1MD3 Tutorial 8 – Finite State Machine

CAO Shiqi

March 8, 2006

1 Quick Review

Finite State Machine is an abstract computer with limited number of memory. It contains the following components,

- a set of alphabet
- a set of states
- a set of accepting states, this set must be a subset of all states
- a transfer function
- a start state, which must be a member of the set of states

2 Some Examples and Exercises

Example 1: Let the alphabet set be $\{a, b\}$, design a FMS which accepts any string such that a occurs on all odd number of position in the string. The position starts from 1. Such that $\{ababab...\}$

Example 2: Let M be the language accepted by the FSM in the example 1. Let M' be $M - \{\lambda\}$. Design a FSM to accept M'.

Example 3: Design a FSM to accept any string such that in the string, if *a* occurs, it is always in a group of three. For instance, {*baaabbbbbbaaabaaabb*}

Exercise 4: Design a FSM to accept any string such that in the string *a* always occurs in a group. The group size is between 1 to 3. For instance, {*babbbbbaabaaabb*} TRY IT ON YOUR OWN

Example 5: Design a FSM to accept any string such that in the string *a* and *b* are alternating. $\{\lambda\}$ is also accepted. For example, $\{babab\}, \{ababab\}$.

Exercise 6: Redo the Example 3 with one state less.

Exercise 7: Redo the Example 5, but only use three states.