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ABSTRACT 
In this document we present an investigation on automatically 
generating levels for platform videogames. Common approaches 
for this problem are rhythm based, where input patterns are 
transformed in a valid geometry, and chunk based, where samples 
are humanly created and automatically assembled like a puzzle. 
The proposal hereby presented is to explore this challenge with 
the usage of Genetic Algorithms, facing it as a search problem, in 
order to achieve higher expressivity and less linearity than in 
rhythm based approach and without requiring human creation as it 
happens with the chunk based approach. With simple heuristics 
the system is able to generate playable levels in a small amount of 
time (one level is created in less than a minute) and with 
considerable diversity, as our results show. 

Categories and Subject Descriptors 
I.3.5 [Computer Graphics]: Geometric Algorithms, Languages, 
and Systems, I.3.6 [Computer Graphics]: Interaction 
Techniques. 

General Terms 
Algorithms, Design, Experimentation, Human Factors. 

Keywords 
Platform Videogames, Procedural Content Generation, Automated 
Game Design. 

1. INTRODUCTION 
The automatic generation of content is an area of interest for 
scientists from different domains in Computer Science, such as 
Computer Graphics, Artificial Intelligence, Human-Computer 
Interaction, among others. In this paper we direct our focus to the 
automated generation of content for platform videogames. In 
particular, our goal is to have a system that is able to 
automatically generate levels for this type of games. 

Platform games, such as Super Mario Bros. and Sonic – the 
Hedgehog, represent one particular genre of gaming where the 
user controls a character and guides him through a scenario, 
performing jumps over gaps and confronting opponents, typically 
in a bi-dimensional environment. This type of games was 

particular  popular  in  the  1980’s.  However,  and  maybe  due  to  the  
excessive complexity of contemporary games, platformers are 
starting to appear once again in recent videogame releases, either 
as remakes with improved graphics or as new ideas taking 
advantage of contemporary technology such as the wide spread of 
the Internet. For instance, Nintendo released New Super Mario 
Bros Wii in 2009 and Sega released Sonic 4 in 2010. In addition, 
the videogame Little Big Planet is a good example of a modern 
platformer. 

In this article we focus the problem of automatically generating 
levels for this type of games, with a different approach from those 
that have been used up to the present time. As we will further see 
in Section 2 of this document, where related work is presented, 
some alternatives have been considered for this purpose, such as 
rhythm and chunk based. We present the possibility of 
approaching this challenge as a search problem, tackling it with 
the usage of Genetic Algorithms. The main contribution of this 
project is the approach by itself inside this context, which is new 
and promissory. Associated to that, we also bring the definition of 
heuristics to measure the quality of a level based on the 
geometrical content and interaction parameters. Finally, the 
implemented prototype provides a proof of feasibility of this 
approach. 

Automatically generating this type of game spaces is an 
interesting challenge, in particular because it appears to be a 
simple task, although, it raises several issues and non-trivial 
aspects to be addressed. Though in its main principles it can be 
perceived as generating a generic geometry, such as what happens 
when a system procedurally generates a tree or a building, for 
instance, one has to take into account that the final geometry has 
to represent a challenge, associated to a certain degree of 
difficulty. Also, this type of geometric content is semantically 
sensitive, since a slight change in a small component may 
invalidate the whole content. For instance, a minor random 
change in a valid level can be enough to make it impossible to 
complete. 

Procedural Content Generation can be used in different ways. For 
small companies and independent developers, this may represent a 
solution for the time consuming task of producing game content. 
More generally, the main potential is in the possibility of creating 
an uncountable set of levels, which solves the problem of level 
predictability. For instance, it becomes impossible to go online for 
the level solution and/or secret locations. Finally, this approach 
creates room for designers to conceive new mechanics that adapt 
gameplay to fit competitiveness in ever-changing scenarios. 
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For the purpose of this project, the main inspiration can be found 
in a classical platform videogame released in 1989, entitled Prince 
of Persia (screenshot provided in Figure 1). This game became a 
franchise with several associated releases in the last decade with 
contemporary graphical realism and gameplay, out of the initial 
platform based approach. Regarding the original game, levels 
typically consist of dungeons with corridors, filled with traps and 
gaps. Also, the character occasionally encounters and confronts 
enemies. In this particular game, movement challenges such as 
jumping through gaps and enemy confrontations are kept separate, 
meaning that the player will not be simultaneously moving and 
fighting. In Section 3 of this document we will go into the details 
about the generation process and we will explain the main reason 
of having Prince of Persia as the main inspiration. Nevertheless, it 
is important to state that the technique is not restricted to this 
particular game only. We believe that some of the ideas that will 
be presented can be generalized and used in other platform 
videogames.  

