
Multi-stage programming with functors and

monads: eliminating abstraction overhead from

generic code

Jacques Carette1 and Oleg Kiselyov2

1 McMaster University, 1280 Main St. West, Hamilton, Ontario Canada L8S 4K1
2 FNMOC, Monterey, CA 93943

Abstract. With Gaussian Elimination as a representative family of nu-
merical and symbolic algorithms, we use multi-stage programming, mon-
ads and Ocaml’s advanced module system to demonstrate the complete
elimination of the abstraction overhead while avoiding any inspection of
the generated code. We parameterize our Gaussian Elimination code to
a great extent (over domain, matrix representations, determinant track-
ing, pivoting policies, result types, etc) at no run-time cost. Because the
resulting code is generated just right and not changed afterwards, we
enjoy MetaOCaml’s guaranty that the generated code is well-typed. We
further demonstrate that various abstraction parameters (aspects) can
be made orthogonal and compositional, even in the presence of name-
generation for temporaries and other bindings and “interleaving” of as-
pects. We also show how to encode some domain-specific knowledge so
that “clearly wrong” compositions can be statically rejected by the com-
piler when processing the generator rather than the generated code.

1 Introduction

In high-performance, symbolic, and numeric computing, there is a well-known
issue of balancing between maximal performance and the level of abstraction at
which code is written. Furthermore, already in linear algebra, there is a wealth
of different aspects that may need to be addressed. For example, implementa-
tions of the widely used Gaussian Elimination (GE) algorithm — the running
example of our paper — may need to account for the representation of the ma-
trix, whether to compute and return the detrminant or rank, how and whether
search for pivot, etc. Furthermore, current architectures demand more and more
frequent tweaks which, in general, cannot be done by the compiler because the
tweaking often involves domain knowledge. A survey [3] of Gaussian elimination
implementations in an industrial package Maple found 6 different aspects and
35 different implementations of the algorithm, as well as 45 implementations of
directly related algorithms. We can manually write each of these implementa-
tions optimizing for particular aspects and using cut-and-paste to “share” simi-
lar pieces of code. We can write a very generic GE procedure that accounts for
all the aspects with appropriate abstractions [13]. The abstraction mechanisms

however – be they procedure, method or a function call – have a significant cost,
especially for high-performance numerical computing [3].

A more appealing approach is generative programming [7, 30, 22, 26, 14, 33].
The approach is not without problems, e.g., making sure that the generated code
is well-formed. This is a challenge in string-based generation systems, which
generally do not offer such guarantees and therefore make it very difficult to
determine which part of the generator is at fault when the generated code can-
not be parsed. Other problems is preventing accidental variable capture (so-
called hygiene [18]) and ensuring the generated code is well-typed. Lisp-style
macros, Scheme hygienic macros, camlp4 preprocessor [9], C++ template meta-
programming, Template Haskell [8] solve some of the above problems. Of the
widely available maintainable languages, only MetaOCaml [2, 20] solves all the
above problems including the well-typing of the generated code [29, 27].

But more difficult problems remain. Is the generated code optimal? Do we
still need post-processing to eliminate common subexpressions and fold con-
stants, remove redundant bindings? Is the generator readable, resembling the
original algorithm, and extensible? Are the aspects truly modular? Can we add
another aspect to it or another instance of the existing aspect without affect-
ing the existing ones? Finally, can we express domain-specific knowledge, e.g.,
one should not attempt to use full division when dealing with matrices of exact
integers, nor is it worthwhile to use full pivoting on a matrix over Q.

MetaOCaml is generative: generated code can only be treated as a black
box: it cannot be inspected and it cannot be post-processed (i.e., no intensional
analysis). This approach gives a stronger equational theory [28], and avoids the
danger of creating unsoundness [27]. Furthermore, intensional code analysis es-
sentially requires one to insert both an optimizing compiler and an automated
theorem proving system into the code generating system [25, 15, 4, 31]. While this
is potentially extremely powerful and an exciting area of research, it is also ex-
tremely complex, which means that it is currently more error-prone and difficult
to ascertain the correctness of the resulting code.

Therefore, in MetaOCaml, code must be generated just right (see [27] for
many simple examples). For more complex examples, new techniques are neces-
sary, e.g., abstract interpretation [17]. But more problems remain [6]: generating
binding statements (“names”), especially when generating loop bodies or condi-
tional branches; making continuation-passing style (CPS) code clear. Many au-
thors understandably shy away from CPS code as it quickly becomes unreadable.
But this is needed for proper name generation. The problems of compositional-
ity of code generators, expressing dependencies among them and domain-specific
knowledge remain.

