Hashing - Introduction

m Dictionary = a dynamic set that supports the
operations INSERT, DELETE, SEARCH

m Examples :
¢ a symbol table created by a compiler
¢ a phone book
¢ an actual dictionary

= Hash table = a data structure good at
implementing dictionaries



Hashing - Introduction

® Why not just use an array with direct addressing
(where each array cell corresponds to a key)?

¢ Direct-addressing guarantees O(1) worst-case
time for Insert/Delete/Search.

¢ BUT sometimes, the number K of keys actually
stored 1s very small compared to the number N
of possible keys. Using an array of size NV
would waste space.

+» We’d like to use a structure that takes up O(K)
space and O(1) average-case time for
Insert/Delete/ Search



Hashing

m Hashing =

¢ use a table (array/vector) of size m to store
elements from a set of much larger size

¢ given a key k, use a function £ to compute the
slot A(k) for that key.

m Terminology:
¢ /1 1s a hash function
¢ k hashes to slot /(k)

¢ the hash value of k 1s /(k)

¢ collision : when two keys have the same hash
value




Hashing

® What makes a good hash function?

¢ It is easy to compute
¢ It satisfies uniform hashing

® hash = to chop into small pieces (Merriam-
Webster)
= to chop any patterns in the keys so

that the results are uniformly
distributed (cs311)



Hashing

m What if the key is not a natural number?

® We must find a way to represent 1t as a natural
number.

m Examples:
¢ keyi — Use 1ts ascii decimal value, 105

¢ key inx — Combine the individual ascii values
in some way, for example,

105*128%+110*128+120= 1734520



Hashing - hash functions

Truncation

m [gnore part of the key and use the remaining part
directly as the index.

m Example: 1f the keys are 8-digit numbers and the
hash table has 1000 entries, then the first, fourth
and eighth digit could make the hash function.

m Not a very good method : does not distribute keys
uniformly



Hashing

Folding

m Break up the key in parts and combine them in
SOme way.

m Example : 1f the keys are 8 digit numbers and the
hash table has 1000 entries, break up a key into
three, three and two digits, add them up and, if
necessary, truncate them.

m Better than truncation.



Hashing

Division
m [f the hash table has m slots, define
h(k)=k mod m
m Fast

m Not all values of m are suitable for this. For
example powers of 2 should be avoided.

®m Good values for m are prime numbers that are not
very close to powers of 2.



Hashing

Multiplication
m (k)=Lm *(k * c- Lk * cJ) |, 0<c<1
m [n English :
¢ Multiply the key k by a constant ¢, 0<c<I
¢ Take the fractional part of k * ¢
¢ Multiply that by m
¢ Take the floor of the result
m The value of m does not make a difference

m Some values of ¢ work better than others

m A good value is (\/g —1)/2




Hashing

m Example:

Multiplication

Suppose the size of the table, m, 1s 1301.

For /=1
1235,
1236,
1237,
For /=1
12309,
1240,

For k=
For k=
For k=

For /i=
For /=

234,

238,

h(k)=850
h(k)=353
h(k)y=115
h(k)=660
h(l)=164
h(k)=968
h(k)=471

\

\

—

—

pattern broken

10



Hashing

Universal Hashing

m Worst-case scenario: The chosen keys all hash to
the same slot. This can be avoided if the hash
function 1s not fixed:

m Start with a collection of hash functions
m Select one in random and use that.

® Good performance on average: the probability that
the randomly chosen hash function exhibits the
worst-case behavior is very low.

11



Hashing

Universal Hashing

m Let A be a collection of hash functions that map a

given universe U of keys into the range {0, 1,...,
m-11}.

m [f for each pair of distinct keys k, /e U the number
of hash functions /#e€ H for which /(k)==h() 1s
H ‘ / m, then H 1S called universal.

12



Hashing

® Given a hash table with m slots and 7 elements
stored 1n 1t, we define the load factor of the table

as A=n/m
m The load factor gives us an indication of how full
the table is.

m The possible values of the load factor depend on
the method we use for resolving collisions.

13



Hashing - resolving collisions

Chaining a.k.a closed addressing

m Idea : put all elements that hash to the same slot in

a linked list (chain). The slot contains a pointer to
the head of the list.

m The load factor indicates the average number of
elements stored in a chain. It could be less than,
equal to, or larger than 1.

14



Hashing - resolving collisions

Chaining

m Insert: O(1)

& WOrst case
m Delete : O(1)

& WOrSt case

¢ assuming doubly-linked list

¢ 1t’s O(1) after the element has been found
m Search : ?

¢ depends on length of chain.

15



Hashing - resolving collisions

Chaining

® Assumption: simple uniform hashing

¢ any given key 1s equally likely to hash into any
of the m slots

m Unsuccesstul search:

¢ average time to search unsuccessfully for key k =
the average time to search to the end of a chain.

¢ The average length of a chain is A.

¢ Total (average) time required : O(1+ AL)

16



Hashing - resolving collisions

Chaining
m Successful search:

¢ expected number e of elements examined during
a successful search for key &
=] more than the expected number of elements
examined when & was inserted.

¢+ 1t makes no difference whether we imsert at the
beginning or the end of the list.
¢ Take the average, over the n items in the table, of
I plus the expected length of the chain to which
the 1th element was added:

17



Hashing - resolving collisions

Chaining

— Total time : ©(1+ 1)

18



Hashing - resolving collisions

Chaining

m Both types of search take @(1+ A) time on
average.

m [f n=0(m), then A=O(1) and the total time for
Search 1s O(1) on average

m Insert : O(1) on the worst case
m Delete : O(1) on the worst case

m Another idea: Link all unused slots into a free list

19



Hashing - resolving collisions

Open addressing
B Idea:

+ Store all elements 1n the hash table itself.
¢ If a collision occurs, find another slot. (How?)

¢ When searching for an element examine slots until
the element 1s found or it is clear that it 1s not in the
table.

¢ The sequence of slots to be examined (probed) 1s
computed in a systematic way.

W' [t 1s possible to fill up the table so that you can’t insert any
more elements.

¢ 1dea: extendible hash tables? "



Hashing - resolving collisions

Open addressing
m Probing must be done in a systematic way (why?)

m There are several ways to determine a probe
sequence:

¢ linear probing
¢ quadratic probing
¢ double hashing

¢ random probing

21



	Hashing - Introduction
	Hashing - Introduction
	Hashing
	Hashing
	Hashing
	Hashing - hash functions
	Hashing
	Hashing
	Hashing
	Hashing
	Hashing
	Hashing
	Hashing
	Hashing - resolving collisions
	Hashing - resolving collisions
	Hashing - resolving collisions
	Hashing - resolving collisions
	Hashing - resolving collisions
	Hashing - resolving collisions
	Hashing - resolving collisions
	Hashing - resolving collisions

