
Automatic level generation for platform
videogames using Genetic Algorithms

Fausto Mourato
Dep. Sistemas e Informática

Escola Superior de Tecnologia
Instituto Politécnico de Setúbal
2910-761 Setúbal – Portugal

+351 265 790 000
fmourato@est.ips.pt

Manuel Próspero dos Santos
CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
2829-516 Caparica – Portugal

+351 212 948 536
ps@di.fct.unl.pt

Fernando Birra
CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
2829-516 Caparica – Portugal

+351 212 948 536
fpb@di.fct.unl.pt

ABSTRACT
In this document we present an investigation on automatically
generating levels for platform videogames. Common approaches
for this problem are rhythm based, where input patterns are
transformed in a valid geometry, and chunk based, where samples
are humanly created and automatically assembled like a puzzle.
The proposal hereby presented is to explore this challenge with
the usage of Genetic Algorithms, facing it as a search problem, in
order to achieve higher expressivity and less linearity than in
rhythm based approach and without requiring human creation as it
happens with the chunk based approach. With simple heuristics
the system is able to generate playable levels in a small amount of
time (one level is created in less than a minute) and with
considerable diversity, as our results show.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Geometric Algorithms, Languages,
and Systems, I.3.6 [Computer Graphics]: Interaction
Techniques.

General Terms
Algorithms, Design, Experimentation, Human Factors.

Keywords
Platform Videogames, Procedural Content Generation, Automated
Game Design.

1. INTRODUCTION
The automatic generation of content is an area of interest for
scientists from different domains in Computer Science, such as
Computer Graphics, Artificial Intelligence, Human-Computer
Interaction, among others. In this paper we direct our focus to the
automated generation of content for platform videogames. In
particular, our goal is to have a system that is able to
automatically generate levels for this type of games.

Platform games, such as Super Mario Bros. and Sonic – the
Hedgehog, represent one particular genre of gaming where the
user controls a character and guides him through a scenario,
performing jumps over gaps and confronting opponents, typically
in a bi-dimensional environment. This type of games was

particular popular in the 1980’s. However, and maybe due to the
excessive complexity of contemporary games, platformers are
starting to appear once again in recent videogame releases, either
as remakes with improved graphics or as new ideas taking
advantage of contemporary technology such as the wide spread of
the Internet. For instance, Nintendo released New Super Mario
Bros Wii in 2009 and Sega released Sonic 4 in 2010. In addition,
the videogame Little Big Planet is a good example of a modern
platformer.

In this article we focus the problem of automatically generating
levels for this type of games, with a different approach from those
that have been used up to the present time. As we will further see
in Section 2 of this document, where related work is presented,
some alternatives have been considered for this purpose, such as
rhythm and chunk based. We present the possibility of
approaching this challenge as a search problem, tackling it with
the usage of Genetic Algorithms. The main contribution of this
project is the approach by itself inside this context, which is new
and promissory. Associated to that, we also bring the definition of
heuristics to measure the quality of a level based on the
geometrical content and interaction parameters. Finally, the
implemented prototype provides a proof of feasibility of this
approach.

Automatically generating this type of game spaces is an
interesting challenge, in particular because it appears to be a
simple task, although, it raises several issues and non-trivial
aspects to be addressed. Though in its main principles it can be
perceived as generating a generic geometry, such as what happens
when a system procedurally generates a tree or a building, for
instance, one has to take into account that the final geometry has
to represent a challenge, associated to a certain degree of
difficulty. Also, this type of geometric content is semantically
sensitive, since a slight change in a small component may
invalidate the whole content. For instance, a minor random
change in a valid level can be enough to make it impossible to
complete.

Procedural Content Generation can be used in different ways. For
small companies and independent developers, this may represent a
solution for the time consuming task of producing game content.
More generally, the main potential is in the possibility of creating
an uncountable set of levels, which solves the problem of level
predictability. For instance, it becomes impossible to go online for
the level solution and/or secret locations. Finally, this approach
creates room for designers to conceive new mechanics that adapt
gameplay to fit competitiveness in ever-changing scenarios.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Short presentation, ACE'2011- Lisbon, Portugal
Copyright 2011 ACM 978-1-4503-0827-4/11/11…$10.00.

