Open addressing : linear probing

- <u>hash function:</u> $(h(k)+i) \mod m$ for i=0, 1,...,m-1
- Insert : start with the location where the key hashed and do a sequential search for an empty slot.
- Search : start with the location where the key hashed and do a sequential search until you either find the key (success) or find an empty slot (failure).
- Delete : (<u>lazy deletion</u>) follow same route but mark slot as DELETED rather than EMPTY, otherwise subsequent searches will fail (why?).

Open addressing : linear probing
Disadvantage: primary clustering

 long sequences of used slots build up with gaps between them.

result : performance near sequential search

Open addressing : quadratic probing
Probe the table at slots (h(k)+i²) mod m for i=0, 1,2, 3, ..., m-1

- Careful : for some values of *m* (hash table size), very few slots end up being probed.
 - ♦ Try *m*=16

• It is possible to probe all slots for certain ms.

For prime *m*, we get pretty good results.

 if the table is at least half-empty, an element can always be inserted

Open addressing : quadratic probing
Better than linear probing but may result in secondary clustering: if h(k₁)==h(k₂) the probing sequences for k₁ and k₂ are exactly the same
general hash function: (h(k)+c₁i+c₂i²) mod m

Open addressing : double hashing

- The hash function is $(h(k)+i h_2(k)) \mod m$
- In English: use a second hash function to obtain the next slot.
- The probing sequence is:
 h(k), h(k)+h₂(k), h(k)+2h₂(k), h(k)+3h₃(k), ...

Performance :

- Much better than linear or quadratic probing.
- Does not suffer from clustering
- ◆ BUT requires computation of a second function 5

Hashing - resolving collisions **Open addressing : double hashing The choice of** $h_2(k)$ is important ◆ It must never evaluate to zero • consider $h_2(k) = k \mod 9$ for k = 81The choice of *m* is important ◆ If it is not prime, we may run out of alternate locations very fast. If m and $h_2(k)$ are relatively prime, we'll end up probing the entire table. • A good choice for h_2 is $h_2(k) = p - (k \mod p)$ where p is a prime less than m.

6

Open addressing : random probing
Use a pseudorandom number generator to obtain the sequence of slots that are probed.

Open addressing : expected # of probes
Assuming uniform hashing...
Insert/Unsuccessful search : 1/(1-λ)
Successful search : (1+ln(1/(1-λ))/λ

Example

- *m* = 13
- sequence of keys: 18-26-35-9-64-47-96-36-70
- $\bullet h_1(k) = k \bmod 13$
- Insert the sequence into a hash table using
 - linear probing
 - quadratic probing
 - double hashing with $h_2(k) = k \mod 7 + 6$

Hashing - rehashing

If the table becomes too full, its performance falls.

♦ The O(1) property is lost

Solution:

 build a bigger table (e.g. approximately twice as big) and rehash the keys of the old table.

When should we rehash?

- when the table is half full?
- when an insertion fails?
- when a certain load factor has been reached?