
Computer Science 1MD3
Lab 10 – Designing Algorithms

As we know, an algorithm is an ordered set of unambiguous, executable instructions that terminates.
However, this really tells us about what algorithms are restricted too, as opposed to how to design them
effectively. This lab will outline some simple techniques and practices used in designing algorithms.

PRIMITAVES

In order to eliminate ambiguity in our algorithms it is necessary to define the syntax and corresponding
semantics used to represent the algorithm. Syntax are symbols or words that make up a usable language, for
instance if, > and int are all in the syntax of the C programming language. The semantics are the
implied meanings of all the symbols in the syntax, for instance, > means greater then. Combined, syntax
and semantics make up the primitive or your algorithm representation, or programming language.

ABSTRACTION

Abstraction is the notion of hiding detail, when you design a function or procedure you are using
abstraction. Abstraction is very useful and pretty much necessary when designing algorithms. Take the
example of your hashing assignment. Imagine doing the whole assignment without using the functions
insert(), or end(), it would probably be a lot harder. Abstraction allows us to take for granted
operations that seem to be quite trivial on the surface. For instance, how often do we regard multiplication
as a function of recursive addition? Not very often.

THE ‘ART’ OF PROBLEM SOLVING

In your textbook, chapter four deals with the ‘art’ of problem solving, art however is not really something
that can be taught, rather you must to be made to appreciate art. Given this, it must be understood that there
are many ways to solve a given problem and that there may be some solutions better than others.

Before you solve a problem it is necessary to understand the question. If you have no idea as to what you
are being asked, you certainly cannot offer any answer. The question then must also be unambiguous.

After understanding your question, you must review the tools that you have to solve it. For instance you
may need to solve an equation but also have an existing library routine solveEq.

The final step in problem solving (when using a computer) is to determine how to take the solution you
have in your head and translate it into something that the computer understands.

THE GREEDY ALGORITHM

Typically questions that computer scientists try to solve involve a great deal of computation, like
computing Pi or finding paths in graphs. There is a method that theoretically guarantees a solution for these
types of questions; the corresponding algorithms are called greedy algorithms.

Consider that you are asked to write a program to determine if a positive integer is prime, you could easily
take that number and see if it is divisible by any of the numbers below it. Such an algorithm would have to
produce a correct result since we are reviewing every possible outcome. This function is informally
described below.

isPrime()

 int isPrime(int x) {

 int count=x;

 for (count=1; count<x; count++) {
 if (x%count==0) then return NOTPRIME;
 }

 return PRIME;

 }

This algorithm admits correct results but it is terribly inefficient. Analyzing the problem further we realize

that the largest divisor of a number, x , is
x
2

, (51 can not possibly go into 100 more then once). Also,

something else that may not be that obvious is that we only need to test a given number by dividing it by all
the prime numbers before it. This is because any divisor of a number can be broken up into prime factors,
so 18 which is divisible by 6 is also divisible by 6’s prime factors 2 and 3.

So altering our algorithm we can do this:

isPrime() *better

 int isPrime(int x) {

 int numprimes=1;
 file primes;

 while(x<=2*readfile(primes)) {
 if (x%readfile(primes)==0) return NOTPRIME;
 advanceInFile(primes);
 }

 return PRIME;

 }

You may notice that we need a list of primes in order to determine if x is prime, this isn’t a problem
because we can always use this list to quickly generate a larger prime.

DIVIDE AND CONQUER

Divide and conquer is the process of taking a problem and breaking it into several smaller problems that we
can solve. This is often a very efficient way of designing an algorithm.

Suppose we are given an ordered list of number and we would like to determine if a number x is in this list.
We can check the middle number of this list (the pivot) and determine if x is larger or smaller then this,
taking everything to the left or right of the pivot accordingly. We can continue this process until the pivot
equals x or until we are searching an empty list. The corresponding algorithm looks as follows:

Binary Search Algorithm

 int BSA (list L, int x) {

 if (empty(L)) return FAILURE;
 else {
 if (x==pivot(L)) return SUCCESS;
 else if (x<pivot(L)) {
 L:=leftOf(pivot(L),L);
 BSA(L,x);
 }

 else if (x>pivot(L)) {
 L:=rightOf(pivot(L),L);
 BSA(L,x);
 }
 }

}

Self test questions

1. The puzzle called the Towers of Hanoi consists of three pegs, one of which contains several
rings stacked in order of descending diameter from bottom to top. The problem is to move the
stack of rings to another peg. You are allowed to move only one ring at a time, and at no time
is a ring to be placed on top of a smaller one. Observe that if the puzzle involved only one
ring, it would be extremely easy. Moreover, when faced with the problem of moving several
rings, if you could move all but the largest ring to another peg, the largest ring could then be
placed on the third peg, and then the problem would be to move the remaining rings on top of
it. Using the observation, develop a recursive algorithm for solving the Towers of Hanoi
puzzle for an arbitrary number of rings.

2. Four prospectors with only one lantern must walk through a mineshaft. At most, two

prospectors can travel together and any prospectors in the shaft must be with the lantern. The
prospectors, named Andrews, Blake, Johnson, and Kelly, can walk through the shaft in one
minute, two minutes, four minutes, and eight minutes, respectively. When two walk together
they travel at the speed of the slower prospector. How can all four prospectors get through the
mineshaft in only 15 minutes?

3. You are taking a computer science class and would like to do well on the final. What type of

method should you employ to guarantee an A.

