
Fractional Types

Roshan P. James1, Zachary Sparks1, Jacques Carette2, and Amr Sabry1

(1) Indiana University (2) McMaster University

Abstract. In previous work, we developed a first-order, information-
preserving, and reversible programming language Π founded on type
isomorphisms. Being restricted to first-order types limits the expressive-
ness of the language: it is not possible, for example, to abstract common
program fragments into a higher-level combinator. In this paper, we in-
troduce a higher-order extension of Π based on the novel concept of
fractional types 1/b. Intuitively, a value of a fractional type 1/v repre-
sents negative information. A function is modeled by a pair (1/v1, v2)
with 1/v1 representing the needed argument and v2 representing the re-
sult. Fractional values are first-class: they can be freely propagated and
transformed but must ultimately — in a complete program — be offset
by the corresponding amount of positive information.

1 Introduction

We are witnessing a convergence of ideas from several distinct research commu-
nities (physics, mathematics, and computer science) towards replacing equalities
by isomorphisms. The combined programme has sparked a significant amount of
research that unveiled new and surprising connections between geometry, alge-
bra, logic, and computation (see [2] for an overview of some of the connections).

In the physics community, Landauer [17, 18], Feynman [7], and others have
interpreted the laws of physics as fundamentally related to computation. The
great majority of these laws are formulated as equalities between different phys-
ical observables which is unsatisfying: different physical observables should not
be related by an equality. It is more appropriate to relate them by an isomorphism
that witnesses, explains, and models the process of transforming one observable
to the other.

In the mathematics and logic community, Martin-Löf developed an extension
of the simply typed λ-calculus originally intended to provide a rigorous frame-
work for constructive mathematics [19]. This theory has been further extended
with identity types representing the proposition that two terms are “equal.”
(See [23, 24] for a survey.) Briefly speaking, given two terms a and b of the same
type A, one forms the type IdA(a, b) representing the proposition that a and b are
equal: in other words, a term of type IdA(a, b) witnesses, explains, and models
the process of transforming a to b and vice-versa.

In the computer science community, the theory and practice of type isomor-
phisms is well-established. Originally, such type isomorphisms were motivated
by the pragmatic concern of searching large libraries of functions by providing

one of the many possible isomorphic types for the desired function [20]. More
recently, type isomorphisms have taken a more central role as the fundamental
computational mechanism from which more conventional, i.e., irreversible com-
putation, is derived. In our own previous work [13, 4, 14] we started with the
notion of type isomorphism and developed from it a family of programming lan-
guages, Π with various superscripts, in which computation is an isomorphism
preserving the information-theoretic entropy.

A major open problem remains, however: a higher-order extension of Π. This
extension is of fundamental importance in all the originating research areas. In
physics, it allows for quantum states to be viewed as processes and processes
to be viewed as states, such as with the Choi-Jamiolkowski isomorphism [5,
15]. In mathematics and logic, it allows the equivalence between different proofs
of type IdA(a, b) to itself be expressed as an isomorphism (of a higher type)
IdIdA(a,b)(p, q). Finally, in computer science, higher-order types allow code to
abstract over other code fragments as well as the manipulation of code as data
and data as code.

Technically speaking, obtaining a higher-order extension requires the con-
struction of a closed category from the underlying monoidal category for Π.
Although the general idea of such a construction is well-understood, the de-
tails of adapting it to an actual programming language are subtle. Our main
novel technical device to achieving the higher-order extension is a fractional type
which represents negative information and which is so named because of its du-
ality with conventional product types. The remainder of the paper reviews Π
and then introduces the syntax and semantics of the extension with fractional
types. We then study the properties of the extended language and establish its
expressiveness via several constructions and examples that exploit its ability to
model higher-order computations.

