Logic

March 28, 2005
Propositional Logic

- **Information definition:** a *proposition* is a statement of **fact**
 - “It is raining” (english) \(\rightarrow \) Raining

- **Connectives:** operators on propositions
 - And, or, not, implies, if and only if
 \[
 \land, \lor, \neg, \rightarrow, \leftrightarrow
 \]
Syntax

- Symbols: p, q, r, s, t (variables)
- Constants: T, F
- Functions: f, g, h (n-ary) and connectives \(\land, \lor, \neg, \rightarrow, \leftrightarrow \)
- Relations: R, S (n-ary)
- Parentheses:),(
- Equality \(\equiv \)
Examples

\[p \rightarrow q \]

\[(p \land \neg p) \lor r \]

\[)) \lor \land \equiv \]
Formulas and Terms

Rules:

- All symbols are formulas
- All constants are formulas
- If t_0, t_1 are formulas then so are

 $t_0 \land t_1, t_0 \lor t_1, t_0 \rightarrow t_1, t_0 \leftrightarrow t_1, \neg t_0, (t_0)$
- If t_0, t_1 are formulas then so are

 $Rt_0 t_1, t_0 \equiv t_1$
- Formulas composed from symbols, constants and functions are called terms
<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
<th>$p \rightarrow q$</th>
<th>$p \leftrightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Semantics II

Semantics of any formula is given by an evaluation function Φ from formulas to $\{T,F\}$

To define the semantics, it suffices to define evaluation of symbols and functions (and use the previous slide)
Examples II

- A tautology is always true: \(p \lor \neg p \)
- A contradiction is always false: \(p \land \neg p \)
- One way to derive truth of a formula is to use a truth table.

\[
(p \rightarrow q) \equiv (\neg p \lor q)
\]
Laws of Propositional Logic

- Commutativity
- Associativity
- Distributivity
- DeMorgan
Rules of Inference

- Modus Ponens
- Modus Tollens
- Syllogism
- Disjunctive Syllogism
- Specialization
- Conjunction
Theories

A **Theory** in propositional logic is a set of constants, functions, relations and axioms.

Example: (theory of ordered integers)

- **Constants:** non-negative integers
- **Function:** +, **Relation:** <
- **Axioms:**

 \[
 \neg(x < x) \\
 0 < x \rightarrow y < x + y \\
 (x < y) \rightarrow \neg(y < x)
 \]

Why?

Why do computer scientists care?
Because theories are *specifications* of a collection of structures
To reason about code correctness
To enable code transformations
 - Must preserve invariants