 
Figure 1 – Screenshot of the videogame Prince of Persia 

Even though this work has some aspects in a preliminary stage, 
our results are promissory as we will see in Section 4. This 
approach generates several distinct valid levels. A fast generation 
process of not more than a few seconds provides, with almost 
100% certainty, a valid level with a couple of minutes of 
gameplay. Rising the computation times to one or two minutes 
allow to perfect the generation process with particular good detail. 

2. RELATED WORK 
Procedurally generating game spaces is a topic that informally 
appeared, in a videogame entitled Rogue, back in 1980. The game 
was ASCII based and its geometry was defined recurring to 
simple characters. The idea behind the procedural generation was 
simple: rooms were generated with random positions and sizes 
and were interconnected by corridors also randomly created. 
Despite the popularity this game achieved - Version 4.2 of BSD 
UNIX included Rogue – the approach behind it got unnoticed. 
Interestingly, this topic became popular in recent times, as a way 
to improve “replayability” in games. Regarding independent game 
development, two recent titles are worth mentioning: Minecraft 
and Spelunky. Both have game environments that are procedurally 
generated. In the scientific community, this topic has also been 
approached as we will further see. 
Generating graphical entities, such as buildings, is a problem that 
has been actively approached. As an example, Lipp [6] uses  
L-Systems as an efficient way to automatically generate buildings 
with the possibility of small scale control. Considering nature, the 
examples are numerous, and mature cases can be found back in 

Mandelbrot   and  Hudson’s   ideas   to  generate   terrain  procedurally,  
for instance, the mid-point displacement technique [7]. However, 
ideas such as these are recent in the generation of game spaces. 
The interest behind the topic of automating the generation of 
levels for platform games was pioneered by Compton and Mateas 
[1]. They proposed some principles that could be used to interpret 
and describe platform levels, suitable for an automatic generation 
system. Concerning to movement, authors have defined a model 
with different possible patterns: basic, complex, compound and 
composite. These patterns represent the organization of a level in 
components, which are the platforms and other graphical entities 
that compose a level. They have also presented some ideas about 
the need of having a physics model to perceive possible 
trajectories to identify difficulty, but only as a theoretical need 
without effective concretization.  
Later, Smith et al. [12] presented a more extensive analysis to the 
existing components of a platform level, with the creation of a 
conceptual model that defines associations and a hierarchy for the 
different entities. The used principles follow some of the thoughts 
proposed in the Game Ontology Project (GOP) by Zegal et al. 
[18], where a more generic model was proposed. The defined 
hierarchy by Smith et al. represents an interesting approach to the 
problem and largely covers the concepts. 
The previous work led to the creation of a system that effectively 
generates levels for platform games [13]. This system was later 
named Launchpad. The main idea is that the generation of level 
segments can be based in input patterns that the player needs to 
match. Therefore, when the player is performing well, the 
sequence of actions flows naturally, like playing a melody in a 
piano, following the principle of Flow proposed by 
Csikszentmihalyi [2], which represents the ideal state of 
immersion and control over a certain skill based task. We can 
consider this type of level generation as the rhythm based 
approach. 
In order to evaluate the expressive range of the previous work, the 
same authors proposed a method to analyse the generated content 
[14]. One important aspect that should be retained is that it is not 
only important to examine the number of different levels that are 
generated and the time needed for their creation, but also to 
extract how different and varied the results are. Authors analysed 
the output regarding linearity of the path and the relative difficulty 
measurement. 
Still taking into account the concept of expressivity, the more 
natural way to expand it and add creativity is to include a user or a 
set of users tweaking the output or the process of production. This 
approach is referred as a mixed-initiative, which means that the 
final result is obtained after a cooperative effort of humans and 
machines. Smith et al. [15] presented a prototype system for this 
purpose using constraint programming. 
Finally, Mawhorter and Mateas [8] presented a different approach 
to level generation. They introduced Occupancy Regulated 
Extension (ORE), an algorithm to create a game space based on 
the composition of pre-authored chunks. One of the main 
inspirations behind this work is the previously referred game 
Spelunky. This different idea can be seen as chunk based 
approach. 
Our proposal is an alternative to the generation process, with a 
novel approach based on Genetic Algorithms, a class of 
Evolutionary Computation techniques that mimics real life 
evolution. It is based on natural selection and is commonly used in 
search problems with exponential growth that leads to the 