2 Background: Π

We review our language Π providing the necessary background and context
for our higher-order extension.1 The terms of Π are not classical values and
functions; rather, the terms are isomorphism witnesses. In other words, the terms
of Π are proofs that certain “shapes of values” are isomorphic. And, in classical
Curry-Howard fashion, our operational semantics shows how these proofs can
be directly interpreted as actions on ordinary values which effect this shape
transformation. Of course, “shapes of values” are very familiar already: they are
usually called types. But frequently one designs a type system as a method of
classifying terms, with the eventual purpose to show that certain properties of
well-typed terms hold, such as safety. Our approach is different: we start from
a type system, and then present a term language which naturally inhabits these
types, along with an appropriate operational semantics.

1 The presentation in this section focuses on the simplest version of Π. Other versions
include the empty type, recursive types, and trace operators but these extensions
are orthogonal to the higher-order extension emphasized in this paper.

Data. We view Π as having two levels: it has traditional values, given by:

values, v :: = () | left v | right v | (v, v)

and these are classified by ordinary types:

value types, b :: = 1 | b+ b | b× b

Types include the unit type 1, sum types b1 + b2, and product types b1 × b2.
Values include () which is the only value of type 1, left v and right v which
inject v into a sum type, and (v1, v2) which builds a value of product type.

Isomorphisms. The terms of Π witness type isomorphisms of the form b ↔ b.
They consist of base isomorphisms, as defined below, and their composition.

swap+ : b1 + b2 ↔ b2 + b1 : swap+

assocl+ : b1 + (b2 + b3)↔ (b1 + b2) + b3 : assocr+

unite : 1× b↔ b : uniti
swap× : b1 × b2 ↔ b2 × b1 : swap×

assocl× : b1 × (b2 × b3)↔ (b1 × b2)× b3 : assocr×

distrib : (b1 + b2)× b3 ↔ (b1 × b3) + (b2 × b3) : factor

Each line of the above table introduces a pair of dual constants2 that witness
the type isomorphism in the middle. These are the base (non-reducible) terms of
the second, principal level of Π. Note how the above has two readings: first as a
set of typing relations for a set of constants. Second, if these axioms are seen as
universally quantified, orientable statements, they also induce transformations of
the (traditional) values. The (categorical) intuition here is that these axioms have
computational content because they witness isomorphisms rather than merely
stating an extensional equality.

The isomorphisms are extended to form a congruence relation by adding the
following constructors that witness equivalence and compatible closure:

id : b↔ b

c : b1 ↔ b2
sym c : b2 ↔ b1

c1 : b1 ↔ b2 c2 : b2 ↔ b3
c1 # c2 : b1 ↔ b3

c1 : b1 ↔ b3 c2 : b2 ↔ b4
c1 + c2 : b1 + b2 ↔ b3 + b4

c1 : b1 ↔ b3 c2 : b2 ↔ b4
c1 × c2 : b1 × b2 ↔ b3 × b4

The syntax is overloaded: we use the same symbol at the value-type level and at
the isomorphism-type level for denoting sums and products. Hopefully this will
not cause undue confusion.

It is important to note that “values” and “isomorphisms” are completely sep-
arate syntactic categories which do not intermix. The semantics of the language
come when these are made to interact at the “top level” via application:

top level term, l :: = c v

2 where swap× and swap+ are self-dual.

The language presented above, at the type level, models a commutative
ringoid where the multiplicative structure forms a commutative monoid, but
the additive structure is just a commutative semigroup. Note that the version
of Π that includes the empty type with its usual laws exactly captures, at the
type level, the notion of a semiring (occasionally called a rig) where we replace
equality by isomorphism. Semantically, Π models a bimonoidal category whose
simplest example is the category of finite sets and bijections. In that interpre-
tation, each value type denotes a finite set of a size calculated by viewing the
types as natural numbers and each combinator c : b1 ↔ b2 denotes a bijection
between the sets denoted by b1 and b2. (We discuss the operational semantics in
conjuction with our extension in the next section.)