For the purpose of this project, the main inspiration can be found
in a classical platform videogame released in 1989, entitled Prince
of Persia (screenshot provided in Figure 1). This game became a
franchise with several associated releases in the last decade with
contemporary graphical realism and gameplay, out of the initial
platform based approach. Regarding the original game, levels
typically consist of dungeons with corridors, filled with traps and
gaps. Also, the character occasionally encounters and confronts
enemies. In this particular game, movement challenges such as
jumping through gaps and enemy confrontations are kept separate,
meaning that the player will not be simultaneously moving and
fighting. In Section 3 of this document we will go into the details
about the generation process and we will explain the main reason
of having Prince of Persia as the main inspiration. Nevertheless, it
is important to state that the technique is not restricted to this
particular game only. We believe that some of the ideas that will
be presented can be generalized and used in other platform
videogames.

Figure 1 – Screenshot of the videogame Prince of Persia

Even though this work has some aspects in a preliminary stage,
our results are promissory as we will see in Section 4. This
approach generates several distinct valid levels. A fast generation
process of not more than a few seconds provides, with almost
100% certainty, a valid level with a couple of minutes of
gameplay. Rising the computation times to one or two minutes
allow to perfect the generation process with particular good detail.

2. RELATED WORK
Procedurally generating game spaces is a topic that informally
appeared, in a videogame entitled Rogue, back in 1980. The game
was ASCII based and its geometry was defined recurring to
simple characters. The idea behind the procedural generation was
simple: rooms were generated with random positions and sizes
and were interconnected by corridors also randomly created.
Despite the popularity this game achieved - Version 4.2 of BSD
UNIX included Rogue – the approach behind it got unnoticed.
Interestingly, this topic became popular in recent times, as a way
to improve “replayability” in games. Regarding independent game
development, two recent titles are worth mentioning: Minecraft
and Spelunky. Both have game environments that are procedurally
generated. In the scientific community, this topic has also been
approached as we will further see.
Generating graphical entities, such as buildings, is a problem that
has been actively approached. As an example, Lipp [6] uses
L-Systems as an efficient way to automatically generate buildings
with the possibility of small scale control. Considering nature, the
examples are numerous, and mature cases can be found back in

Mandelbrot and Hudson’s ideas to generate terrain procedurally,
for instance, the mid-point displacement technique [7]. However,
ideas such as these are recent in the generation of game spaces.
The interest behind the topic of automating the generation of
levels for platform games was pioneered by Compton and Mateas
[1]. They proposed some principles that could be used to interpret
and describe platform levels, suitable for an automatic generation
system. Concerning to movement, authors have defined a model
with different possible patterns: basic, complex, compound and
composite. These patterns represent the organization of a level in
components, which are the platforms and other graphical entities
that compose a level. They have also presented some ideas about
the need of having a physics model to perceive possible
trajectories to identify difficulty, but only as a theoretical need
without effective concretization.
Later, Smith et al. [12] presented a more extensive analysis to the
existing components of a platform level, with the creation of a
conceptual model that defines associations and a hierarchy for the
different entities. The used principles follow some of the thoughts
proposed in the Game Ontology Project (GOP) by Zegal et al.
[18], where a more generic model was proposed. The defined
hierarchy by Smith et al. represents an interesting approach to the
problem and largely covers the concepts.
The previous work led to the creation of a system that effectively
generates levels for platform games [13]. This system was later
named Launchpad. The main idea is that the generation of level
segments can be based in input patterns that the player needs to
match. Therefore, when the player is performing well, the
sequence of actions flows naturally, like playing a melody in a
piano, following the principle of Flow proposed by
Csikszentmihalyi [2], which represents the ideal state of
immersion and control over a certain skill based task. We can
consider this type of level generation as the rhythm based
approach.
In order to evaluate the expressive range of the previous work, the
same authors proposed a method to analyse the generated content
[14]. One important aspect that should be retained is that it is not
only important to examine the number of different levels that are
generated and the time needed for their creation, but also to
extract how different and varied the results are. Authors analysed
the output regarding linearity of the path and the relative difficulty
measurement.
Still taking into account the concept of expressivity, the more
natural way to expand it and add creativity is to include a user or a
set of users tweaking the output or the process of production. This
approach is referred as a mixed-initiative, which means that the
final result is obtained after a cooperative effort of humans and
machines. Smith et al. [15] presented a prototype system for this
purpose using constraint programming.
Finally, Mawhorter and Mateas [8] presented a different approach
to level generation. They introduced Occupancy Regulated
Extension (ORE), an algorithm to create a game space based on
the composition of pre-authored chunks. One of the main
inspirations behind this work is the previously referred game
Spelunky. This different idea can be seen as chunk based
approach.
Our proposal is an alternative to the generation process, with a
novel approach based on Genetic Algorithms, a class of
Evolutionary Computation techniques that mimics real life
evolution. It is based on natural selection and is commonly used in
search problems with exponential growth that leads to the