impossibility of testing all potential solutions. To a more in-deep 
study about Genetic Algorithms we point to Holland [4] and 
Goldberg’s  [3] books. The usage of these principles in Computer 
Graphics and Interaction is not new, and has served various 
purposes. For instance, to point a few, they have been used for the 
reconstruction of missing parts of a real geometric object 
represented by volume data, as proposed by Savchenko and 
Schmitt [11], and to tune the parameters of an existing triangle 
stripping algorithm, as proposed by Lord and Brown [5]. 
However, Genetic Algorithms have not been used as a tool for 
game content generation in the way we propose, in particular a 
game level that presents an associate challenge rather than a 
simple physically valid environment.  
The most similar approaches to what we propose and that have 
been considered to generate game content can be found compiled 
in Togelius et al. study on Search-based Procedural Content 
Generation [16]. This article presents a good overview about 
possible alternatives and important considerations in the topic that 
were particularly relevant in the definition of our system. In 
addition, the authors refer two other interesting works to be 
considered in the scope of this document.  
The first work shows one possible usage for Genetic Algorithms 
in the context of Game Content Generation, proposed by Togelius 
and Schmidhuber [17]. The authors presented a system that 
evolves rule sets for Pacman-like games, converging to alternative 
game variants.  
The second example, proposed by Padersen et al. [10] shows a 
level generation for platform videogames. A simple and linear 
game is constructed randomly based on a small set of parameters, 
such as the average gap size. This simple construction process 
was used in a system where the main goal is to predict user 
emotional state based on the referred parameters. That prediction 
is accomplished with the usage of neural networks based on the 
user profile.  
Next, in Section 3, we will present our approach and justify our 
option of testing Genetic Algorithms as a possible way to generate 
the level, particularly in comparison with other techniques for 
search problems. 

3. APPROACH 

3.1 Main principles and motivation 
As previously referred, the generation process was created 
focusing, in particular, the videogame Prince of Persia. However, 
we believe that, with proper changes, a similar approach can be 
used for a generic platform game. The most significant aspect that 
guided that inspiration is that this game, like many others, has 
areas represented in a grid. Essentially, each level is composed by 
cells, grouped in screens of 10 by 3 cells, as it is possible to see in 
the screenshot provided in Figure 2, where cells have been 
delimited.  

This structure based on cells allows us to think about two main 
aspects. First, it is theoretically possible to generate all 
conceivable levels for this game by generating all possible 
combination of cells. Secondly, it is plausible to construct a 
system that can test a generated level regarding movement (and 
possibly some more aspects) and reasonably perceive its quality. 
Consequently, the main issue is that, in practice, it is not possible 
to test all conceivable levels. A simple screen where, to make it 
simple, cells have only three possibilities (empty, wall block and 
simple floor, as show in the images of Figure 3) consists of 310*3 

combinations and, as a matter of fact, one single screen is not 
much of a level. With this in mind, a stochastic solution appears to 
be plausible as a way to tackle the problem. In one hand, it would 
provide different results in different runs and, in the other hand, it 
provides an adequate sampling on all possible solutions without 
testing them all. Inside stochastic algorithms and techniques, the 
usage of Genetic Algorithms appeared as an interesting solution 
because this is a case where it is not trivial to define an operator to 
explore alternative solutions. There is no direct perceptible 
relationship among levels to be represented in a tree as it is 
complex to define a set of successors for a particular level. Also, 
the previously referred cell based representation for levels can be 
mapped with some ease in a structure that can be used with 
genetic operators, as we will see next.    

