Computer Science 1FC3

Lab 3 - Set Theory

> Author - Paul Vrbik - vrbikp@mcmaster.ca

The purpose of this lab is to introduce the set theory maple commands.

SETS

A set is an unordered collection of objects that we usually denote by capital letters. The objects in a set are called its elements, or members, which are contained by the set. The notation $\{a, b, c, d, e\}$ represents the set of the five elements a, b, c, d and e. We use the symbols \in and \notin to indicate membership of an element in a set, for example $a \in\{a, b, c, d, e\}$ and $27 \notin\{a, b, c, d, e\}$. In maple we can do the following:

```
]>A:={a,b,c,d,e};
]>a in A;
            A:={a,b,c,d,e}
        a\in{a,b,c,d,e}
]>evalb(a in A);
]>B:={seq(2*i,i=1..10);
    B:={2,4,6,8,10,12,14,16,18,20}
]>evalb(1 in B);
    false
]>ES:={};
    ES:={}
```

Notice that $\{a, b, c, d, e\}=\{e, d, c, b, a\}=\{a, d, e, c, b\}$ in fact all permutations are equal. We say that two sets are equal if and only if they have the same elements, that is, $(A=B) \stackrel{\text { def }}{\leftrightarrow} \forall x(x \in A \leftrightarrow x \in B)$.

The ES in the above code stands for, empty set, which is the set with no elements. This set is denoted by \varnothing.

SET OPERATIONS

The set A is said to be a subset of B, denoted $A \subseteq B$, if and only if every element of A is also an element of B, that is, $A \subseteq B \stackrel{\text { def }}{\leftrightarrow} \forall x(x \in A \rightarrow x \in B)$. So, for example, $\{a, b\} \subseteq\{a, b, c, d, e\}$ but $\{a, b, f\} \not \subset\{a, b, c, d, e\}$. In Maple:

```
]>{a,b,c} subset A;
        true
]>{3,4,5} subset B;

The union of \(A\) and \(B\), denoted \(A \cup B\) is the set that contains those elements that are either in \(A\) or \(B\), or both. That is \(A \cup B=\{x \mid x \in A \vee x \in B\}\) or alternatively \(x \in A \cup B \stackrel{\text { def }}{\leftrightarrow} x \in A \vee x \in B\). For example \(\{a, b\} \cup\{a, c, d\}=\{a, b, c, d\}\). In maple:
\[
\begin{aligned}
& \text { ] }>\{a, b\} \text { union }\{a, c, d\} \\
& ]>\{a, b\} \text { union }\{1,2,3\} \quad\{a, b, c, d\} \\
& \{a, b, 1,2,3\}
\end{aligned}
\]

The intersection of \(A\) and \(B\), denoted \(A \cap B\) is the set containing those elements that are both in \(A\) and \(B\). That is \(A \cap B=\{x \mid x \in A \wedge x \in B\}\) or alternatively \(x \in A \cap B \stackrel{\text { def }}{\leftrightarrow} \forall x(x \in A \wedge x \in B)\). For example \(\{a, b\} \cap\{a, c, d\}=\{a\}\). In maple:
```

]>{a,b} intersect {a,c,d}
]>{a,b} intersect {1,2,3}
{}

```

The set difference of \(A\) and \(B\), denoted \(A \backslash B\) is the set containing those elements that are in \(A\) but not in \(B\).
That is \(A \backslash B=\{x \mid x \in A \wedge x \notin B\}\) or alternatively \(x \in A \backslash B \stackrel{\text { def }}{\leftrightarrow} \forall x(x \in A \wedge x \notin B)\). For example \(\{a, b, c, d\} \backslash\{a, c, d\}=\{b\}\). In maple:
\[
\begin{align*}
& ]>\{a, b, c, d\} \operatorname{minus}\{a, c, d\} \\
& ]>\{a, b\} \operatorname{minus}\{a, b\}
\end{align*}
\]

\section*{POWER SET}

Given a set A, the power set of S is the set of all subsets of the set S . The power set of \(S\) is denoted by \(P(S)\). The set theory notation for power set is \(P(S)=\{A \mid A \subseteq S\}\) or \(X \in P(S) \stackrel{\text { def }}{\leftrightarrow} X \subseteq S\). In order to find the power set in maple it will be necessary to import the library that has that command. To import a library we use the with command as follows:
```

]>with(combinat,powersets):
]>powerset({1,2});

```
\[
\{\},\{1\},\{1,2\},\{2\}\}
\]

\section*{PROBLEMS}

Question 1:
We say \(A\) is a strict subset of \(B, A \subset B\), if \(A \subseteq B\) and \(A \neq B\).
a. Complete the definition
\[
A \subset B \stackrel{\text { def }}{\leftrightarrow}
\]
b. Complete the maple function
]>strictSubset:=(A,B)->evalb( );
c. Test your results
\[
\text { ]>strictSubset(\{1, 2\}, \{1, 2, 3\}); }
\]
what it should be: what your function gives:
\[
\text { ]>strictSubset(\{1,2,3\},\{1,2,3\}); }
\]
what it should be: what your function gives:

\section*{Question 2:}

Complete the maple function
]>setEqual:=(A,B) ->evalb( );
that tests the equality of two sets. Hint use subset twice.

\section*{Question 3:}

The symmetric difference of \(A\) and \(B\), denoted by \(A \otimes B\) is the set containing those elements in either A or B but not in both.
a. Complete the maple function
]>symDiff:=(A->B)
b. Test your results
\[
\text { ]>symDiff(\{1, 3,5,7\},\{2,4,5,6\}); }
\]
what it should be:
what your function gives:
]>symDiff(\{1, 2, 3, 5, 6, 7\}, \(\{2,4,5,6\})\);
what it should be: what your function gives:

Question 4:
Let \(U\) be a universal set. The complement of a set \(A\), denoted by \(\bar{A}\), is the set \(U \backslash A\).
a. Complete the maple function
\[
\text { ]>comp := }(A, B)->
\]
for
] >U:=\{seq(i,i=1..50);
use comp find the complement of the even numbers in this universe.

Question 5:
Under what conditions on \(A\) and \(B\) do the following statements hold?
a.
\(A \subseteq A \cup B\)
b. \(\quad A \subseteq A \cap B\)
c. \(\quad \varnothing \subseteq A\)
d. \(\quad A \otimes B \subseteq A\)
e. \(\quad P(A) \subseteq P(B)\)
e. \(\quad A \subset A \cup B\)```

