
Computer Science 1FC3
Lab 7 – Recursion

Author – Paul Vrbik – vrbikp@mcmaster.ca

The purpose of this lab is to implement recursive functions into Maple. We will also investigate iteration
invariants and bound values as a means of proving our code.

RECURSION

Recursion allows us to make very simple and natural definition of functions that would otherwise have very
complicated explicit formula. The strategy to determine a recursive function will be very similar to
induction; determine the simplest form (the “base case”), and relate the value at some step to the step
immediately after it (the “recursive step”). We will demonstrate how recursion works through a series of
examples.

Example 1 (Factorial)

By now we are all familiar with the factorial function that is defined as:

n!=fact(n)=(n)(n-1)(n-2)…(2)(1) where 0!=fact(0)=1

To realize the recursive definition we can rewrite the above definition like:

n!=fact(n)=(n)*(n-1)…(1)=n*fact(n-1)
fact(n)=n*fact(n-1) where fact(0)=1

To implement this definition into maple we do the following:

(1) fact := proc(n:integer)
(2) if (n=0) then
(3) 1;
(4) else
(5) n*(fact(n-1));
(6) end if;
(7) end:

(1) Indicates to maple that we would like to define a function and limits n to an integer.
(2) Defines fact(0)=1.
(4) Defines fact(n)=n*fact(n-1), that is, it relates the nth step to the (n-1)th step.
(5) Ends the procedure.

Question 1:
What happens if we take out line (3) from the above function?

Question 2:
What is fact(-7)? What is fact of any negative number? Why is this okay?

Example 2 (squaring a number)

We would like to square a number without using multiplication. That is we would like to define

square(n)=n*n

using addition.

The first thing we realize is that square(n)=square(-n) which means our function needs definition
on the positives integers only. Since the smallest positive integer is 0, square(0)=0 would be our base
case.

Now the difficult part is relating square(n-1) to square(n). Well, with a little mathematical
investigation we realize that

!

n + 1()
2

= n
2 + 2n + 1 or

square(n+1)=square(n)+n+n+1 or
square(n)=square(n-1)+(n-1)+(n-1)+1

So breaking down this definition we have:

 square(0)=0
 square(n)=square(-n) when n negative
 square(n)=square(n-1)+n+n-1 when n positive

The maple implementation would be:

(1) square:=proc(n:integer)
(2) if (n<0) then
(3) sqaure(-n);
(4) elif (n=0) then
(5) 0;
(6) else
(7) square(n-1)+n+n-1;
(8) end if;
(9) end:

First note that elif is a Maple abbreviation for else if. An English translation of (2)-(8) could be:

if n is negative then do square(-n)
otherwise if n is equal to zero then the answer is zero.
otherwise if n is positive then the answer is square(n-1)+n+n-1.

Question 3:

What happens if we take out line (2) from the above definition?

Question 4:

What happens if we take out line (4) from the above definition?

PROGRAM CORRECTNESS

To prove that a program is correct we must do two things: (1) show that the function will eventually stop
and give you a result (2) show that this result is the correct result. When we do this we say that we have
verified the code.

EXAMPLE 3 (verifying square)

We will now show that square always returns the correct answer. Well first we ask ourselves what it is
that we want square to do, well simply put square(n)=n*n. So it is now only necessary to check this
against all cases outline in the procedure.

Case (n<0) =square(-n)

defintion =square(n)

 check LHS =(-n)*(-n)=n*n
 check RHS =n*n

Case (n=0) =square(0)
 definition =0

 check LHS =0*0
 check RHS =0

Case (n>0) =square(n)

defintion =square(n-1)+n+n-1

check LHS =n*n
check RHS =(n-1)(n-1)+n+n-1=n*n-2n+1+2n-1=n*n

When we say that square(n)should be equal to n*n we call n*n the iteration invariant.

To show that this definition terminates all we have to do is show that there is some decreasing non-negative
number that bounds the number of times the function executes. Well since for given input n our procedure
will run |n|+2 times (including zero). This means the bound value is clearly |n|+2 where n is the number
being squared.

Question 5:

Why can we claim that at each step the value of n is non-negative and decreasing.

Question 6:

Why can we claim that if the number of times a loop executes is non-negative and decreasing that it
eventually the loop will halt?

Example 4 (verifying another factorial)

To show that this verification is not always trivial or obvious we will define another recursive factorial
function as follows:

(1) fact_iter := proc(c,p)
(2) if (evalb(c=0)) then
(3) p;
(4) else
(5) fact_iter(c-1,p*c);
(6) end if;
(7) end:

(8) fact2:=n->fact_iter(n,1)

Question 7:

What is fact2(3) and fact2(5)? Do these cases yield correct results?

Question 8:

What does c do in this function? If c=n originally, at any step, what is the relation of c and p to the
desired value of n!

We first claim that in order for fact2 to be a valid definition of factorial fact_iter must be a valid
valid defintion of factorial also. In order for fact_iter to give the factorial at each step its iteration
invariant must be is c!*p.

Case (n=0) =fact_iter(0,1)

definition =1 (by line (3) in fact_iter)

 check LHS =0!*1=1
 check RHS =1

Case (n>0) =fact_iter(n,1)

definition =fact_iter(n-1,1*n) (by line (5) in fact_iter)

check LHS =n!*1
 =n!
check RHS =(n-1)!*n

 =n!

And since fact(2)=fact_iter(n,1)=n!*1=n! we claim that fact2 also gives the correct results.

Problem Set:

Question 1:

What is the bound value for the factorial procedure given in Example 4? What can we now claim about this
procedure.

Question 2:

Let a and b non-negative integers, define mult(a,b) be a recursive function that returns a*b using only
addition.

a) What is the base case?

b) What is the recursive step?

c) Implement this routine in Maple

d) What is this algorithms iteration invariant?

e) What is this algorithm’s bound value?

f) What can we conclude from d) and e)

Question 3:

Let a and b non-negative integers, define pow(a,b) be a recursive function that returns a^b using only
multiplication.

Repeat steps a) – f) as given in Question 2:

Question 4:

Give a recursive definition for dot_product that calculates the dot product of two vectors (given as
Maple lists). Recall that dot_product([a,b,c],[e,f,g])=a*e+b*f+c*g.