 
Figure 2 – Prince of Persia – Division in Grid 

 

 
Figure 3 – Three simple blocks that allow the  

construction of one simple valid level 

3.2 Genetic Algorithms overview 
As stated before, Genetic Algorithms mimic real life evolution, in 
particular based on Darwin’s  theory  of  Natural  Selection.  In  short  
terms, this theory states that living beings that fit best their 
environment are more willing to survive and reproduce. 
Consequently, their features are reinforced in future generations. 
Features change over time due to natural mutations and mutual 
heritance.   
In a Genetic Algorithm, one represents Individuals, coded with 
certain data (genotype) that will manifest some effective features 
(phenotype), in the same way it happens in nature. To represent 
evolution, the system has to be able to perceive the inherent 
quality of each individual. Genetic Algorithms simulate the 
process of evolution by sorting a set of individuals (a generation) 
and making the most scored more whiling to continue to the next 
generation. For this purpose, a Fitness Function is defined to 
evaluate an individual with a certain score. In addition, after a 
new generation is defined, according to some probability 
parameters, mutations are applied and some individuals are 
combined among themselves. 



In the next sub-sections we present a possible level representation, 
a corresponding fitness function and crossover and mutation 
operators.  

3.3 Level Representation 
In this system, an Individual is one possible level representation. 
For this, we adopted a direct genotype/phenotype mapping, which 
means that coded information represents features directly. 
Effectively, the implemented genotype represents the whole grid, 
cell by cell, in a bi-dimensional array. Also, the genotype has 
explicit representations for the starting and ending cell of the 
level. The main advantages of this mapping are locality, because it 
will be possible to perform small changes in a level, and 
representability, as all solutions have a matching representation. 
The main disadvantage that can be pointed is that this is the most 
expensive mapping alternative in what concerns to storage. 
However, considering the original game and spending one byte 
for each cell, even a large level is still representable with a few 
kilobytes, which surely does not represent an issue. 

3.4 Fitness Function 
To calculate the fitness value for each level, we established a set 
of heuristics to represent what a possible human evaluation would 
ponder. The main considered aspects were the following: 

 Path Structure. The level has to represent a good and 
immersive path. In particular, it is important to have 
alternative routes to avoid excessive path linearity, 
which could result in single closed corridors. Also, it is 
important to prevent excessive path branching, resulting 
in a complex maze. To accomplish this, a set of possible 
moves is defined and access to all cells is calculated, 
such as moving to adjacent floor cell or jumping 
through a gap with no more than four cells, among 
others. In addition, a graph is created, thus it is possible 
to perceive the cost (i.e. the number of movements 
needed) to reach any cell from the starting position. This 
gives a brief perception about the level difficulty. To 
achieve a more detailed evaluation one needs a more 
complex alternative. In a previous work [9], we 
proposed a framework to measure difficulty based on 
level structure and gap features, which can be an 
alternative for this purpose. The main issue that this 
may cause is an increase of complexity for the fitness 
function, which will result in higher computation times 
to produce one valid level. 

 Individual cells analysis. Each cell has a particular 
meaning and is analyzed individually. The system 
defines good and bad cells as they make sense or not in 
the level. A wall cell is always valid. A floor cell is only 
valid if it is part of any of the possible paths. Finally, an 
empty cell can be valid if it is used as path (for instance, 
to create a gap to jump over) or if it has aesthetic 
purposes. For the last, we defined that an empty cell has 
aesthetic purpose if it has a valid empty cell in the 
neighborhood. This specific aspect allows the system to 
construct levels with open rooms instead of only closed 
corridors. 

 Ending. The placement of the level ending cell has to 
assure, at first, that the level is valid and, secondly, that 
an interesting challenge was created, consisting on an 

acceptable cost (i.e. a high percentage of the maximum 
identified cost). Starting position was not considered 
because it already has implications on path structure. 

 Aesthetic balance. To keep the generation with some 
visual balance, the usage of each particular block should 
be similar, meaning that the number of used blocks of 
each type should be about the same. As we stated on 
individual cell analysis, a wall block is always valid, so 
this balance forces the evolution process to avoid an 
excessive use of this type of blocks. 

