Function

- a function assigns one element of one set to each element of another set
- let a be an element in set A and b an element in set B : if b is assigned to a, this is written as $f(a)=b$
- if f is a function from A to B, we write $f: A$--> B

Eg. for the function $f(x)=x^{2}, f(3)=9, f(5)=25, f(9)=81$ etc.

There is really nothing new about functions - we've been using them in Maple already. Recall the AND function:
[> AND := $(x, y) \rightarrow x$ and $y ;$
The input to this function, or it's domain, is the pair of truth values:
(true, true), (true, false), (false, true) and (false,false).
The output of this function, or it's codomain, is the truth values:
true and false.
If $f(a)=b$, we say that b is the image of a and a is a pre-image of b.
What is the image of (true, false) for the AND function?
The range of f is the set of all images of elements of A.
What's the difference between range and codomain? (see graph below)

Real-valued functions with the same domain can be added and multiplied:

$$
\begin{aligned}
& \left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x) \\
& \left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)
\end{aligned}
$$

What do you think is the domain and codomain of $\left(f_{1}+f_{2}\right)$ and $f_{1} f_{2}$?

Subset

- if S is a subset of A, the image of S is the subset of B that consists of the images of the elements of S.
$-f(S)$ is the image of S, so that $f(S)=\{f(s) \mid s \in S\}$

One-to-one functions

- also called injective functions
- a function is an injection if and only if $f(x)=f(y)$ implies that $x=y$ for all x and y in the domain of f.
- what is an example of an one-to-one function?

Increasing/Decreasing functions

- a function f is strictly increasing if $f(x)<f(y)$ whenever $x<y$ and x and y are in the domain of f
- what do you think a strictly decreasing function is?

Onto functions

- also called surjective functions
- a function is a surjection if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$.
- what is an example of an onto function?

One-to-one Correspondence

- a function is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto.
- what is an example of an bijection?

Inverse function

- assigns to an element b belonging to B the unique element a in A such that $f(a)$
$=b$
- denoted by f^{-1}
$-f^{-1}(b)=a$ when $f(a)=b$
- what is the inverse function of $f(x)=x^{2} ?$

Composite functions

- the composition of two functions f and g is denoted by $f \circ g$
$-(f \circ g)(a)=f(g(a))$

Exercises

1) For the following functions, state the i) domain ii) codomain iii) image iv) range
a)

b) $\quad f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=x+1$
c)

d) $\quad f: \mathbb{N} \rightarrow \mathbb{N}, f(x)=\lfloor 100 / x\rfloor$
2) Describe the following functions as one-to-one, onto, bijective or none of the above.
Does the function have an inverse? If so, find it.
a) $\quad f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=x-1$
b) $\quad f: \mathbb{N} \longrightarrow \mathbb{N}, f(x)=2 x$
c) $\mathrm{g}: \mathrm{A} \rightarrow \mathrm{B}$ where $\mathrm{A}=\{1,4,7,13,42\}$ and $\mathrm{B}=\{2,4,108$, $256\}$ and $g=\{(1,108),(4,256),(7,2),(13,4)\}$
d) $\mathrm{g}: \mathrm{A} \rightarrow \mathrm{B}$ where $\mathrm{A}=\{10,42,64,111\}$ and $\mathrm{B}=\{2,4,108$, $256,720\}$ and $g=\{(10,4),(42,2),(64,2),(111,720)\}$
e) $\mathrm{h}: \mathrm{A} \rightarrow \mathrm{B}$ where $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{y}\}$ and $\mathrm{B}=\{\$, \#, \%,!\}$ and $h=\{(\mathrm{a},!),(\mathrm{b}, \%),(\mathrm{x}, \$),(\mathrm{y}, \#)\}$
f) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}+1$
g) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}$
3) Determine the function that results from the composition, $f{ }^{\circ} g$.
a) $f=x+2, g=x^{4}$
b) $f=2 x+2, g=x / 2$
c) $f=x^{2}+4 x+3, g=\left(x^{2}-5\right) /(x+13)$