impossibility of testing all potential solutions. To a more in-deep
study about Genetic Algorithms we point to Holland [4] and
Goldberg’s [3] books. The usage of these principles in Computer
Graphics and Interaction is not new, and has served various
purposes. For instance, to point a few, they have been used for the
reconstruction of missing parts of a real geometric object
represented by volume data, as proposed by Savchenko and
Schmitt [11], and to tune the parameters of an existing triangle
stripping algorithm, as proposed by Lord and Brown [5].
However, Genetic Algorithms have not been used as a tool for
game content generation in the way we propose, in particular a
game level that presents an associate challenge rather than a
simple physically valid environment.
The most similar approaches to what we propose and that have
been considered to generate game content can be found compiled
in Togelius et al. study on Search-based Procedural Content
Generation [16]. This article presents a good overview about
possible alternatives and important considerations in the topic that
were particularly relevant in the definition of our system. In
addition, the authors refer two other interesting works to be
considered in the scope of this document.
The first work shows one possible usage for Genetic Algorithms
in the context of Game Content Generation, proposed by Togelius
and Schmidhuber [17]. The authors presented a system that
evolves rule sets for Pacman-like games, converging to alternative
game variants.
The second example, proposed by Padersen et al. [10] shows a
level generation for platform videogames. A simple and linear
game is constructed randomly based on a small set of parameters,
such as the average gap size. This simple construction process
was used in a system where the main goal is to predict user
emotional state based on the referred parameters. That prediction
is accomplished with the usage of neural networks based on the
user profile.
Next, in Section 3, we will present our approach and justify our
option of testing Genetic Algorithms as a possible way to generate
the level, particularly in comparison with other techniques for
search problems.

3. APPROACH

3.1 Main principles and motivation
As previously referred, the generation process was created
focusing, in particular, the videogame Prince of Persia. However,
we believe that, with proper changes, a similar approach can be
used for a generic platform game. The most significant aspect that
guided that inspiration is that this game, like many others, has
areas represented in a grid. Essentially, each level is composed by
cells, grouped in screens of 10 by 3 cells, as it is possible to see in
the screenshot provided in Figure 2, where cells have been
delimited.

This structure based on cells allows us to think about two main
aspects. First, it is theoretically possible to generate all
conceivable levels for this game by generating all possible
combination of cells. Secondly, it is plausible to construct a
system that can test a generated level regarding movement (and
possibly some more aspects) and reasonably perceive its quality.
Consequently, the main issue is that, in practice, it is not possible
to test all conceivable levels. A simple screen where, to make it
simple, cells have only three possibilities (empty, wall block and
simple floor, as show in the images of Figure 3) consists of 310*3

combinations and, as a matter of fact, one single screen is not
much of a level. With this in mind, a stochastic solution appears to
be plausible as a way to tackle the problem. In one hand, it would
provide different results in different runs and, in the other hand, it
provides an adequate sampling on all possible solutions without
testing them all. Inside stochastic algorithms and techniques, the
usage of Genetic Algorithms appeared as an interesting solution
because this is a case where it is not trivial to define an operator to
explore alternative solutions. There is no direct perceptible
relationship among levels to be represented in a tree as it is
complex to define a set of successors for a particular level. Also,
the previously referred cell based representation for levels can be
mapped with some ease in a structure that can be used with
genetic operators, as we will see next.

Figure 2 – Prince of Persia – Division in Grid

Figure 3 – Three simple blocks that allow the

construction of one simple valid level

3.2 Genetic Algorithms overview
As stated before, Genetic Algorithms mimic real life evolution, in
particular based on Darwin’s theory of Natural Selection. In short
terms, this theory states that living beings that fit best their
environment are more willing to survive and reproduce.
Consequently, their features are reinforced in future generations.
Features change over time due to natural mutations and mutual
heritance.
In a Genetic Algorithm, one represents Individuals, coded with
certain data (genotype) that will manifest some effective features
(phenotype), in the same way it happens in nature. To represent
evolution, the system has to be able to perceive the inherent
quality of each individual. Genetic Algorithms simulate the
process of evolution by sorting a set of individuals (a generation)
and making the most scored more whiling to continue to the next
generation. For this purpose, a Fitness Function is defined to
evaluate an individual with a certain score. In addition, after a
new generation is defined, according to some probability
parameters, mutations are applied and some individuals are
combined among themselves.

In the next sub-sections we present a possible level representation,
a corresponding fitness function and crossover and mutation
operators.