 Level usage. The level is supposed to take good use of 
the provided space, by the means that the full path 
length should be proportional to the number of cells. 
This specific aspect reinforces the aesthetic balance, as 
it favors the definition of long paths, strengthens the 
definition of a good ending point and supports low 
branched paths. 

These heuristics were applied independently from each other to 
extract a specific score. To keep control over the range of values, 
every obtained score is set between zero and one. The extracted 
individual scores are weighted according to a set of parameters to 
generate the final fitness value, also normalized to a value 
between zero and one. 

3.5 Genetic Operators 
As stated, genetic operators typically consist on mutation and 
crossover. This sub-section covers the basis of their 
implementation in our system. 

3.5.1 Mutation 

Mutation occurs with a certain probability and can be applied in 
many forms. It is important that mutations are able to make an 
individual diverge sufficiently to skip local maxima. In our case, 
we considered the smallest possible mutation as being the change 
of one particular cell in the grid to another value. Basically, the 
algorithm picks a random cell and sets it to a random value. In our 
tests we observed that changing only one cell represents a minor 
variation and does not provide enough divergence, so one 
mutation consists on more than one change at a time. The number 
of changes in each mutation can be tuned, as it is a system 
parameter. We also implemented two types of mutation, defined 
as Random and Selective Mutation. Random Mutation simple 
changes some of the cells in a level, as previously stated. In 
Selective Mutation we consider that some cells are more suitable 
to be changed. For instance, isolated floor cells are not aesthetic 
so they are more suitable to be changed. Also, cells that are not in 
the main path and are not accessible by any way are more likely to 
be mutated to a wall block. Naturally, other mutations can be 
considered as possible ways to improve this operator. 

3.5.2 Crossover 

Crossover is the operation that blends two (or more) individuals in 
a new one, as a mimic to reproduction in real life. This operator 
was implemented to cross elements in pairs. Crossing more than 
two elements was tested without relevant improvement on the 
final results. Due to the level structure, based in cells, a simple 
crossing mechanism can consist on constructing each new 
individual by taking random cells from another two. However, 
cells by themselves do not represent much information and should 



be considered in relation to the whole level, in particular, to its 
neighborhood. So, we decided to take mainly into account the 
more relevant paths that exist in each individual to be crossed, 
rather than only the isolated cells. When two levels (individuals) 
are crossed, the main path of the first is kept intact, the main path 
of the second is also kept intact as long as it does not contradict 
the first one and, finally, other cells are chosen randomly from 
one or the other individual. A visual representation of the 
crossover mechanism is provided in Figure 4 for a small level of 2 
by 2 screens. We start by presenting two different levels in the 
first row and their corresponding path on the second row. The 
third row presents the overlap of both paths. Cells that correspond 
to path in both levels are highlighted and, as stated, the attributed 
value corresponds to the first individual. In the fourth row we 
added the cells that have the same content in both levels to 
represent the granted content after the crossover operation is done. 
Final row presents a possible result by filling the remaining cells 
taking the value randomly from the first or the second individual, 
as previously explained. This crossover operator performed better 
than the simple random selection of cells previously referred, 
which had a very similar behavior to the mutation operator. 

 
Figure 4 – Example of the crossover operation 

top row – original levels 
second row – corresponding path for both levels 

third row – path overlap 
fourth row – common cells added 

last row – possible final combination 

3.6 Level post-processing 
We have focused the generation of valid levels by means of 
setting the adequate blocks in positions that, in the end, can be 
interpreted as the level geometry. As an example, Figure 5 
presents a level geometry created in our system. However, there is 
more to consider in a level besides its main geometry. In the 

particular case of the reference game Prince of Persia, scenarios 
have visual complementary elements on the walls such as torches 
and windows. This provides aesthetic richness to the scenario. 
Also, other gaming entities should complement the scenario to 
make a more diverse and complete gameplay, such as enemies 
and traps. 
These entities are added in a post-processing stage, defined by a 
simple set of rules. For instance, in each occurrence of n floor 
cells in a row we add an enemy or any particular one-celled trap. 
Currently, those traps can be floor spikes and intermittent blades. 
As it is possible to see in Figure 6, this final step produces a good 
complement to the initial processing phase. This culminates in 
something that could be, in fact, one interesting level to play. 

