1IMD3 Tutorial 4 — Basic Data Type and PyUnit

CAO SHIQI

January 31, 2006

1 Basic Data Type

1.1 List

List is a common data structure. Usually the abstract data type of list is defined by the some operators
such as create an empty list, insert an element to a list, remove an element from a list and so on. In python
list is a very useful data type. To create a list, one can just write

>>> 1i = [2,1,4,2]
In python an index can refer an element in a list. For example,

>>> 1i[0]
1

Since list supports indexing there is no need of array. It is pretty nice to support negative indexing in
Python.

>>> 1i[-1]
2

This feature is called syntax sugar. Syntax sugar is not necessary which means you can alway do it without
this feature. However syntax sugar is handy and makes program concise. The negative indexing 1i[-1]
is equivalent to 1i[len(1i) - 1] where len() returns the length of a list. There are more sugar of list
indexing, try the following by your own.

>>> 1i[1:-1]
>>> 1i[:3]
>>> 1i[-1:]
>>> 1i[:]

Searching an element in a list is also easy in Python. There is a method of list type called index(n). It
searches the first occurrence of n in a list and returns its index if it exists.

>>>1i.index(2)
0

Deleting an element is to call another method remove(n). It removes the first occurrence of n from a list.

>>>1i

[2,1,4,2]
>>>1i.remove(2)
>>>11

[1,4,2]

extend(a) is a method to add the list a to the end of the original list. append(a) is a method to add an
element a to the end of the original list. append(a) is the same as extend([a])
Example:

>>> 11

[3, 2, 4, 1]

>>> 11

(3, 2, 4, 1]

>>> 1i.extend([90,100])

>>> 11

[3, 2, 4, 1, 90, 100]

>>> 1i.append([90,100])

>>> 113

[3, 2, 4, 1, 90, 100, [90, 100]]
>>> 1i.extend([[90,100]])

>>> 11

(3, 2, 4, 1, 90, 100, [90, 1001, [90, 100]]

1.2 Tuple

Tuple is similar to list, except once a tuple is created it can not be changed and it has no index(),
extend (), append() methods.

>>> x = (1i,1i[3])
>>> X
([s, 2, 4, 1, 90, 100, [90, 1001, [90, 10011, 1)
>>> x[0]
(1001, 2, 4, 1, 90, 100, [90, 100], [90, 1001]
>>> x[-1]
1
>>> x[0] = 2
Traceback (most recent call last):
File "<stdin>", line 1, in 7
TypeError: object does not support item assignment

2 PyUnit

PyUnit is a testing module in the python’s library. In this framework user only needs to create testing cases,
then PyUnit will run each case and print useful information.
Example:

import unittest

class Test(unittest.TestCase):
def dec2bin(self,n):

a = "
while n > O:
if n % 2 == 0:
a="0"+a
else:
a="1"+a
n=n/2
return a

def tearDown(self):
"""Call after every test cases"""

def testA(self):
self.assertEqual (self.dec2bin(0),"0")

def testB(self):
assert self.dec2bin(8) == "1000"

def testC(self):
assert self.dec2bin(10) == "100"

if __name__ == "__main__":

unittest.main()