3.3 Level Representation
In this system, an Individual is one possible level representation.
For this, we adopted a direct genotype/phenotype mapping, which
means that coded information represents features directly.
Effectively, the implemented genotype represents the whole grid,
cell by cell, in a bi-dimensional array. Also, the genotype has
explicit representations for the starting and ending cell of the
level. The main advantages of this mapping are locality, because it
will be possible to perform small changes in a level, and
representability, as all solutions have a matching representation.
The main disadvantage that can be pointed is that this is the most
expensive mapping alternative in what concerns to storage.
However, considering the original game and spending one byte
for each cell, even a large level is still representable with a few
kilobytes, which surely does not represent an issue.

3.4 Fitness Function
To calculate the fitness value for each level, we established a set
of heuristics to represent what a possible human evaluation would
ponder. The main considered aspects were the following:

 Path Structure. The level has to represent a good and
immersive path. In particular, it is important to have
alternative routes to avoid excessive path linearity,
which could result in single closed corridors. Also, it is
important to prevent excessive path branching, resulting
in a complex maze. To accomplish this, a set of possible
moves is defined and access to all cells is calculated,
such as moving to adjacent floor cell or jumping
through a gap with no more than four cells, among
others. In addition, a graph is created, thus it is possible
to perceive the cost (i.e. the number of movements
needed) to reach any cell from the starting position. This
gives a brief perception about the level difficulty. To
achieve a more detailed evaluation one needs a more
complex alternative. In a previous work [9], we
proposed a framework to measure difficulty based on
level structure and gap features, which can be an
alternative for this purpose. The main issue that this
may cause is an increase of complexity for the fitness
function, which will result in higher computation times
to produce one valid level.

 Individual cells analysis. Each cell has a particular
meaning and is analyzed individually. The system
defines good and bad cells as they make sense or not in
the level. A wall cell is always valid. A floor cell is only
valid if it is part of any of the possible paths. Finally, an
empty cell can be valid if it is used as path (for instance,
to create a gap to jump over) or if it has aesthetic
purposes. For the last, we defined that an empty cell has
aesthetic purpose if it has a valid empty cell in the
neighborhood. This specific aspect allows the system to
construct levels with open rooms instead of only closed
corridors.

 Ending. The placement of the level ending cell has to
assure, at first, that the level is valid and, secondly, that
an interesting challenge was created, consisting on an

acceptable cost (i.e. a high percentage of the maximum
identified cost). Starting position was not considered
because it already has implications on path structure.

 Aesthetic balance. To keep the generation with some
visual balance, the usage of each particular block should
be similar, meaning that the number of used blocks of
each type should be about the same. As we stated on
individual cell analysis, a wall block is always valid, so
this balance forces the evolution process to avoid an
excessive use of this type of blocks.

 Level usage. The level is supposed to take good use of
the provided space, by the means that the full path
length should be proportional to the number of cells.
This specific aspect reinforces the aesthetic balance, as
it favors the definition of long paths, strengthens the
definition of a good ending point and supports low
branched paths.

These heuristics were applied independently from each other to
extract a specific score. To keep control over the range of values,
every obtained score is set between zero and one. The extracted
individual scores are weighted according to a set of parameters to
generate the final fitness value, also normalized to a value
between zero and one.

3.5 Genetic Operators
As stated, genetic operators typically consist on mutation and
crossover. This sub-section covers the basis of their
implementation in our system.

3.5.1 Mutation

Mutation occurs with a certain probability and can be applied in
many forms. It is important that mutations are able to make an
individual diverge sufficiently to skip local maxima. In our case,
we considered the smallest possible mutation as being the change
of one particular cell in the grid to another value. Basically, the
algorithm picks a random cell and sets it to a random value. In our
tests we observed that changing only one cell represents a minor
variation and does not provide enough divergence, so one
mutation consists on more than one change at a time. The number
of changes in each mutation can be tuned, as it is a system
parameter. We also implemented two types of mutation, defined
as Random and Selective Mutation. Random Mutation simple
changes some of the cells in a level, as previously stated. In
Selective Mutation we consider that some cells are more suitable
to be changed. For instance, isolated floor cells are not aesthetic
so they are more suitable to be changed. Also, cells that are not in
the main path and are not accessible by any way are more likely to
be mutated to a wall block. Naturally, other mutations can be
considered as possible ways to improve this operator.