 
Figure 5 – Example of the generated level geometry 

(Green door with arrow = Start position; Red door = Goal) 
 

 
Figure 6 – Example of post processing in one level, 

automatically adding gaming entities 
Other heuristic rules might be applicable such as adding life 
potions in some optional path cells, substituting empty cells with 
loose floor if they are adjacent to a floor cell or adding gates and a 
respective trigger when a path branching is identified in the graph, 
among others. 

4. RESULTS 
As previously referred, we implemented a system that does the 
generation process taking into account the guiding enumerated 
principles. To give a better notion we provide a screenshot of the 
prototype interface in Figure 7. In this section we will look at the 
results that can be achieved with our approach.  



 
Figure 7 – Prototype screenshot 

Our prototype is a program that allows the user to individually 
configure a set of parameters related to the implemented Genetic 
Algorithm, such as number of individuals, number of generations 
and probabilities for crossover and mutation. Our main tests 
consisted on the following: 

 Comparisons on parameter set and theoretical output 
quality, based on the fitness function; 

 Comparisons on generation time vs. level size; 

 Ad-hoc observation of the results and informal 
perceptions. 

In the first tests, we wanted to understand the differences caused 
by changing parameterization in relation to output quality, based 
on the fitness function, and the required time to achieve it. The 
objective was to perceive the appropriate parameters for further 
tests and to extract possible limitations. For this, our tests are 
based on changing the population dimension and the number of 
generations allowed in the evolution process. A grid of 4 by 5 
screens was considered as it represents a reasonable sized level 
compared with the original reference game. Our application 
computed 20 evolution processes for each considered combination 
of population size and number of generations in an Intel Q9300 
machine running at 2.5 GHz with 4GB RAM. Table 1 shows the 
average computational time for those runs, associated to the 
average achieved fitness. Corresponding standard deviations are 
also presented. Fitness was normalized to values between zero and 
one, considering the whole range of values. Theoretically, the 
worse possible level is scored zero and the best level has a score 
of one. 
Expected trends are extracted directly, such as the increment on 
the fitness with the growth on population or number of 
generations. Naturally, increasing any of these values results on in 
a higher computation time. Within that aspect, the worse 
presented case on the table shows a computation time of less than 
2 minutes for an average fitness of .93. This represents, in 
practice, correct and reliable levels that could be blindly delivered 
to the user. Typically, levels with a score over .85 have no 
relevant flaws or inconsistent content and present an adequate 
challenge. Without compromising the final results, time can be 
lowered to less than one minute, resulting in an average fitness of 
.92. Finally, considering a computational time of no more than 
half a minute, values near .9 are still achievable. Particular large 
values besides those on the table were tested as well to verify 
scalability. For instance, generation processes were tested with 
5000 generations of 500 simultaneous individuals, resulting in 
average computation times of approximately 12 minutes. 

However, convergence was obtained in the first 2000 generations, 
for a fitness value of .99 so, in fact, there was no need of such 
computation. 

Table 1 – Average fitness and generation time for  
number of generations and individuals parameterization and 

corresponding standard deviations.  
(Time t in seconds; Fitness f in 0 to 1 range) 

