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This lab will review methods of solving recurrence relations in Maple. 
 
 
RECURRENCE RELATIONS 
 
Simply put, a recurrence relation is just a sequence where any given element is defined using one or more 
of the previous elements. As you may recall we defined simple sequences in maple as functions: 
 
 
 ]>a:=n->n;  
 
 
However we may use a similar syntax to define recurrence relations. For instance consider the sequence of 
factorials factn=n! this would be a recurrence relation defined as fact0=1, factn=n*factn-1 
implemented like: 
 
 
 ]>fact:=n->n*fact(n-1); 

fact:=n->n fact(n-1) 
 ]>fact(0):=1; 

fact(1):=1; 
 ]>fact(4); 

24; 
 
 
Question 1: 
 
What happens if you define fact:=1; before fact:=n->n*fact(n-1); in the above scheme. Can 
you provide any reason as to why this may happen? 
 
 
 
 
 
 
 
Question 2: 
 
The Fibonacci Numbers are given as f1=1, f2=1, fn=fn-1+fn-2. Define this sequence in maple and 
determine the following: 
 
  f2= 
 
  f10= 
 
  f50= 
 
  f100= 
   
 



 
 
 
SOLVING RECURRENCE RELATIONS 
 
Although the definition given by a recurrence relation is elegant and easy to give to a computer, evaluating 
an arbitrary term may be hard and time consuming. For example, in order to evaluate fact12 (by the 
definition given on the first page) would require us to first determine fact11 and correspondingly fact10 
all the way down to fact0. It would be undoubtedly easier to just evaluate n! since factn=n!, where n! 
is called the solution to the recurrence relation factn. 
 
In fact this is the motivation for the strategies given in section 6.2 of the Rosen. But we will not be covering 
these today; instead we will use Maple to solve the recurrence relations for us. However let us first give a 
strict definition of a recurrence relation 
 
solution to a recurrence relation 
 
Given any recurrence relation an, a solution to the recurrence relation an is an explicit function (non-
recursive function) f(n), such that f(n)=an for all n. 
 
 
 
Consider our first example: 
 
 
(1) ]>temp:=rsolve({f(n)=n*f(n-1),f(0)=1},f); 

temp := 

! 

"(n + 1) 
(2) ]>g:=x->expand(eval(temp,n=x)); 

g := x -> expand(eval(temp, n = x)) 
(3) ]>g(3); 

6 
(4) ]>g(4); 

24 
 
 
Note that 

! 

"  (the gamma function) is defined as 

! 

"(n+1)=n!. 
 
Lets investigate the syntax used above. 
 
In(1)  
 
rsolve is a function which takes the list {recurrence relation, base case(s)} and the 
name of the relation being solved for (in our case its f) and returns the solution to the recurrence relation. 
 
In (2) 
 
This is a way to take the function outputted by rsolve and assign it to a function g that we can then use.  
 
In (3)-(4) 
 
We simultaneously demonstrate that rsolve and our definition for g are valid. 
 
 
 



Question 3: 
 
Use rsolve to determine a solution to the Fibonacci sequence given on the first page. Assign the solution 
to the function h(x) and record the following values. 
 
 h(2)=    h(50)= 
 
 h(10)=    h(100)= 
 
Do your answers match those given in Question 2? Should they? 
 
 
 
Question 4: 
 
Solve the recurrence relation 
 
 an=2*an-1 
 a0=3 
 
and verify that this is the correct solution by comparing to values given by the definition. 
 
 
DIVIDE AND CONQUER ALGORITHMS 
 
Divide and conquer is an important strategy in computer science. The idea of the strategy is to take a big 
problem and divide into many sub problems that are more easily solved. If we allow our recurrence 
relations to do more robust things they may be considered a form of divide and conquer. 
 
For example, consider the problem of finding the largest number in a set of integers. We could easily find it 
by doing a linear search but a recurrence relation may be devised to solve it more intelligently by doing the 
following: 
 
 \\single element set  
 maxInList({x})=x;  
 

\\if a set has more then one element then it can be broken into two 
non-empty sets which allows us to write  

 maxInList(A union B) = max( maxInList(A), maxInList(B)) 
 
This definition is a little bit different then what we are used to, but looking at it indeed has a base case and 
recursive step fulfilling our definition of recurrence relation. 
 
Question 5: 
 
Like the above example, create a loosely defined recurrence relation element to test weather or not a 
given element is a member of a set. That is: 
 
 element(1,{1,2,3})=true 
 element(7,{1,2,3})=false 
 