3.5.2 Crossover

Crossover is the operation that blends two (or more) individuals in
a new one, as a mimic to reproduction in real life. This operator
was implemented to cross elements in pairs. Crossing more than
two elements was tested without relevant improvement on the
final results. Due to the level structure, based in cells, a simple
crossing mechanism can consist on constructing each new
individual by taking random cells from another two. However,
cells by themselves do not represent much information and should

be considered in relation to the whole level, in particular, to its
neighborhood. So, we decided to take mainly into account the
more relevant paths that exist in each individual to be crossed,
rather than only the isolated cells. When two levels (individuals)
are crossed, the main path of the first is kept intact, the main path
of the second is also kept intact as long as it does not contradict
the first one and, finally, other cells are chosen randomly from
one or the other individual. A visual representation of the
crossover mechanism is provided in Figure 4 for a small level of 2
by 2 screens. We start by presenting two different levels in the
first row and their corresponding path on the second row. The
third row presents the overlap of both paths. Cells that correspond
to path in both levels are highlighted and, as stated, the attributed
value corresponds to the first individual. In the fourth row we
added the cells that have the same content in both levels to
represent the granted content after the crossover operation is done.
Final row presents a possible result by filling the remaining cells
taking the value randomly from the first or the second individual,
as previously explained. This crossover operator performed better
than the simple random selection of cells previously referred,
which had a very similar behavior to the mutation operator.

Figure 4 – Example of the crossover operation

top row – original levels
second row – corresponding path for both levels

third row – path overlap
fourth row – common cells added

last row – possible final combination

3.6 Level post-processing
We have focused the generation of valid levels by means of
setting the adequate blocks in positions that, in the end, can be
interpreted as the level geometry. As an example, Figure 5
presents a level geometry created in our system. However, there is
more to consider in a level besides its main geometry. In the

particular case of the reference game Prince of Persia, scenarios
have visual complementary elements on the walls such as torches
and windows. This provides aesthetic richness to the scenario.
Also, other gaming entities should complement the scenario to
make a more diverse and complete gameplay, such as enemies
and traps.
These entities are added in a post-processing stage, defined by a
simple set of rules. For instance, in each occurrence of n floor
cells in a row we add an enemy or any particular one-celled trap.
Currently, those traps can be floor spikes and intermittent blades.
As it is possible to see in Figure 6, this final step produces a good
complement to the initial processing phase. This culminates in
something that could be, in fact, one interesting level to play.

Figure 5 – Example of the generated level geometry

(Green door with arrow = Start position; Red door = Goal)

Figure 6 – Example of post processing in one level,

automatically adding gaming entities
Other heuristic rules might be applicable such as adding life
potions in some optional path cells, substituting empty cells with
loose floor if they are adjacent to a floor cell or adding gates and a
respective trigger when a path branching is identified in the graph,
among others.

4. RESULTS
As previously referred, we implemented a system that does the
generation process taking into account the guiding enumerated
principles. To give a better notion we provide a screenshot of the
prototype interface in Figure 7. In this section we will look at the
results that can be achieved with our approach.

Figure 7 – Prototype screenshot

Our prototype is a program that allows the user to individually
configure a set of parameters related to the implemented Genetic
Algorithm, such as number of individuals, number of generations
and probabilities for crossover and mutation. Our main tests
consisted on the following:

 Comparisons on parameter set and theoretical output
quality, based on the fitness function;

 Comparisons on generation time vs. level size;

 Ad-hoc observation of the results and informal
perceptions.

In the first tests, we wanted to understand the differences caused
by changing parameterization in relation to output quality, based
on the fitness function, and the required time to achieve it. The
objective was to perceive the appropriate parameters for further
tests and to extract possible limitations. For this, our tests are
based on changing the population dimension and the number of
generations allowed in the evolution process. A grid of 4 by 5
screens was considered as it represents a reasonable sized level
compared with the original reference game. Our application
computed 20 evolution processes for each considered combination
of population size and number of generations in an Intel Q9300
machine running at 2.5 GHz with 4GB RAM. Table 1 shows the
average computational time for those runs, associated to the
average achieved fitness. Corresponding standard deviations are
also presented. Fitness was normalized to values between zero and
one, considering the whole range of values. Theoretically, the
worse possible level is scored zero and the best level has a score
of one.
Expected trends are extracted directly, such as the increment on
the fitness with the growth on population or number of
generations. Naturally, increasing any of these values results on in
a higher computation time. Within that aspect, the worse
presented case on the table shows a computation time of less than
2 minutes for an average fitness of .93. This represents, in
practice, correct and reliable levels that could be blindly delivered
to the user. Typically, levels with a score over .85 have no
relevant flaws or inconsistent content and present an adequate
challenge. Without compromising the final results, time can be
lowered to less than one minute, resulting in an average fitness of
.92. Finally, considering a computational time of no more than
half a minute, values near .9 are still achievable. Particular large
values besides those on the table were tested as well to verify
scalability. For instance, generation processes were tested with
5000 generations of 500 simultaneous individuals, resulting in
average computation times of approximately 12 minutes.