3 The Language: Π/

The languageΠ models isomorphisms of values rather well, and as we established
before [13, 4, 14], it is logically reversible and each computation it expresses pre-
serves the information-theoretic entropy. However, purposefully, it has no distin-
guished notion of input or output ; more precisely, because of strict preservation
of information, these two concepts coincide. This is the root of reversibility. But
if we want to model functions of any flavor as values, we need to differentiate
between these notions. Our idea, inspired by computational dualities [8, 6], po-
larity [9, 25], and the categorical notion of compact closure [21, 1], is to introduce
a formal dual for our types. We thus consider a type in a negative position to
possess negative information, as it is really a request for information. Since infor-
mation is logarithmic, this means that a request for information should behave
like a fractional type.

The extension of the sets of types and values from Π to Π/ is simple:

value types, b :: = ... | 1/b
values, v :: = ... | 1/v

For a given type b, the values of type 1/b are of the form 1/v where v : b. Note
that 1/v is purely formal, as is 1/b.

Semantically, we are extending the symmetric monoidal category modeling Π
to a compact closed one, i.e., a category in which morphisms are representable as
objects. In such a setting, the new dual objects (i.e., the fractionals) must satisfy
the following isomorphism witnessed by two new type indexed combinators ηb
and εb:

ηb : 1↔ 1/b× b : εb
From a programming perspective, we think of a value 1/v as a first-class con-
straint that can only be satisfied if it is matched with an actual value v. In other
words, 1/v is a pattern representing the absence of some information of a specific
shape (i.e., negative information), that can only be reconciliated by an actual

value v. The combinator ηb : 1 ↔ 1/b × b thus represents a fission point which
creates — out of no information — an equal amount of negative and positive
information. Symmetrically, the combinator εb : 1/b×b↔ 1 matches up an equal
amount of negative and positive information producing no residual information.

Historically, versions of compact closed categories were introduced by Abram-
sky and Coecke [1] and by Selinger [21] as the generalization of monoidal cate-
gories to model quantum computation. The first and most intuitive example of
such categories is the category of finite sets and relations. In that case, the dual
operation (i.e., the fractional type) collapses by defining 1/b to be b. In spite of
this degenerate interpretation of fractionals, this is still an interesting category
as it provides a model for a reversible higher-order language. Indeed, any relation
is reversible via the standard converse operation on a relation. Furthermore, any
relation between b1 and b2 can be represented as a subset of b1 × b2, i.e., as a
value.

In this section, we provide a simple semantics of Π/ in the category of finite
sets and relations, in the following way: We interpret each combinator c : b1 ↔ b2
as a relation between the sets denoted by b1 and b2 respectively. Sets b1 and b2 can
be related only if the same information measure. As we illustrate, this semantics
allows arbitrary relations (including the empty relation and relations that are
not isomorphisms) to be represented as values in Π/. In Sec. 5 we discuss more
refined semantics that are more suitable for richer categories.

Definition 1 (Denotation of Value Types). Each type denotes a finite set
of values as follows:

[[1]] = {()}
[[b1 + b2]] = {left v | v ← [[b1]]} ∪ {right v | v ← [[b2]]}
[[b1 × b2]] = {(v1, v2) | v1 ← [[b1]], v2 ← [[b2]]}

[[1/b]] = {1/v | v ← [[b]]}

We specify relations using a deductive system whose judgments are of the
form v1 c v2 indicating that the pair (v1, v2) is in the relation denoted by c.

Definition 2 (Relational semantics). Each combinator c : b1 ↔ b2 in Π/

denotes a relation as specified below. 3

(left v) swap+ (right v) (right v) swap+ (left v)

(left v) assocl+ (left (left v)) (right (left v)) assocl+ (left (right v))

(right (right v)) assocl+ (right v) (left (left v)) assocr+ (left v)

3 In the interest of brevity, we have treated the type annotations in the base isomor-
phisms as implicit; for example, the rule for assocr× should really read:

v1 ∈ b1 v2 ∈ b2 v3 ∈ b3

((v1, v2), v3) assocr×
b1,b2,b3

(v1, (v2, v3))

(left (right v)) assocr+ (right (left v)) (right v) assocr+ (right (right v))

((), v) unite v v uniti ((), v) (v1, v2) swap× (v2, v1)