Generations 
Population 

200 500 1000 2000 

20 
individuals 

𝜇௧ = 0.5 
𝜎௧ = 0.1 
𝜇 = 0.72 
𝜎 = 0.04 

𝜇௧ = 1.7 
𝜎௧ = 0.6 
𝜇 = 0.77 
𝜎 = 0.06 

𝜇௧ = 4.5 
𝜎௧ = 1.9 
𝜇 = 0.82 
𝜎 = 0.05 

𝜇௧ = 13 
𝜎௧ = 4.5 
𝜇 = 0.87 
𝜎 = 0.04 

50 
individuals 

𝜇௧ = 1.6 
𝜎௧ = 0.4 
𝜇 = 0.76 
𝜎 = 0.03 

𝜇௧ = 5.6 
𝜎௧ = 3.3 
𝜇 = 0.85 
𝜎 = 0.04 

𝜇௧ = 14 
𝜎௧ = 5.4 
𝜇 = 0.86 
𝜎 = 0.04 

𝜇௧ = 26 
𝜎௧ = 10 
𝜇 = 0.89 
𝜎 = 0.03 

100 
individuals 

𝜇௧ = 3.3 
𝜎௧ = 1 
𝜇 = 0.81 
𝜎 = 0.05 

𝜇௧ = 9.5 
𝜎௧ = 3.3 
𝜇 = 0.84 
𝜎 = 0.06 

𝜇௧ = 19 
𝜎௧ = 3.8 
𝜇 = 0.89 
𝜎 = 0.06 

𝜇௧ = 51 
𝜎௧ = 22.5 
𝜇 = 0.92 
𝜎 = 0.04 

200 
individuals 

𝜇௧ = 7.5 
𝜎௧ = 3 
𝜇 = 0.83 
𝜎 = 0.07 

𝜇௧ = 23 
𝜎௧ = 12 
𝜇 = 0.87 
𝜎 = 0.05 

𝜇௧ = 46 
𝜎௧ = 17 
𝜇 = 0.92 
𝜎 = 0.05 

𝜇௧ = 102 
𝜎௧ = 39 
𝜇 = 0.93 
𝜎 = 0.06 

 
For our second test, we simply wanted to state the speed of the 
program and the consequences of generating larger spaces. For 
this, we ran a set of tests with fixed parameterizations (1000 
generations of 50 individuals) and measured the generation time 
against level dimension. Again, a set of 20 tests was computed for 
each combination using the same computer. The average measure 
time of each level size is presented on Table 2.  
Table 2 – Measured processing times for a certain level size and 

the corresponding standard deviation. 
(Time t in seconds)  

Horizontal 
Vertical 

4 screens 5 screens 6 screens 

4 screens 𝜇௧ = 11 
𝜎௧ = 4.4 

𝜇௧ = 13.6 
𝜎௧ = 6.1 

𝜇௧ = 12.3 
𝜎௧ = 5.2 

5 screens 𝜇௧ = 12.9 
𝜎௧ = 5.5 

𝜇௧ = 14.6 
𝜎௧ = 7.6 

𝜇௧ = 14.9 
𝜎௧ = 6.8 

6 screens 𝜇௧ = 13.2 
𝜎௧ = 6.2 

𝜇௧ = 16.2 
𝜎௧ = 7.4 

𝜇௧ = 13.7 
𝜎௧ = 5.8 

 
As previously referred, the fitness function that was defined to 
evaluate each level takes into account the study of possible paths 
inside it. As path calculation may become particularly complex, 
the main objective of this test was to identify possible limitations 
and bottle necks. However, computational complexity seems to be 
linear with level dimension and no particular limitation in this 
aspect was identified. Naturally, a double sized level will not only 
result on twice the computational time because more generations 
will be needed to achieve an acceptable fitness value, as more 
transformations are expected to occur. Still, it is plausible to think 
on generating slightly larger spaces without major concerns.  



Our final observations are clearly more subjective but are still 
important and allow perceiving some important characteristics, 
benefits and issues. In Figure 8 we present a set of examples 
obtained from our prototype without any particular 
parameterization (size was chosen to best fit a column in the 
article and generation time is less than a minute). Basically, we 
ran the system four consecutive times and those were the obtained 
levels without any particular selection, post-processing or tune. 
Relevant empiric common sense insights can be stated. A first 
impression allows perceiving that outputs are valid game spaces 
in their basic structure, which is the main goal of all the work. 
Several other outputs were generated and, in the end, we only 
came with a few sporadic cases of unrealistic levels, even though 
they were all possible to complete. Also, it is particularly 
interesting to perceive diversity in the provided examples. The 
first level presents a branched path with a maze of tunnels. This 
opposes especially the fourth example, where the path is nearly 
direct. Movement trend is also different in each case. Last level 
focuses mostly on running but, in the third case, there is a strong 
emphasis on climbing after an initial long run. Open halls are also 
created to serve different visual purposes. In the second level, the 
major hall on the left represents a possible big dramatic fall for the 
avatar. In the third and fourth examples the halls represent high 
ceiled zones. Finally, even the global structure is varied. For 
instance, in the second case, practically the last column of screens 
could be discarded, as the action takes place on the rest of the 
game space. In the last two cases, the top row screens are the ones 
that could be possibly discarded without any particular impact on 
gameplay or level appearance.  
All these aspects allow us to perceive that this method represents 
an interesting way to provide different, varied and playable 
platform levels. 

