Hashing - Introduction

- Dictionary = a dynamic set that supports the operations INSERT, DELETE, SEARCH
- Examples :
- a symbol table created by a compiler
- a phone book
- an actual dictionary
- Hash table = a data structure good at implementing dictionaries

Hashing - Introduction

- Why not just use an array with direct addressing (where each array cell corresponds to a key)?
- Direct-addressing guarantees O(1) worst-case time for Insert/Delete/Search.
- BUT sometimes, the number K of keys actually stored is very small compared to the number N of possible keys. Using an array of size N would waste space.
- We'd like to use a structure that takes up $\Theta(K)$ space and O (1) average-case time for Insert/Delete/ Search

Hashing

- Hashing =
- use a table (array/vector) of size m to store elements from a set of much larger size
\checkmark given a key k, use a function h to compute the slot $h(k)$ for that key.
- Terminology:
$\checkmark h$ is a hash function
- k hashes to slot $h(k)$
- the hash value of k is $h(k)$
collision : when two keys have the same hash value

Hashing

- What makes a good hash function?
\checkmark It is easy to compute
- It satisfies uniform hashing
- hash = to chop into small pieces (MerriamWebster)
$=$ to chop any patterns in the keys so that the results are uniformly distributed (cs311)

Hashing

- What if the key is not a natural number?
- We must find a way to represent it as a natural number.
- Examples:
\checkmark key $\boldsymbol{i} \rightarrow$ Use its ascii decimal value, 105
\diamond key inx \rightarrow Combine the individual ascii values in some way, for example,

$$
105 * 128^{2}+110 * 128+120=1734520
$$

Hashing - hash functions

Truncation

- Ignore part of the key and use the remaining part directly as the index.
- Example: if the keys are 8 -digit numbers and the hash table has 1000 entries, then the first, fourth and eighth digit could make the hash function.
- Not a very good method : does not distribute keys uniformly

Hashing

Folding

- Break up the key in parts and combine them in some way.
- Example : if the keys are 8 digit numbers and the hash table has 1000 entries, break up a key into three, three and two digits, add them up and, if necessary, truncate them.
- Better than truncation.

Hashing

Division

- If the hash table has m slots, define $h(k)=k \bmod m$
- Fast
- Not all values of m are suitable for this. For example powers of 2 should be avoided.
- Good values for m are prime numbers that are not very close to powers of 2.

Hashing

Multiplication

- $h(k)=\lfloor m *(k * c-\lfloor k * c\rfloor)\rfloor, 0<c<1$
- In English :
\checkmark Multiply the key k by a constant $c, 0<c<1$
- Take the fractional part of $k * c$
- Multiply that by m
- Take the floor of the result
- The value of m does not make a difference
- Some values of c work better than others
- A good value is $(\sqrt{5}-1) / 2$

Hashing

Multiplication

- Example:

Suppose the size of the table, m, is 1301 .
For $k=1234, \quad h(k)=850$
For $k=1235, \quad h(k)=353$
pattern broken
For $k=1236, \quad h(k)=115$
For $k=1237, \quad h(k)=660$
For $k=1238, \quad h(k)=164$
For $k=1239, \quad h(k)=968$
For $k=1240, \quad h(k)=471$

Hashing

Universal Hashing

- Worst-case scenario: The chosen keys all hash to the same slot. This can be avoided if the hash function is not fixed:
- Start with a collection of hash functions
- Select one in random and use that.
- Good performance on average: the probability that the randomly chosen hash function exhibits the worst-case behavior is very low.

Hashing

Universal Hashing

- Let H be a collection of hash functions that map a given universe U of keys into the range $\{0,1, \ldots$, $m-1\}$.
- If for each pair of distinct keys $k, l \in U$ the number of hash functions $h \in H$ for which $h(k)=h(l)$ is $|H| / m$, then H is called universal.

Hashing

- Given a hash table with m slots and n elements stored in it, we define the load factor of the table as $\lambda=n / m$
- The load factor gives us an indication of how full the table is.
- The possible values of the load factor depend on the method we use for resolving collisions.

Hashing - resolving collisions

Chaining a.k.a closed addressing

- Idea : put all elements that hash to the same slot in a linked list (chain). The slot contains a pointer to the head of the list.
- The load factor indicates the average number of elements stored in a chain. It could be less than, equal to, or larger than 1.

Hashing - resolving collisions

Chaining

- Insert : O(1)
- worst case
- Delete : O(1)
- worst case
- assuming doubly-linked list
- it's O(1) after the element has been found
- Search : ?
- depends on length of chain.

Hashing - resolving collisions

Chaining

- Assumption: simple uniform hashing
- any given key is equally likely to hash into any of the m slots
- Unsuccessful search:
- average time to search unsuccessfully for key $\mathrm{k}=$ the average time to search to the end of a chain.
- The average length of a chain is λ.
\checkmark Total (average) time required : $\Theta(1+\lambda)$

Hashing - resolving collisions

Chaining

- Successful search:

- expected number e of elements examined during a successful search for key k
$=1$ more than the expected number of elements examined when k was inserted.
- it makes no difference whether we insert at the beginning or the end of the list.
- Take the average, over the n items in the table, of 1 plus the expected length of the chain to which the ith element was added:

Hashing - resolving collisions

Chaining

$$
e=\frac{1}{n} \sum_{i=1}^{n}\left(1+\frac{i-1}{m}\right)=\ldots=1+\frac{\lambda}{2}-\frac{1}{2 m}
$$

- Total time : $\Theta(1+\lambda)$

Hashing - resolving collisions

Chaining

- Both types of search take $\Theta(1+\lambda)$ time on average.
- If $n=\mathrm{O}(m)$, then $\lambda=\mathrm{O}(1)$ and the total time for Search is $\mathrm{O}(1)$ on average
- Insert : $\mathrm{O}(1)$ on the worst case
- Delete : O(1) on the worst case
- Another idea: Link all unused slots into a free list

Hashing - resolving collisions

Open addressing

\square Idea:

- Store all elements in the hash table itself.
- If a collision occurs, find another slot. (How?)
- When searching for an element examine slots until the element is found or it is clear that it is not in the table.
- The sequence of slots to be examined (probed) is computed in a systematic way.
- It is possible to fill up the table so that you can't insert any more elements.
idea: extendible hash tables?

Hashing - resolving collisions

Open addressing

- Probing must be done in a systematic way (why?)
- There are several ways to determine a probe sequence:
- linear probing
- quadratic probing
- double hashing
\checkmark random probing