(v1, (v2, v3)) assocl× ((v1, v2), v3) ((v1, v2), v3) assocr× (v1, (v2, v3))

(left v1, v3) distrib (left (v1, v3)) (right v2, v3) distrib (right (v2, v3))

(left (v1, v3)) factor (left v1, v3) (right (v2, v3)) factor (right v2, v3)

v id v
v′ c v

v (sym c) v′
v1 c1 v2 v2 c2 v3

v1 (c1 # c2) v3

v c1 v′

(left v) (c1 + c2) (left v′)

v c2 v′

(right v) (c1 + c2) (right v′)

v1 c1 v′1 v2 c2 v′2
(v1, v2) (c1 × c2) (v′1, v

′
2) () ηb (1/v, v) (1/v, v) εb ()

The semantics above defines a relation rather than a function. It is still re-
versible in the sense that it “mode-checks”. In other words, for any combinator c
we can treat either its left or its right side as an input; this allows us to de-
fine sym as just relational converse, which amounts to an argument swap. We
can then give an operational interpretation to the semantic relation by defining
two interpreters: a forward evaluator and a backwards evaluator that exercise
the relation in opposite directions, but which now can return a set of results.
This operational view exploits the usual conversion of a relation from a subset
of A×B to a function from A to the powerset of B whose composition is given
by the Kleisli composition in the powerset monad. It is straightforward to check
that if the forward evaluation of c v1 produces v2 as a possible answer then the
backwards evaluation of c v2 produces v1 as a possible answer. One can check
that all relations for Π are total functional relations whose converse are also
total functional relations – aka isomorphisms. However ηb relates () to multiple
values (one for each value of type b), and is thus not functional; εb is exactly its
relational converse, as expected.

4 Expressiveness and Examples

Having introduced the syntax of our extended language, its semantics in the
category of sets and relations, and its operational semantics using forward and
backwards interpreters, we now illustrate its expressiveness as a higher-order
programming language. In the following presentation consisting of numerous
programming examples, we use bool as an abbreviation of 1 + 1 with true as
an abbreviation for left () and false as an abbreviation for right (). In addition,
instead of presenting the code using the syntax of Π, we use circuit diagrams
that are hopefully more intuitive. Each diagrams represents a combinator whose

evaluation consists of propagating values along the wires. For the sake of read-
ability, we omit obvious re-shuffling circuitry and elide trivial unit wires which
carry no information.4

4.1 First-Class Relations

The most basic additional expressiveness of Π/ over Π is the ability to express
relations as values. Indeed a value of type 1/b1× b2 is a pair of a constraint that
can only be satisfied by some v1 : b1 and a value v2 : b2. In other words, it cor-
responds to a function or relation which when “given” a value v1 : b1 “releases”
the value v2 : b2. To emphasize this view, we introduce the abbreviation:

b1 (b2 ::= 1/b1 × b2

which suggests a function-like behavior for the pair of a fractional value and
a regular value. What is remarkable is that we can almost trivially turn any
combinator c : b1 ↔ b2 into a (constant) value of type b1 (b2 as shown below
on the left:

name : (b1 ↔ b2)→ (1↔ (b1 (b2))
name c = ηb1 # (id × c)

Dually, as illustrated above on the right, we also have a coname combinator
which when given an answer v2 : b2, and a request for the corresponding input
1/b1 for c : b1 ↔ b2, eliminates this as a un-needed computation.