However, convergence was obtained in the first 2000 generations,
for a fitness value of .99 so, in fact, there was no need of such
computation.

Table 1 – Average fitness and generation time for
number of generations and individuals parameterization and

corresponding standard deviations.
(Time t in seconds; Fitness f in 0 to 1 range)

Generations
Population

200 500 1000 2000

20
individuals

𝜇௧ = 0.5
𝜎௧ = 0.1
𝜇 = 0.72
𝜎 = 0.04

𝜇௧ = 1.7
𝜎௧ = 0.6
𝜇 = 0.77
𝜎 = 0.06

𝜇௧ = 4.5
𝜎௧ = 1.9
𝜇 = 0.82
𝜎 = 0.05

𝜇௧ = 13
𝜎௧ = 4.5
𝜇 = 0.87
𝜎 = 0.04

50
individuals

𝜇௧ = 1.6
𝜎௧ = 0.4
𝜇 = 0.76
𝜎 = 0.03

𝜇௧ = 5.6
𝜎௧ = 3.3
𝜇 = 0.85
𝜎 = 0.04

𝜇௧ = 14
𝜎௧ = 5.4
𝜇 = 0.86
𝜎 = 0.04

𝜇௧ = 26
𝜎௧ = 10
𝜇 = 0.89
𝜎 = 0.03

100
individuals

𝜇௧ = 3.3
𝜎௧ = 1
𝜇 = 0.81
𝜎 = 0.05

𝜇௧ = 9.5
𝜎௧ = 3.3
𝜇 = 0.84
𝜎 = 0.06

𝜇௧ = 19
𝜎௧ = 3.8
𝜇 = 0.89
𝜎 = 0.06

𝜇௧ = 51
𝜎௧ = 22.5
𝜇 = 0.92
𝜎 = 0.04

200
individuals

𝜇௧ = 7.5
𝜎௧ = 3
𝜇 = 0.83
𝜎 = 0.07

𝜇௧ = 23
𝜎௧ = 12
𝜇 = 0.87
𝜎 = 0.05

𝜇௧ = 46
𝜎௧ = 17
𝜇 = 0.92
𝜎 = 0.05

𝜇௧ = 102
𝜎௧ = 39
𝜇 = 0.93
𝜎 = 0.06

For our second test, we simply wanted to state the speed of the
program and the consequences of generating larger spaces. For
this, we ran a set of tests with fixed parameterizations (1000
generations of 50 individuals) and measured the generation time
against level dimension. Again, a set of 20 tests was computed for
each combination using the same computer. The average measure
time of each level size is presented on Table 2.
Table 2 – Measured processing times for a certain level size and

the corresponding standard deviation.
(Time t in seconds)

Horizontal
Vertical

4 screens 5 screens 6 screens

4 screens 𝜇௧ = 11
𝜎௧ = 4.4

𝜇௧ = 13.6
𝜎௧ = 6.1

𝜇௧ = 12.3
𝜎௧ = 5.2

5 screens 𝜇௧ = 12.9
𝜎௧ = 5.5

𝜇௧ = 14.6
𝜎௧ = 7.6

𝜇௧ = 14.9
𝜎௧ = 6.8

6 screens 𝜇௧ = 13.2
𝜎௧ = 6.2

𝜇௧ = 16.2
𝜎௧ = 7.4

𝜇௧ = 13.7
𝜎௧ = 5.8

As previously referred, the fitness function that was defined to
evaluate each level takes into account the study of possible paths
inside it. As path calculation may become particularly complex,
the main objective of this test was to identify possible limitations
and bottle necks. However, computational complexity seems to be
linear with level dimension and no particular limitation in this
aspect was identified. Naturally, a double sized level will not only
result on twice the computational time because more generations
will be needed to achieve an acceptable fitness value, as more
transformations are expected to occur. Still, it is plausible to think
on generating slightly larger spaces without major concerns.

