
Computer Science 1MD3
Lab 6 – Dynamic Lists/Linked Lists (Finally)

Up until now all the lists that we worked with were typically stored in arrays. However arrays are not very
good at dynamically storing data. In other words, procedures required to add and delete elements in an
array are very inefficient. If we instead use a linked list we find that these same procedures become a lot
faster. This lab will primarily focus on the underlying theory of linked lists and their implementation in C.

WHAT IS A LINKED LIST

Imagine a structure that has two components: a value, and a pointer. If every value in the list pointed to the
value that came after it, this would constitute a list.

Linked list 1.1

This is how you could visualize a linked list.

DELETING

Deleting a list value from an array would involve removing the element, bumping every other element
down one and then modifying the length of the array.

In a linked list, since we are using pointers, we can simply “point” around the element that we are trying to
delete.

Deleting from linked list 1.1

This is an example of deleting 8 from the linked list. Please note that 8 maintains its pointer to 9, however
since nothing is pointing to 8, 8 is considered out of the list. We will learn to give the memory allocated
for storing 8 back to the system, completely deleting it.

INSERTING

To insert in an array you would have to insert the element, bump the following elements up by one then
increase the array size by one.

In a linked list you simply modify pointers to include the new element.

Inserting into linked list 1.1

5 3 8 9 7 4 2

5 3 8 9 7 4 2

5 3 8 9 7 4 2

1

This is an example of inserting 2 at position 4. Note that 2’s pointer was modified to point to 1, and 1 was
set to point to 8.

SEARCHING

Searching is about the only thing that an array can do more efficiently. Say we would like to access array
element at 8, we could simply do A[8].

In a linked list, we have to start at the beginning of the list and advance 8 times returning the value we stop
at.

IMPLEMENTING

There are two things that must be dealt with when implementing a linked list in C, where to start, and
where to end. We start at what is called the head pointer, which is a pointer, head, pointing to the first
value in the list. To end the list we will adopt the convention of having the last element in the list point to
nil.

Implementation

It will also be necessary to create a structure like we mentioned, which will store a value and a pointer to
the next list item. This structure typically looks like:

List structure

/1/ struct list {
 /2/ data_type val;

/3/ struct list *next;
/4/ };

The date_type in line 1 should correspond with the data that you desire to store. We will assume an
integer list with the following structure to illustrate some examples.

Integer list structure

/1/ struct list {
 /2/ int val;

/3/ struct list *next;
/4/ };

 /5/ typedef struct list listType;

5 3 8 9 7 4 2

HEAD

nil

Recall that when we are working with pointers to structures we can refer to the data in the structure like:

 ListType *x;
 x->val;
 x->next;

We will now design some procedures, which will be important when dealing with linked lists. These
procedures are new, insert, delete, and makenull, which respectively create a new list, insert an
element into a list at a given position, delete an element at a given position, and nullifies the list.

MAKENULL

The makenull command will take the head pointer to the list and make it point to nothing, and store
nothing. This analogous to the emptylist procedures used for arrays.

MakeNull

 void makeNull (listType *x) {

 x->val=NULL;
 x->next=NULL;

};

NEW

The new function will accept an integer value and reserve the necessary memory for storing the value in
the list structure, returning a pointer to where it was stored.

New
 listType* new (int x) {

 listType *L;

 L = (listType*)malloc(sizeof(listType));
 L->val=x;
 L->next=NULL;

 return L;

 };

Investigating this procedure we see that we first use malloc to reserve some memory for the structure,
then we put the desired value in it, and then by default we make it point to nothing. The return statement
returns the pointer to this structure.

INSERT

The insert procedure will insert integer a at position p, in linked list x.

insert

 void insert (int a, int p, listType *x) {

 listType *temp;
 int count;

 for (count=1; count<p; count++) {

 x=x->next;
 if(x->next==NULL) break;

 }

 temp=x->next;
 x->next=new(a);
 (x->next)->next=temp;

 };

The main idea of this procedure is to start at the header and move to the next element p-1 times. The p-1
element is then set to point to the new value, which ends up at position p, this new value is then set to point
to the value that p-1 used to be pointing to (refer back to the visual representation of insert). Notice that if
p exceeds the actually length of the list, the new element is just put at the end of the list.

DELETE

The delete function will delete element p from list x.

Delete

 void delete (int p, listType *x) {

 int count=1;
 listType *temp;

 for (count=1; count<p; count++) {

 if (x->next==NULL) return;
 x=x->next;

 }

 temp = x->next;
 x->next=(x->next)->next;
 free(temp);

 return;

 };

Much like in insert we advance through the list till element p-1, we then make p-1 point to what p is
pointing to, which deletes p from the list (refer back to the visual example). We also use the stdlib.h
function ‘free()’ to return the allocated storage of the deleted node to the system. If p exceeds the length of
the list nothing is deleted.

DOUBLE LINKED LIST

The list structure we have designed limits us to only moving forward in the list, a double linked list is a
linked list to the next position and the previous position. This type of list will allow us to move forward and
backward which may be useful.

The list would visually look like this:

Double linked list

With a corresponding data structure:

List structure

/1/ struct list {
 /2/ data_type val;

/3/ struct list *next;
/4/ struct list *back;
/5/ };

EXERCISES

Download the file linkedlist.c off c-submit.

Using the functions we just defined, design the following functions:

int end (listType *L); which returns the length of a given linked list.

void printList (listType *L); which prints out a given linked list.

listType* quickFill (int *A, listType *L); which takes an array and converts it to link
list format.

void purge (int a, listType *L); removes all instances of a from linked list L.

For example, purging 2 from: 2 2 4 5 6 2 1 4 6 8
gives: 4 5 6 1 4 6 8

5 3 8 9 7 4 2

HEAD

nil