More generally any combinator manipulating values of type b can be turned
into a combinator manipulating values of type 1/b and vice-versa. This is due
to the fact that fractionals types satisfy a self-dual involution relating b and
1/(1/b):

doubleDiv : b↔ 1/(1/b)
doubleDiv = uniti # (η1/b × id) # assocr× # (id × εb) # swap× # unite

4.2 Higher-Order Relations

We are now a small step from implementing various higher-order combinators
that manipulate functions or relations. In particular, we can apply, compose,
curry, and uncurry values representing relations. We first show the realization
of apply :

apply : (b1 (b2)× b1 ↔ b2
apply = swap× # assocl× # (swap× × id) # (εb1 × id) # unite

4 The full code is available upon request. We plan on releasing it as soon as possible.

Intuitively, we simply match the incoming argument of type b1 with the con-
straint encoded by the function. If they match, they cancel each other and the
value of type b2 is exposed with no constraints. Otherwise, the result is undefined.
A flipped variant is also useful:

apply ′ : b1 × (b1 (b2)↔ b2
apply ′ = assocl× # (swap× × id) # (εb1 × id) # unite

Function or relation composition is now straightforward:

compose : (b1 (b2)× (b2 (b3)→ (b1 (b3)
compose = assocr× # (id × apply ′)

We can also derive currying (and dually, uncurrying) combinators. Observe that
the type of curry needs to be (b1 × b2 (b3)↔ (b1 ((b2 (b3)), which can be
written in mathematical notation as 1/(b1×b2)×b3 = (1/b1)×((1/b1)×b3). This
means curry can be written using recip, the implementation of the mathematical
identity 1/(b1 × b2) = 1/b1 × 1/b2:

recip : 1/(b1 × b2)↔ 1/b1 × 1/b2
recip = (uniti) # (uniti) # (assocl×) # ((ηb1 × ηb2)× id)#

(reorder × id) # (assocr×) # (id × swap×) (id × ε) # swap× # (unite)

where reorder is the obvious combinator of type b1× (b2× b3)× b4 ↔ b1× (b3×
b2)× b4. With recip out of the way, we can easily write curry :

curry : b1 × b2 (b3 ↔ b1 ((b2 (b3)
curry = (id × recip) # (id × swap×) # assocl×

That recip is the heart of currying seems quite remarkable.

4.3 Feedback, Iteration, and Trace Operators

Mathematically speaking, recursion and iteration can be expressed using cate-
gorical trace operators [16, 10]. In a language like Π there are two natural families

of trace operators that can be defined, an additive family (explored in detail in
our previous work [4]) and a multiplicative family, which is expressible using
fractionals.

The idea of the multiplicative trace operator is as follows. We are given a
computation c : b1 × b2 ↔ b1 × b3, and we build a “looping” version which
feeds the output value of type b1 back as an input. Effectively, this construction
cancels the common type b1, to produce a new combinator trace× c : b2 ↔ b3.

With fractionals, trace× becomes directly expressible:

trace×b : ((b× b1)↔ (b× b2))→ (b1 ↔ b2)
trace×b c = uniti # (ηb × id) # assocr×#

(id × c) # assocl× # (εb × id) # unite

As an example, we can use the operational semantics (outlined in the previous
section) to calculate the result of applying trace×bool(swap+ × id) to false.

{((), false)} (uniti)
{((1/false, false), false), ((1/true, true), false)} (ηbool × id)
{(1/false, (false, false)), (1/true, (true, false))} (assocr×)
{(1/false, (true, false)), (1/true, (false, false))} (id × not)
{((1/false, true), false), ((1/true, false), false)} (assocl×)
∅ (εbool × id)

The computation with true gives the same result. This confirms that although
our semantics is formally reversible, it does not result in isomorphisms.

More abstractly, the evaluation of trace× c : b2 ↔ b3 must “guess” a value of
type b1 to be provided to to the inner combinator c : b1×b2 ↔ b1×b3. This value
v1 : b1 cannot be arbitrary: it must be such that it is the value produced as the
first component of the result. In general, there may be several such fixed-point
values, or none. Indeed with a little ingenuity (see the next section), one can
express any desired relation by devising a circuit which keeps the desired pairs
as valid fixed-points.

4.4 (Finite) Relational Programming

Relational programming leverages set-theoretic relations and their composition
to express computational tasks in a declarative way. It turns out that with the
addition of the multiplicative trace, and the move to relations motivated in the
previous section, we can express relational programming.

Consider the relation R on booleans given by:
{(false, false), (false, true), (true, false)}.