Our final observations are clearly more subjective but are still
important and allow perceiving some important characteristics,
benefits and issues. In Figure 8 we present a set of examples
obtained from our prototype without any particular
parameterization (size was chosen to best fit a column in the
article and generation time is less than a minute). Basically, we
ran the system four consecutive times and those were the obtained
levels without any particular selection, post-processing or tune.
Relevant empiric common sense insights can be stated. A first
impression allows perceiving that outputs are valid game spaces
in their basic structure, which is the main goal of all the work.
Several other outputs were generated and, in the end, we only
came with a few sporadic cases of unrealistic levels, even though
they were all possible to complete. Also, it is particularly
interesting to perceive diversity in the provided examples. The
first level presents a branched path with a maze of tunnels. This
opposes especially the fourth example, where the path is nearly
direct. Movement trend is also different in each case. Last level
focuses mostly on running but, in the third case, there is a strong
emphasis on climbing after an initial long run. Open halls are also
created to serve different visual purposes. In the second level, the
major hall on the left represents a possible big dramatic fall for the
avatar. In the third and fourth examples the halls represent high
ceiled zones. Finally, even the global structure is varied. For
instance, in the second case, practically the last column of screens
could be discarded, as the action takes place on the rest of the
game space. In the last two cases, the top row screens are the ones
that could be possibly discarded without any particular impact on
gameplay or level appearance.
All these aspects allow us to perceive that this method represents
an interesting way to provide different, varied and playable
platform levels.

5. CONCLUSIONS AND FUTURE WORK
In this document we presented our study on the automatic
generation of game spaces for platform videogames with the
usage of Genetic Algorithms. Our main objective of proving this
as a potential alternative for the generation of game spaces for
platform levels was successful. Our results are levels that are valid
and that could be exported to an engine and played. The implicit
rules forced by the calculations in the fitness function makes the
process to converge, at least, to a physically valid level in a matter
of seconds. Considering a processing time of not more than a
couple of minutes the outputs are not only valid levels but have
also a balanced structure representing a good challenge.
Comparing to the existing techniques for similar purposes, the
presented approach brings advantages concerning level variety.
Existing alternatives, presented in Section 2, focuses side scrolling
action, typically from left to right. In our levels, the solution is not
straight and sometimes not even unique, which allows usage in
other variants of platform gaming. Still, simple side scrolling
action levels can be achieved with proper parameterization. In
addition, the graph structure allows level complementation. For
instance, optional path zones may have bonus entities that the
character may gather.
In order to make more effective tests to the produced levels and
extract several user related aspects, a simple game prototype is
planned for further developments. This will allow retrieving
users’ opinions as well as gameplay metrics that may tweak the
generation process as a feedback system.

Figure 8 – Example of generated levels

We verified fast convergence to valid solutions with no particular
flaws that would render a level unsuitable to be blindly provided
to a user. Still, this fast convergence represents the algorithm
going in the direction of a local maximum. For the main purposes
of the created system, which is the fast generation (similar to
videogame loading time) of a possible level to be immediately
played, it does not represent a problem. The system focuses in one
direction and finds a good solution based on that.
Some of the presented tests focused performance, namely to
extract generation time under certain conditions. Even though it is
possible to achieve interesting results in short times, the obtained
levels with more computation time showed better features in
individual details. One possible aspect to consider in the future to
improve the obtained generation times is the usage of parallel
computing, which is not new on Genetic Algorithms. In fact,
effective implementations already exist, such as the Parallel
Genetic Algorithm Library (http://sourceforge.net/projects/pgal/)
available at the Source Forge community.
Likewise, one aspect to consider in the future, even though it does
not provide direct improvement on the results, is to expand the set
of objects in the system. We plan to add other gaming entities
available in Prince of Persia, such as lose floors, opening and
closing gates, among others. However, this is envisioned to be a
post-processing step, such as the presented case of the already
considered additional gaming entities. Controlling this process
may also allow adjusting the level difficulty within a certain
range, by adding more or less entities. Naturally, it is also
important to verify that the added entities do not invalidate the
level. For this, simple concepts may be applied. For instance, any
empty cell where the user is supposed to fall may be transformed
in a loose floor. As another example, when the path splits in two,
this post-processing step may create a closed gate in one branch
and a switch to open it in the other one.
In the same manner, more aesthetic items can be considered, such
as torches, windows, hanging rugs, among others. To give
practical use to the presented work, and since the system is able to
generate levels that could be played, it is planned to set a way for
those levels to be effectively played. One possible way is to
export the outputs to the original Prince of Persia format. This
alternative is possible and there are even communities where the
original game is customized with user levels, sprites, etc. For
instance, the Princed Project community provides several tools
for the process (http://www.princed.org/).
Finally, it is important to refer that improvements can always be
achieved in the future by doing optimization in the Genetic
Algorithm itself, with additional parameter tuning and by adapting
employed evolution techniques, namely the fitness function and
mutation and crossover operators. We also intend to tackle these
aspects in the near future gathering additional experts knowledge.

