Hashing - resolving collisions

Open addressing: linear probing

- **hash function**: \((h(k)+i) \mod m\) for \(i=0, 1, \ldots, m-1\)

- **Insert**: start with the location where the key hashed and do a sequential search for an empty slot.

- **Search**: start with the location where the key hashed and do a sequential search until you either find the key (success) or find an empty slot (failure).

- **Delete**: *(lazy deletion)* follow same route but mark slot as DELETED rather than EMPTY, otherwise subsequent searches will fail *(why?)*.

Hashing - resolving collisions

Open addressing: linear probing

- Disadvantage: **primary clustering**
 - long sequences of used slots build up with gaps between them.
 - result: performance near sequential search
Hashing - resolving collisions

Open addressing: quadratic probing

- Probe the table at slots \((h(k)+i^2) \mod m\) for \(i=0, 1, 2, 3, ..., m-1\)

- **Careful**: for some values of \(m\) (hash table size), very few slots end up being probed.
 - Try \(m=16\)
 - It is possible to probe all slots for certain \(m\)s.

- For prime \(m\), we get pretty good results.
 - if the table is at least half-empty, an element can always be inserted
Hashing - resolving collisions

Open addressing: quadratic probing

- Better than linear probing but may result in secondary clustering: if $h(k_1) = h(k_2)$ the probing sequences for k_1 and k_2 are exactly the same.

- General hash function: $(h(k) + c_1i + c_2i^2) \mod m$
Hashing - resolving collisions

Open addressing : double hashing

- The hash function is \((h(k) + i \cdot h_2(k)) \mod m\)
- In English: use a second hash function to obtain the next slot.
- The probing sequence is:
 \[h(k), \ h(k)+h_2(k), \ h(k)+2h_2(k), \ h(k)+3h_3(k), \ldots \]

Performance:
- Much better than linear or quadratic probing.
- Does not suffer from clustering
- BUT requires computation of a second function
Hashing - resolving collisions

Open addressing: double hashing

- The choice of \(h_2(k) \) is important
 - It must never evaluate to zero
 - Consider \(h_2(k) = k \mod 9 \) for \(k=81 \)

- The choice of \(m \) is important
 - If it is not prime, we may run out of alternate locations very fast.

- If \(m \) and \(h_2(k) \) are relatively prime, we’ll end up probing the entire table.

- A good choice for \(h_2 \) is \(h_2(k) = p - (k \mod p) \) where \(p \) is a prime less than \(m \).
Hashing - resolving collisions

Open addressing: random probing

- Use a pseudorandom number generator to obtain the sequence of slots that are probed.
Hashing - resolving collisions

Open addressing : expected # of probes

- Assuming uniform hashing...
 - Insert/Unsuccessful search : $1/(1-\lambda)$
 - Successful search : $(1+\ln(1/(1-\lambda)))/\lambda$
Hashing - resolving collisions

Example

- $m = 13$
- sequence of keys: 18-26-35-9-64-47-96-36-70
- $h_1(k) = k \mod 13$
- Insert the sequence into a hash table using
 - linear probing
 - quadratic probing
 - double hashing with $h_2(k) = k \mod 7 + 6$
Hashing - rehashing

- If the table becomes too full, its performance falls.
 - The O(1) property is lost
- Solution:
 - build a bigger table (e.g. approximately twice as big) and rehash the keys of the old table.
- When should we rehash?
 - when the table is half full?
 - when an insertion fails?
 - when a certain load factor has been reached?