We can define a combinator cR whose denotation is R, by defining a combinator
cInner : (a × bool) ↔ (a × bool) for some type a such that cR = trace×cInner .
The basic requirement of cInner is that for each desired pair (v1, v2) in R, it
maps (a0, v1) to (a0, v2) for some value a0 and that for each pair (v1, v2) that is
not in R, it maps (a1, v1) to (a2, v2) for different values a1 and a2.

For small examples, finding such combinators by trial and error is a relatively
straightforward but tedious task. It is, however, possible to automate this task
by expressing what is essentially a reversible SAT solver as follows. In the usual
setting, an instance of SAT is a function f which, when given some boolean
inputs, returns true or false. The function returns true when the inputs sat-
isfy the constraints imposed by the structure of f and a solution to the SAT
problem is the set of all inputs on which f produces true. The basic idea of our
construction is to use trace× to annihilate values that fail to satisfy the con-
straints represented by the SAT instance f . (The accompanying code details the
construction of such a solver.)

5 Conclusion

We have introduced the idea of fractional types in the context of a reversible
language founded on type isomorphisms and preservation of information. Values
of fractional types represent negative information, a concept which is difficult to
introduce in a conventional language that allows arbitrary creation and deletion
of information but which is much simpler to deal with when the surrounding
language infrastructure guarantees preservation of information. Fractional types
and values can be used to express a simple and elegant notion of higher-order
functions: a function b1 (b2 is a first-class value consisting of negative infor-
mation drawn from b1 and positive information drawn from b2.

The interpretation of our language Π/ in the category of sets and relations
is adequate in the sense that it produces a language in which every program is
a reversible relation and in which relations are first-class values. This relational
model is however, unsatisfactory, for several reasons:

– the type 1/b is interpreted in the same way as b, which gives no insight into
the “true meaning” of fractionals;

– the interpretation is inconsistent with the view of types as algebraic struc-
tures; for example, Π with the empty type, is the categorification of a semir-
ing but although fractional types in Π/ syntactically “look like” rational
numbers, there is no such formal connection to the rational numbers;

– finally, we have lost some delicate structure moving from Π to Π/ as we can
express arbitrary relations between types and not just isomorphisms.

For these reasons, it is interesting to consider other possible semantic inter-
pretations of fractionals. A natural alternative is to use the “canonical” compact
closed category, that is finite dimensional vector spaces and linear maps [22, 11]
over fields of characteristic 0 (or even the category of finite dimensional Hilbert
spaces). Let us fix an arbitrary field k of characteristic 0. Then each type b in
Π/ is interpreted as a finite dimensional vector space Vb over the field k. In
particular:

– every vector space contains a zero vector which means that the type 0 (if
included inΠ/) would not be the “empty” type. Furthermore all combinators
would be strict as they would have to map the zero vector to itself.

– the type 1 is interpreted as a 1-dimensional vector space and hence is iso-
morphic to the underlying field.

– the fractional type 1/b is interpreted as the dual vector space to the vector
space Vb representing b consisting of all the linear functionals on Vb.

– one can then validate certain desirable properties: 1/(1/b) is isomorphic to b;
and εb corresponds to a bilinear form which maps a dual vector and a vector
to a field element.

In such categories, the fractional type is given a non-trivial interpretation. In-
deed, while the space of column vectors is isomorphic to the space of row vectors,
they are nevertheless quite different, being (1, 0) and (0, 1) tensors (respectively).
In other words, the category provides a more refined model in which isomorphic
negative-information values and positive-information are not identified.

Although this semantics appears to have “better” properties than the rela-
tional one, we argue that it is not yet the “perfect” semantics. By including
the zero vector, the language has morphisms that do not correspond to isomor-
phisms (in particular it allows partial morphisms by treating the 0 element of
the zero-dimensional vector space as a canonical “undefined” value). It is also
difficult to reconcile the interpretation with the view that the types correspond
to the (positive) rational numbers, something we are actively seeking. What
would really be a “perfect” interpretation is one in which we can only express
Π-isomorphisms as first class values and in which the types are interpreted in a
way that is consistent with the rational numbers.