6. ACKNOWLEDGEMENT
This work was partially funded by Instituto Politécnico de Setúbal
under FCT/MCTES grant SFRH/PROTEC/67497/2010 and CITI
under FCT/MCTES grant PEst-OE/EEI/UI0527/2011.

7. REFERENCES
[1] Compton, K., Mateas, M. 2006. Procedural level design for

platform games, In Proceedings of the Artificial Intelligence
and Interactive Digital Entertainment International
Conference (AIIDE).

[2] Csikszentmihaly, M. 1991. Flow: The Psychology of
Optimal Experience. Harper Collins, NY.

[3] Goldberg, D. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley.

[4] Holland, J. 1975. Adaptation in Natural and Artificial
Systems, Ann Arbor, University of Michigan Press.

[5] Lord, K., Brown, R. 2005. Using genetic algorithms to
optimise triangle strips. In Proceedings of the 3rd
international conference on Computer graphics and
interactive techniques in Australasia and South East Asia
(GRAPHITE '05). ACM, New York, NY, USA, 169-176.

[6] Lipp, M., Wonka, P.,Wimmer, M. 2008. Interactive visual
editing of grammars for procedural architecture. ACM Trans.
Graph. 27, 3, Article 102 (August 2008).

[7] Mandelbrot B., Hudson R. 1982. The Fractal Geometry of
Nature. W. H. Freeman and Company, New York.

[8] Mawhorter, P., Mateas, M. 2010. Procedural Level
Generation Using Occupancy-Regulated Extension. CIG-
2010 - IEEE Conference on Computational Intelligence and
Games.

[9] Mourato, F., Próspero dos Santos, M. 2010. Measuring
Difficulty in Platform Games. Interacção 2010 – 4ª
Conferência Nacional em Interacção Humano-Computador.

[10] Pedersen, C., Togelius, J., Yannakakis, G. 2009. Modeling
player experience in super mario bros. In Proceedings of the
5th international conference on Computational Intelligence
and Games (CIG'09). IEEE Press, Piscataway, NJ, USA,
132-139.

[11] Savchenko, V., Schmitt, L. 2001. Reconstructing occlusal
surfaces of teeth using a genetic algorithm with simulated
annealing type selection. In Proceedings of the 6th ACM
symposium on solid modeling and applications (SMA '01),
David C. Anderson (Ed.). ACM, NY, USA, 39-46.

[12] Smith, G., Cha, M., Whitehead, J. 2008. A Framework for
Analysis of 2D Platformer Levels, In Proceedings of the
2008 ACM SIGGRAPH symposium on video games, pp. 75-
80.

[13] Smith, G., Mateas, M., Whitehead, J.,Treanor, M. 2009.
Rhythm-based level generation for 2D platformers, In
Proceedings of the 4th International Conference on
Foundations of Digital Game.

[14] Smith, G., Whitehead, J. 2010. Analyzing the Expressive
Range of a Level Generator. In Proceedings of the Workshop
on PCG in Games, Monterey, CA, June 18, 2010.

[15] Smith, G., Whitehead, J., Mateas, M. 2010. Tanagra: A
Mixed-Initiative Level Design Tool. In Proceedings of the
2010 International Conference on the Foundations of Digital
Games (FDG 2010), Monterey, CA, June 19-21.

[16] Togelius, J., Yannakakis, G., Stanley, K., Browne, C. 2010.
Search-based procedural content generation. In Proceedings
of the European Conference on Applications of EC
(EvoApplications), volume 6024. Springer LNCS.

[17] Togelius, J., Schmidhuber. J. 2008. An experiment in
automatic game design. In Proceedings of the IEEE
Symposium on Computational Intelligence and Games.

[18] Zagal, J., Mateas, M., Fernandez-Vara, C., Hochhalter, B.
Lichti, N. 2005. Towards an Ontological Language for Game
Analysis, In Proceedings of the Digital Interactive Games
Research Association Conference (DiGRA 2005), Vancouver
B.C., June, 2005

http://sourceforge.net/projects/pgal/
http://www.princed.org/

	1. INTRODUCTION
	2. RELATED WORK
	3. APPROACH
	3.1 Main principles and motivation
	3.2 Genetic Algorithms overview
	3.3 Level Representation
	3.4 Fitness Function
	3.5 Genetic Operators
	3.5.1 Mutation
	3.5.2 Crossover

	3.6 Level post-processing

	4. RESULTS
	5. CONCLUSIONS AND FUTURE WORK
	6. ACKNOWLEDGEMENT
	7. REFERENCES

