
Computer Science 1MD3
Tutorial 7: Classes and Avanced Data Types

Aaron Simpson

A new concept that you haven't yet been introduced to is that of a recursive data type. You have
already been exposed to recursive functions, where the function itself appears in its own definition.
Recursive data types are much the same, one of the elements defined in each linked list actually
contains a linked list in itself. This will make more sense as you see its implementation in practice.

Definition of Linked Lists

class Node:
 def __init__(self, cargo=None, next=None):
 self.cargo = cargo
 self.next = next

 def __str__(self):
 return str(self.cargo)

As with most new concepts there is some syntax involved in this definition that you haven't been
exposed to yet. Rather than explaining how the new elements specifically work, it may make more
sense to see what they do in the context of this problem. The first unfamiliar part is the class notation.
This has the same shape as when defining a function (not that it does not need the def keyword to
begin). Part of the reason that the definition for linked lists is recursive is because we are not defining
the linked list class as a whole, instead we are defining how a single node in that list works, and
referring to other nodes in that definition. On the next line you will see the familiar def again with an
oddly shaped new word init with double underscores on either side of it. You might guess that this is
shaped like a function definition, and you'd be right. The reason for the special notation is that
whenever you define a special method called __init__ inside a new class, this method is called every
time the class is instantiated (as in, whenever you make a new variable of the class's type). This makes
the __init__ method very useful for preparing a class for its components to be manipulated. As you can
see the __init__ method takes 3 arguments, self, cargo, and next. The use of =None after cargo and
next are what's called “default values”. This means that if no next parameter is given, its value is
automatically set to None when the class is initialized. The same is true for the cargo parameter if no
value is given for it. The first parameter of a method is basically always the special self parameter,
which Python uses for if the object needs to perform an action on itself. The way this works is rather
obscure and you do not need to worry about it at the moment. This means however that when
instantiating an empty node, you can do so with empty braces. Doing so would look like this:

nameformynode = Node()

This would create a new Node object called nameformynode. Its cargo and next parameters would
automatically be set to None as it is initiated.

The next method defined is the __str__ method. This is a special case as well in that it teaches the class
what to do if some other function is trying to treat the class as a string (i.e., if something tried to print
this class). The entire method consists of the line return str(self.cargo). This means, “If a function
wants some part of you to work with as a string, convert your cargo to a string, and give the function
that”. Let's say we instantiated a new object like this:

newnode = Node(“stuff”)

This would make another new node called newnode containing the string “stuff” in its cargo container.
Now, if we were trying to display this node's contents in the interpreter the first thing we might try to
do is enter its name.

newnode

All this will do is produce a message which looks like an error (though it isn't really), telling you there's
an instance of the Node class at some memory address. This makes sense when you think about it, as
the object newnode itself is an entity composed of multiple parts and not something that can be
displayed by conventional means. If we were to use the print function however:

print newnode

...then the interpreter knows to use the __str__ method we defined earlier to figure out exactly what it
is that should be printed. In this case, it is the cargo converted to a string, which should result in stuff
being printed to the screen.

Use of the lists

Now that the function of classes should be clearer, we can start to see how linked lists actually utilize
this. The cleverness of this data type as well as its recursive element are both seen in the next
component. The intended use of this element is to point to the next element in the list, linking the
objects together. To do this, you actually set the next value to equal another node object. For example
try entering the following code in the interpreter:

>>> node1 = Node(“This is the first”)
>>> node2 = Node(“This is the second”)
>>> node1.next = node2
>>> print node1
>>> print node1.next

If we wanted, we could give a node its cargo and next parameters both at once, like we can give
multiple parameters to any function.

>>> node1 = Node(“This is the first”, node2)

This would result in the same node1 as in the previous example. We cannot, however, replace the first
line in that example with this one, as node2 doesn't exist yet when node1 is first being defined.

Trees

If you understand the concept of linked lists properly, trees are a very small logical step after that. One
way of having them function is to represent them as a linked list, but with more than one link available.
For example:

class TreeNode:
 def __init__(self, cargo=None, left=None, right=None):
 self.cargo = cargo
 self.left = left
 self.right = right

 def __str__(self):
 return str(self.cargo)

The left and right components replace next here, allowing each node to form a path to more than one
location. Each of these paths can be seen as a “branch” on the tree. The implementation of the cargo
remains the same as in the linked list.

Any remaining time in this tutorial can be spent reviewing the basics of these classes with your TA.
These data types are highly testable material so try to make a point of memorizing their idioms to save
you time later on.

	Computer Science 1MD3
	Tutorial 7: Classes and Avanced Data Types

