
Computer Science 1MD3
Tutorial 5: Data Types Continued

Aaron Simpson

Further to last tutorial, today you will be learning about several new data types usable in Python. The
usefulness of some may not be apparent at this point, but for now all you need to understand is the
syntax.

Review

As it's important to be very comfortable with the typing mechanisms involved with each of these data
types it is helpful to have them memorized so that constant reference to syntax sheets is no longer
necessary. To recapitulate:

● Lists
 listname = [element1,element2,elementn]
 listname[n] refers to the nth element in listname, with the first element having index 0
 listname[-n] counts n elements backwards from the right, with the last element as index 1
 listname[-0] is equivalent to listname[0]
 listname[0:2] refers to a sublist composed of elements 0 and 1 (right side is non-inclusive)
 listname[1:] refers to a sublist composed of element 1 and every element after 1
 listname[:1] refers to a sublist composed of every element before 1 (but not including 1)
 listname[-2:] refers to a sublist composed of the last two elements of the list
 Index references involving a colon are known as “Slice Notation”
 len(listname) will return the length of a list as an integer
 listname.index(element) will return the index of the first element matching the one given
 listname.remove(element) will delete the first instance of the given element from the list
 listname.append(element) will concatenate the given element onto the end of the list
 listname.extend(list) will break up a list and add each element onto the end of the first list
 listname.extend(element) will give an error

● Tuples
 tuplename = (element1,element2,elementn)
 tuplename[n] refers to the nth element in tuplename, with the first element having index 0
 tuplename(n) will return an error
 Elements in a tuple cannot be altered
 Tuples have no extend(), append(), or index() methods.
 Slice Notation and negative indices also work when using tuples

Additional list operations

There are several methods for manipulating and analyzing lists in addition to index(), append(), and
extend() which you have seen previously.

● del listname[n] will delete the element in index n from the list
● listname.insert(i,x) will insert object x immediately before index i
● listname.pop([i]) will delete the element at list i and return its value as well
● listname.count(x) will return the number of times x appears in the list
● listname.sort() will sort the list in ascending order
● listname.reverse() will reverse the order of the elements in the list

Sets

Sets are somewhat like lists in that they are a collection of basic objects under a single name, however
duplicates cannot exist in sets, and sets cannot be indexed as order is irrelevant. To generate a set,
create an iterable object like a string or a list, and then call the set() function. This will not change the
object, but will return a set based on it. You can assign a new object to contain this set. For example:

>>> mystring = “testing”
>>> myset = set(mystring)
>>> myset

Notice how duplicates are automatically removed and the order of the elements is automatically
changed. Try making another object called myset2 with a new set made out of the string “another test”.
Once you have done that, print it to the screen, and then run the following tests:

>>> myset | myset2 #union
>>> myset & myset2 #intersection
>>> myset ^ myset2 #symmetric difference
>>> myset in myset2 #membership test
>>> 'e' in myset2

Dictionaries

In Python, a dictionary is a collection of values with no order that are accessed by “keys” rather than
indices. Each dictionary key must be made out of a type with unchangeable elements. The syntax for
defining a dictionary is as follows, notice the curly braces:

>>> d = {"key1":"value1", "key2":"value2", "keyn":"valuen"}
>>> d = dict([("key1","value1"), ("key2","value2"), ("keyn","valuen")])

These two statements will both create the same dictionary.

Try entering this reference command:

>>> d["key2"]

Dictionaries have methods used to manipulate them like lists do.

● d.keys() will return a list of all of d's keys
● d.has_key(key) will return True if key is in d's list of keys, and will return False otherwise
● d.iteritems() will return an “iterator” over the dictionary's (key, value) pairs

	Computer Science 1MD3
	Tutorial 5: Data Types Continued

