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The purpose of this lab is to implement basic procedures into maple in order to analyze their complexity. It 
is broken into two parts, ALGORITHMS, and COMPLEXITY. 
 
 
ALGORITHMS 
 
An algorithm is finite sequence of unambiguous instructions that terminates. For example, long division is 
a type of algorithm. 
 
LONG DIVISION 
 
 To calculate   

! 

x ÷ y = A remainder B do the following: 
 
 (1)  Set A and B to 0 
 (2) While x<=y, increase A by 1 and decrease y by x 
 (3) If x>y then set B to y 
 (4) finish 
 
 
To implement long division into maple we may do the following: 
 
 
(01)  ]>long_division := proc(x,y) 
(02)   local A,B,Y; 
(03)   A:=0; 
(04)   B:=0; 
(05)   Y:=y; 
(06)   while (x<=Y) do 
(07)    A:=A+1; 
(08)    Y:=Y-x;  
(09)   end do; 
(10)   B:=Y; 
(11)   print(A,remainder,B); 
(12)  end proc: 
 
  [>long_division(7,15); 

3, remainder, 0 
 
 
Lets look at each line carefully: 
 
(01)  Creates a procedure called long_division which accepts two inputs x and y.  
(02)  Reserves the variables A, B, and C for use in the procedure. 
(03)-(04) Gives an initial value to A and B. 
(05) Since maple does not allow us to modify the value of y we create a temporary variable Y 

which we can manipulate. 
(06) Starts a loop, that is, everything that is contained within the loop will be repeated until 

(x<=y) 
(07)-(08) Incrementally increases A by 1 and decreases B by x. 
(09) Marks the end of the while loop. 



(10) Sets B to Y. 
(11) Prints the results 
(12) Marks the end of the procedure. 
 
 
Now let us try to program a more difficult function that sorts a given list of integers. The description of 
bubble sort is given on page 126 of your textbook (Rosen). 
 
Bubble Sort 
 

(01)  bubble_sort:=proc(B,n) 
(02)  local i,j,A,temp; 
(03)  A:=B; 
(04)  for i from 1 to (n-1) do 
(05)   for j from 1 to (n-i) do 
(06)    if (A[j]>A[j+1]) then 
(07)     temp:=A[j+1]; 
(08)     A[j+1]:=A[j]; 
(09)     A[j]:=temp; 
(10)    end if; 
(11)   end do; 
(12)  end do; 
(13)  print(A); 
(14)  end proc: 
 

 
 
  ]>bubble_sort([1,3,4,1,3],5); 

[1,1,3,3,4] 
 
 
 
 
We first note that we are using a for loop instead of a while loop as we did with division. The main 
difference is that a for loop will repeat something a set amount of times. For instance,  
 
 for i from 1 to 10 do 
  command(); 
 end do; 
 
will execute command(); ten times. 
 
PROBLEM SET 1 
 
Question 1: 
 
How many times will command(); execute in the following code? 
 
(a) 
 for i from 1 to 10 do 
  for j from 1 to 20 do 
   command(); 
  end do; 
 end do; 
 
 



(b) 
 for i from 1 to 10 do 
  for j from 1 to i do 
   command(); 
  end do; 
 end do; 
(c) 
 i:=0; 
 j:=0;  
 while (i<11) do 
  i:=i+1; 
  while (j<21) do 
   j:=j+1; 
   command(); 
  end do; 
 end do; 
 
(d)  
 for i from 1 to x do 
  for j from 1 to y do 
   command(); 
   for j from 1 to i; 
    command(); 
   end do;  
  end do;  
  command(); 
 end do; 
 
Question 2: 
 
Write an equivalent statement in Maple using the while command. 
 
(a) 
 for x from 1 to 100 do 
  command(); 
 end do; 
 
(b) 
 for x from 1 to 100 do 
  for y from 1 to x do 
   command(); 
  end do; 
 end do; 
 
Question 3: 
 
Here is an algorithm to find the number N in a given list of integers, say A. 
 
