Function

- a function assigns one element of one set to each element of another set
- let *a* be an element in set A and *b* an element in set B: if *b* is assigned to *a*, this is written as f(a) = b
- if f is a function from A to B, we write f: A --> B

Eg. for the function $f(x) = x^2$, f(3) = 9, f(5) = 25, f(9) = 81 etc.

There is really nothing new about functions – we've been using them in Maple already. Recall the AND function:

 $[> AND := (x, y) \rightarrow x \text{ and } y;$

The input to this function, or it's *domain*, is the pair of truth values:

(true, true), (true, false), (false, true) and (false, false).

The output of this function, or it's *codomain*, is the truth values: true and false.

If *f*(*a*) = *b*, we say that *b* is the *image* of *a* and *a* is a *pre-image* of *b*. What is the image of (true, false) for the AND function?

The range of f is the set of all images of elements of A.

What's the difference between range and codomain? (see graph below)

Real-valued functions with the same domain can be added and multiplied:

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

(f_1 f_2)(x) = f_1(x)f_2(x)

What do you think is the domain and codomain of $(f_1 + f_2)$ and f_1f_2 ?

<u>Subset</u>

- if S is a subset of A, the *image* of S is the *subset* of B that consists of the images of the elements of S.

- f(S) is the image of S, so that $f(S) = \{f(s) \mid s \in S\}$

One-to-one functions

- also called *injective* functions

- a function is an injection if and only if f(x) = f(y) implies that x = y for all x and y in the domain of f.

- what is an example of an one-to-one function?

Increasing/Decreasing functions

- a function *f* is strictly increasing if f(x) < f(y) whenever x < y and *x* and *y* are in the domain of *f*

- what do you think a strictly decreasing function is?

Onto functions

- also called *surjective* functions

- a function is a surjection if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

- what is an example of an onto function?

One-to-one Correspondence

- a function is a one-to-one correspondence, or a *bijection*, if it is both one-to-one and onto.

- what is an example of an bijection?

Inverse function

- assigns to an element *b* belonging to B the unique element *a* in A such that *f*(*a*) = *b*

- denoted by f^{-1}
- $-f^{-1}(b) = a$ when f(a) = b

- what is the inverse function of $f(x) = x^2$?

Composite functions

- the *composition* of two functions f and g is denoted by $f \circ g$

 $-(f \circ g)(a) = f(g(a))$

Exercises

1) For the following functions, state the i) domain ii) codomain iii) image iv) range

a)

b) f: $\mathbb{Z} \rightarrow \mathbb{Z}$, f(x) = x + 1

d) f:
$$\mathbb{N} \rightarrow \mathbb{N}$$
, f(x) = $\lfloor 100 / x \rfloor$

 Describe the following functions as one-to-one, onto, bijective or none of the above.

Does the function have an inverse? If so, find it.

- a) f: $\mathbb{Z} \rightarrow \mathbb{Z}$, f(x) = x 1 b) f: $\mathbb{N} \rightarrow \mathbb{N}$, f(x) = 2x
- c) g: A \rightarrow B where A = {1, 4, 7, 13, 42} and B = {2, 4, 108, 256} and g = {(1, 108), (4, 256), (7, 2), (13, 4)}
- d) g: A \rightarrow B where A = {10, 42, 64, 111} and B = {2, 4, 108, 256, 720} and g = {(10, 4), (42, 2), (64, 2), (111, 720)}
- h: A→B where A = {a, b, x, y} and B = {\$, #, %, !} and h = {(a, !), (b, %), (x, \$), (y, #)}
- f) f: $\mathbb{R} \rightarrow \mathbb{R}$, f(x) = x² + 1 g) f: $\mathbb{R} \rightarrow \mathbb{R}$, f(x) = x³

3) Determine the function that results from the composition, f °g.

a) f = x + 2, $g = x^4$ b) f = 2x + 2, g = x/2c) $f = x^2 + 4x + 3$, $g = (x^2 - 5)/(x + 13)$