Fortunately, there is promising significant work on the groupoid interpreta-
tion of type theory [12] and on the categorification of the rational numbers [3]
that may well give us the model we desire. The fundamental idea in both cases
is that groupoids (viewed as sets with explicit isomorphisms as morphisms) nat-
urally have a fractional cardinality. Types would be interpreted as groupoids,
and terms would be (invertible) groupoid actions. The remaining challenge is to
identify those groupoid actions which are proper generalizations of isomorphisms
and can be represented as groupoids, so as to obtain a proper interpretation for
a higher-order language. As the category of groupoids is cartesian closed, this
appears eminently feasible.

Another promising approach is the use of dependent types for εb and ηb; more
precisely, εb would have type Σ (v : b) (1/v, v)↔ 1 where (1/v, v) here denotes a
singleton type. This extra precision appears to restrict combinators of Π/ back
to denoting only isomorphisms.

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: LICS
(2004)

2. Baez, J., Stay, M.: Physics, topology, logic and computation: a rosetta stone. New
Structures for Physics pp. 95–172 (2011)

3. Baez, J.C., Dolan, J.: Categorification. In Higher Category Theory, Contemp.
Math. 230, 1998, pp. 1-36. (1998)

4. Bowman, W.J., James, R.P., Sabry, A.: Dagger Traced Symmetric Monoidal Cat-
egories and Reversible Programming. In: RC (2011)

5. Choi, M.D.: Completely positive linear maps on complex matrices. Linear algebra
and its applications (1975)

6. Curien, P.L., Herbelin, H.: The duality of computation. In: ICFP (2000)
7. Feynman, R.: Simulating physics with computers. International Journal of Theo-

retical Physics 21, 467–488 (1982)
8. Filinski, A.: Declarative continuations: an investigation of duality in programming

language semantics. In: Category Theory and Computer Science (1989)
9. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)

10. Hasegawa, M.: Recursion from cyclic sharing: Traced monoidal categories and mod-
els of cyclic lambda calculi. In: TLCA. pp. 196–213 (1997)

11. Hasegawa, M., Hofmann, M., Plotkin, G.: Finite dimensional vector spaces are
complete for traced symmetric monoidal categories. Pillars of computer science
(2008)

12. Hofmann, M., Streicher, T.: The groupoid interpretation of type theory. In: Venice
Festschrift. pp. 83–111 (1996)

13. James, R.P., Sabry, A.: Information effects. In: POPL. pp. 73–84. ACM (2012)
14. James, R.P., Sabry, A.: Isomorphic interpreters from logically reversible abstract

machines. In: RC (2012)
15. Jamio lkowski, A.: Linear transformations which preserve trace and positive

semidefiniteness of operators. Reports on Mathematical Physics (1972)
16. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. In: Mathematical

Proceedings of the Cambridge Philosophical Society. Cambridge Univ Press (1996)
17. Landauer, R.: Irreversibility and heat generation in the computing process. IBM

J. Res. Dev. 5, 183–191 (July 1961)
18. Landauer, R.: The physical nature of information. Physics Letters A (1996)
19. Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part. The Journal

of Symbolic Logic 49(1), 311+ (Mar 1984)
20. Rittri, M.: Using types as search keys in function libraries. In: FPCA (1989)
21. Selinger, P.: Dagger compact closed categories and completely positive maps.

ENTCS 170, 139–163 (Mar 2007)
22. Selinger, P.: Finite dimensional hilbert spaces are complete for dagger compact

closed categories (extended abstract). Electron. Notes Theor. Comput. Sci. 270(1)
(2011)

23. Streicher, T.: Investigations into intensional type theory (1993), habilitationss-
chrift, Universität München

24. Warren, M.: Homotopy theoretic aspects of constructive type theory. Ph.D. thesis,
Carnegie-Mellon University (2008)

25. Zeilberger, N.: Polarity and the logic of delimited continuations. LICS (2010)

