Hashing - resolving collisions

Open addressing : linear probing

- hash function: $(h(k)+i) \bmod m$ for $i=0,1, \ldots, \mathrm{~m}-1$
- Insert : start with the location where the key hashed and do a sequential search for an empty slot.
- Search : start with the location where the key hashed and do a sequential search until you either find the key (success) or find an empty slot (failure).
- Delete : (lazy deletion) follow same route but mark slot as DELETED rather than EMPTY, otherwise subsequent searches will fail (why?).

Hashing - resolving collisions

Open addressing : linear probing

- Disadvantage: primary clustering
\bullet long sequences of used slots build up with gaps between them.
- result : performance near sequential search

Hashing - resolving collisions

Open addressing : quadratic probing

- Probe the table at slots $\left(h(k)+i^{2}\right) \bmod m$ for $i=0,1,2,3, \ldots, \mathrm{~m}-1$
- Careful : for some values of m (hash table size), very few slots end up being probed.
- Try $m=16$
- It is possible to probe all slots for certain $m s$.
- For prime m, we get pretty good results.
- if the table is at least half-empty, an element can always be inserted

Hashing - resolving collisions

Open addressing : quadratic probing

- Better than linear probing but may result in secondary clustering: if $h\left(k_{1}\right)==h\left(k_{2}\right)$ the probing sequences for k_{1} and k_{2} are exactly the same
- general hash function: $\left(h(k)+c_{1} i+c_{2} i^{2}\right) \bmod m$

Hashing - resolving collisions

Open addressing : double hashing

- The hash function is $\left(h(k)+i h_{2}(k)\right) \bmod m$
- In English: use a second hash function to obtain the next slot.
- The probing sequence is: $h(k), h(k)+h_{2}(k), h(k)+2 h_{2}(k), h(k)+3 h_{3}(k), \ldots$
- Performance :
\checkmark Much better than linear or quadratic probing.
- Does not suffer from clustering
- BUT requires computation of a second function ${ }_{5}$

Hashing - resolving collisions

Open addressing : double hashing

- The choice of $h_{2}(k)$ is important
- It must never evaluate to zero
- consider $h_{2}(k)=k \bmod 9$ for $k=81$
- The choice of m is important
- If it is not prime, we may run out of alternate locations very fast.
- If m and $h_{2}(k)$ are relatively prime, we'll end up probing the entire table.
- A good choice for h_{2} is $h_{2}(k)=p-(k \bmod p)$ where p is a prime less than m.

Hashing - resolving collisions

Open addressing : random probing

- Use a pseudorandom number generator to obtain the sequence of slots that are probed.

Hashing - resolving collisions

Open addressing : expected \# of probes

- Assuming uniform hashing...
- Insert/Unsuccessful search : $1 /(1-\lambda)$
- Successful search : $(1+\ln (1 /(1-\lambda)) / \lambda$

Hashing - resolving collisions

Example

- $m=13$
- sequence of keys: 18-26-35-9-64-47-96-36-70
- $h_{1}(k)=k \bmod 13$
- Insert the sequence into a hash table using
- linear probing
- quadratic probing
Δ double hashing with $h_{2}(k)=k \bmod 7+6$

Hashing - rehashing

- If the table becomes too full, its performance falls.
- The $\mathrm{O}(1)$ property is lost
- Solution:
- build a bigger table (e.g. approximately twice as big) and rehash the keys of the old table.
-When should we rehash?
- when the table is half full?
- when an insertion fails?
» when a certain load factor has been reached?