(1) set x to 1 
(2) look at the xth element of the list, if its N then print x 

and stop looking 
(3) if x is the end of the list then print 0 and stop 
(4) increase x by 1 and go to step (2) 
 
Implement this algorithm into maple and test it.  
 



COMPLEXITY 
 
Since computers have different processing capabilities, it is more meaningful to represent the speed of an 
algorithm by the number of times a command is executed rather then the time it takes to complete the 
algorithm. This representation is called complexity. The complexity of an algorithm is a function that 
relates the number of executions in a procedure to the loops that govern these executions. 
 
Consider the code: 
 
 
 ]>procedure1:=proc(n) 
  local i; 
  for i from 1 to n do 
   command(); 
  end do; 
 end proc; 
 
 
The number of times command is executed is directly related to the size of n. A function modeling this 
relation would bef(n) n= , where f(n)represents the number of times command is evoked. If a 
machine took two minutes to execute command it would take (2 minutes)*f(n) to run the 
procedure. 
 
In complexity we say that proc1 isO(n), (big-oh of n), or that the running time is governed by a linear 
relation.  
 
 
DETERMING COMPLEXITY OF MORE COMPLICATED PROGRAMS 
 
The following examples will further demonstrate an algorithms complexity. 
 
Example 1: 
 
 
 ]>procedure2:=proc2(n){ 
  local i,j; 
  for i from 1 to n 
   for j from 1 to n 
    command(); 
   end do;   
  end do; 
 
  for i from 1 to 10000000 
   command(); 
   command(); 
  end do; 
 end proc; 
 
 
f(n)=n^2+10000000 that corresponds to O(n^2). 
 
 
 
 
 

2
n

 

10000000

 



Example 2: 
 
 
 procedure3:=proc(n) 
  local i,j; 
  for i from 1 to n 
   command(); 
   command(); 
   for j from 1 to n 
    command(); 
   end do; 
  end do; 
 
  procedure2(n);           
 end proc; 
 
 
f(n)=2n+2n^2 that corresponds to O(n^2). 
 
WORST CASE SCENARIO 
 
Realistically we do not have command(); laid out in plain sight for us. Let us consider the long division 
algorithm from the section before, what is its complexity? 
 
Well first let us fix y, the number that we are dividing into, what is the worst-case scenario, or the scenario 
where we will have to do the most amount of computation?  The answer to this is when x is equal to one, if 
this is the case we will have to loop y times. From this we can conclude that at worst we have to carry out 
y computations which corresponds to O(y). 
 
When there are many possible scenarios to consider we will always pick the worse case. This guarantees 
that the big-oh bound we choose will always be sufficient.  
 
COMPLEXITY OF BUBBLE SORT 
 
When the ith pass begins, the (i-1) largest elements are guaranteed to be in the correct positions. 
During this pass, (n-i) comparisons are used. Consequently, the total number of comparisons used by the 
bubble sort to order a list of n elements is: 
 

      

! 

(n " 1) + (n " 2) + ... + 2 + 1 = n

n=1
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So we conclude that the complexity of bubble sort is: 
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PROBLEM SET 2 
 
Question 1: 
 
What are the complexities of the loops given in Question 1 from problem set 1. 
 
Question 2: 
 
Give the complexity of the algorithm outlines in Question 3 from problem set 1. As a point of interest this 
algorithm is called “The Linear Search Algorithm”, why do you think this is. 
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PROBLEM SET 3 (STUDY) 
 
The following is a pseudo-code description of the Binary Search Algorithm. 
 
procedure binary search (x : list of integers in increasing order) 
 i=1  
 j=n 
 while i<j 
  m=(i+j)/2 rounded down to the closer integer 
  if x > a[m] then i=m+1 
  else j=m 
  end if 

end while 
if x=a[i] then location=i 
else location = 0 
end if 

end procedure binary search 
 
Question 1: 
 
 Implement this algorithm into Maple. 
 
Question 2: 
 
 Determine how the algorithm works by printing out the list at various places in the procedure. 
 
Question 3: 
 
 Determine this procedures complexity. 
 
 
 


