class Child extends Parent {

// compiler error, not allowed to override final method
public void aMethod (int) {…}

}

C#
• ‘sealed’ keyword applied to classes prohibits subclassing.
• ‘sealed’ keyword cannot be applied to individual functions.

Overriding Summary

• Method in Child class use the same name and type signature as that in parent
class
• Overriding is resolved at run time. (overloading at compile time)
• Replacement replaces the parent’s code; Refinement combines the code.
• Deferred method is a form of overriding where no implementation in parent and
implementation in child.
• A name can shadow another use of the same name if it temporarily hides
access to the previous meaning.
• A covariant change in parameter or return type is a change the moves down the
class hierarchy in the same direction as the child class.
• A contravariant change moves a parameter or return type up the class hierarchy
in the opposite direction from the child class.

Reference

An Introduction to Object-Oriented Programming, Third
Edition
by Timothy A. Budd

Thanks!

