Computer Science 1FC3

Lab 3 – Set Theory

Author – Paul Vrbik – vrbikp@mcmaster.ca

The purpose of this lab is to introduce the set theory maple commands.

SETS

A set is an unordered collection of objects that we usually denote by capital letters. The objects in a set are called its *elements*, or *members*, which are *contained* by the set. The notation $\{a, b, c, d, e\}$ represents the set of the five elements a, b, c, d and e. We use the symbols \in and \notin to indicate membership of an element in a set, for example $a \in \{a, b, c, d, e\}$ and $27 \notin \{a, b, c, d, e\}$. In maple we can do the following:

```
]>A:={a,b,c,d,e};
]>a in A;
]>evalb(a in A);
]>B:={seq(2*i,i=1..10);
B:={2,4,6,8,10,12,14,16,18,20}
]>evalb(1 in B);
]>ES:={};
ES:={};
```

Notice that $\{a, b, c, d, e\} = \{e, d, c, b, a\} = \{a, d, e, c, b\}$ in fact all permutations are equal. We say that two sets are equal if and only if they have the same elements, that is, $(A = B) \stackrel{def}{\Leftrightarrow} \forall x (x \in A \Leftrightarrow x \in B).$

The ES in the above code stands for, *empty set*, which is the set with no elements. This set is denoted by \emptyset .

SET OPERATIONS

The set A is said to be a *subset* of B, denoted $A \subseteq B$, if and only if every element of A is also an element of B, that is, $A \subseteq B \Leftrightarrow \forall x (x \in A \rightarrow x \in B)$. So, for example, $\{a, b\} \subseteq \{a, b, c, d, e\}$ but $\{a, b, f\} \notin \{a, b, c, d, e\}$. In Maple:

 The *union* of A and B, denoted $A \cup B$ is the set that contains those elements that are either in A or B, or both. That is $A \cup B = \{x \mid x \in A \lor x \in B\}$ or alternatively $x \in A \cup B \Leftrightarrow x \in A \lor x \in B$. For example $\{a, b\} \cup \{a, c, d\} = \{a, b, c, d\}$. In maple:

The *intersection* of A and B, denoted $A \cap B$ is the set containing those elements that are both in A and B. That is $A \cap B = \{x \mid x \in A \land x \in B\}$ or alternatively $x \in A \cap B \stackrel{def}{\Leftrightarrow} \forall x (x \in A \land x \in B)$. For example $\{a, b\} \cap \{a, c, d\} = \{a\}$. In maple:

The set difference of A and B, denoted $A \setminus B$ is the set containing those elements that are in A but not in B. That is $A \setminus B = \{x \mid x \in A \land x \notin B\}$ or alternatively $x \in A \setminus B \stackrel{\text{def}}{\Leftrightarrow} \forall x (x \in A \land x \notin B)$. For example $\{a, b, c, d\} \setminus \{a, c, d\} = \{b\}$. In maple:

POWER SET

Given a set A, the *power set* of S is the set of all subsets of the set S. The power set of S is denoted by P(S).

The set theory notation for power set is $P(S) = \{A \mid A \subseteq S\}$ or $X \in P(S) \stackrel{\text{def}}{\leftrightarrow} X \subseteq S$. In order to find the power set in maple it will be necessary to import the library that has that command. To import a library we use the with command as follows:

PROBLEMS

Question 1:

We say A is a strict subset of B, $A \subset B$, if $A \subseteq B$ and $A \neq B$.

a. Complete the definition

 $A \subset B \stackrel{def}{\leftrightarrow}$

b. Complete the maple function

]>strictSubset:=(A,B)->evalb(

);

```
c. Test your results
```

]>strictSubset({1,2}, {1,2,3});

what it should be:

what your function gives:

```
]>strictSubset({1,2,3}, {1,2,3});
```

what it should be:

what your function gives:

Question 2:

Complete the maple function

that tests the equality of two sets. *Hint* use subset twice.

Question 3:

The symmetric difference of A and B, denoted by $A \otimes B$ is the set containing those elements in either A or B **but not in both**.

a. Complete the maple function

b. Test your results

]>symDiff({1,3,5,7}, {2,4,5,6});

what it should be:

what your function gives:

]>symDiff({1,2,3,5,6,7},{2,4,5,6});

what it should be:

what your function gives:

Question 4:

Let *U* be a universal set. The *complement* of a set A, denoted by \overline{A} , is the set $U \setminus A$.

a. Complete the maple function

for

use comp find the complement of the even numbers in this universe.

Question 5:

Under what conditions on A and B do the following statements hold?

a.	$A \subseteq A \cup B$	b.	$A \subseteq A \cap B$
c.	$\varnothing \subseteq A$	d.	$A \otimes B \subseteq A$
e.	$P(A) \subseteq P(B)$	e.	$A \subset A \cup B$