5. CONCLUSIONS AND FUTURE WORK 
In this document we presented our study on the automatic 
generation of game spaces for platform videogames with the 
usage of Genetic Algorithms. Our main objective of proving this 
as a potential alternative for the generation of game spaces for 
platform levels was successful. Our results are levels that are valid 
and that could be exported to an engine and played. The implicit 
rules forced by the calculations in the fitness function makes the 
process to converge, at least, to a physically valid level in a matter 
of seconds. Considering a processing time of not more than a 
couple of minutes the outputs are not only valid levels but have 
also a balanced structure representing a good challenge.  
Comparing to the existing techniques for similar purposes, the 
presented approach brings advantages concerning level variety. 
Existing alternatives, presented in Section 2, focuses side scrolling 
action, typically from left to right. In our levels, the solution is not 
straight and sometimes not even unique, which allows usage in 
other variants of platform gaming. Still, simple side scrolling 
action levels can be achieved with proper parameterization. In 
addition, the graph structure allows level complementation. For 
instance, optional path zones may have bonus entities that the 
character may gather.   
In order to make more effective tests to the produced levels and 
extract several user related aspects, a simple game prototype is 
planned for further developments. This will allow retrieving 
users’   opinions   as  well   as  gameplay  metrics that may tweak the 
generation process as a feedback system. 

 
 

 
 

 
 

 
Figure 8 – Example of generated levels 



We verified fast convergence to valid solutions with no particular 
flaws that would render a level unsuitable to be blindly provided 
to a user. Still, this fast convergence represents the algorithm 
going in the direction of a local maximum. For the main purposes 
of the created system, which is the fast generation (similar to 
videogame loading time) of a possible level to be immediately 
played, it does not represent a problem. The system focuses in one 
direction and finds a good solution based on that. 
Some of the presented tests focused performance, namely to 
extract generation time under certain conditions. Even though it is 
possible to achieve interesting results in short times, the obtained 
levels with more computation time showed better features in 
individual details. One possible aspect to consider in the future to 
improve the obtained generation times is the usage of parallel 
computing, which is not new on Genetic Algorithms. In fact, 
effective implementations already exist, such as the Parallel 
Genetic Algorithm Library (http://sourceforge.net/projects/pgal/) 
available at the Source Forge community. 
Likewise, one aspect to consider in the future, even though it does 
not provide direct improvement on the results, is to expand the set 
of objects in the system. We plan to add other gaming entities 
available in Prince of Persia, such as lose floors, opening and 
closing gates, among others. However, this is envisioned to be a 
post-processing step, such as the presented case of the already 
considered additional gaming entities. Controlling this process 
may also allow adjusting the level difficulty within a certain 
range, by adding more or less entities. Naturally, it is also 
important to verify that the added entities do not invalidate the 
level. For this, simple concepts may be applied. For instance, any 
empty cell where the user is supposed to fall may be transformed 
in a loose floor. As another example, when the path splits in two, 
this post-processing step may create a closed gate in one branch 
and a switch to open it in the other one. 
In the same manner, more aesthetic items can be considered, such 
as torches, windows, hanging rugs, among others. To give 
practical use to the presented work, and since the system is able to 
generate levels that could be played, it is planned to set a way for 
those levels to be effectively played. One possible way is to 
export the outputs to the original Prince of Persia format. This 
alternative is possible and there are even communities where the 
original game is customized with user levels, sprites, etc. For 
instance, the Princed Project community provides several tools 
for the process (http://www.princed.org/). 
Finally, it is important to refer that improvements can always be 
achieved in the future by doing optimization in the Genetic 
Algorithm itself, with additional parameter tuning and by adapting 
employed evolution techniques, namely the fitness function and 
mutation and crossover operators. We also intend to tackle these 
aspects in the near future gathering additional experts knowledge. 
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