In this paper we report on progress of solving these problems using GE as
our running example. Specifically, our contributions:

– Extending monad of [17] for generating binding statements when generat-
ing control structures such as loops and conditionals. We argue that code
generation is an effect and so requires something like a monad for proper
serialization.

– Implementation of the mdo-notation (patterned after do-notation of Haskell)
to make monadic code readable.

– Use of functors (including higher-order functors) to modularize the genera-
tor, express aspects (including results of various types) and assure compos-

ability of aspects even for aspects that use state and have to be accounted
in many places in the generated code.

– Use functor type sharing constraints to encode domain-specific knowledge.

The rest of this paper is structured as follows: The next section introduces
code generation in MetaOCaml, the problem of name generation, and continuation-
passing style (CPS) as a general solution. We also introduce the monad and the
issues of generating control statements. Section 3 describes the use of parametrized
modules of OCaml to encode all of the aspects of the Gaussian Elimination al-
gorithm family in completely separate, independent modules. We briefly discuss
related work in section 4. We then outline the future work and conclude. Ap-
pendices give samples of the generated code (which is available in full at [5]).

We wish to thank Cristiano Calgano for his help in adapting camlp4 for use
with MetaOCaml.

2 Generating binding statements, CPS, and monad

We build code generators out of primitive ones using code generation combi-
nators. MetaOcaml, as an instance of a multi-stage programming system [27],
provides exactly the needed features: to construct a code expression, to combine
them, and to execute them. Figure 2 shows the simplest code generator one, as
well as more complex generators.

let one = .<1>. and plus x y = .<.~x + .~y>.

let simplest_code = let gen x y = plus x (plus y one) in

.<fun x y -> .~(gen .<x>. .<y>.)>.

=⇒.<fun x_1 -> fun y_2 -> (x_1 + (y_2 + 1))>.

let simplest_param_code plus one = let gen x y = plus x (plus y one) in

.<fun x y -> .~(gen .<x>. .<y>.)>.

let param_code1 plus one =

let gen x y = plus (plus y one) (plus x (plus y one)) in

.<fun x y -> .~(gen .<x>. .<y>.)>.

let param_code1’ plus one =

let gen x y = let ce = (plus y one) in plus ce (plus x ce) in

.<fun x y -> .~(gen .<x>. .<y>.)>.

param_code1’ plus one

=⇒.<fun x_1 -> fun y_2 -> ((y_2 + 1) + (x_1 + (y_2 + 1)))>.

Fig. 1. Code generation and combinators. =⇒ under an expression shows the result of
its evaluation

We use MetaOCaml brackets .<...>. to generate code expressions, i.e., to
construct future-stage computations. We use escapes .~ to perform an immediate
code generating computation while we are building the future-stage computation.
The immediate computation in simplest_code is the evaluation of the function

gen, which in turn applies plus. The function gen receives code expressions
.<x>. and .<y>. as arguments. At the generating stage, we can manipulate
code expressions as (opaque) values. The function gen returns a code expression,
which is inlined in the place of the escape. MetaOCaml can print out code
expressions, so we can see the final generated code. It has no traces of gen and
plus: their applications are done at the generation stage.

The final MetaOCaml feature, .! (pronounced “run”) executes the code ex-
pression: .! simplest_code is a function of two integers, which we can apply:
(.! simplest_code) 1 2. The original simplest_code is not a function on
integers – it is a code expression.

To see the benefit of code generation, we notice that we can easily parameter-
ize our code, simplest_param_code, and use it to generate code that operates
on integers, floating point numbers or booleans – in general, any domain that
implements plus and one.

The generator param_code1 has two occurrences of plus y one, which may
be quite a complex computation and so we would rather not do it twice. We
may be tempted to rely on the compiler’s common-subexpression elimination
optimization. When the generated code is very complex, however, the com-
piler may overlook common subexpressions. Or the subexpressions may occur
in such an imperative context where the compiler might not be able to deter-
mine if lifting them is sound. So, being conservative, the optimizer will leave
the duplicates as they are. We may attempt to eliminate subexpressions as in
param_code1’. However, the result of param_code1’ plus one still exhibits du-
plicate sub-expressions. Our let-insertion optimization saved the computation
at the generating stage. We need a combinator that inserts the let expression
in the generated code. We need a combinator letgen to be used as
let ce = letgen (plus y one) in plus ce (plus x ce) yielding the code
like .<let t = y + 1 in t + (x + t)>. But that seems impossible because
letgen exp has to generate the expression .<let t = exp in body>. but letgen
does not have the body yet. The body needs a temporary identifier .<t>. that
is supposed to be the result of letgen itself. Certainly letgen cannot generate
only part of a let-expression, without the body, as all generated expressions in
MetaOCaml are well-formed and complete.

The key is to use continuation-passing style (CPS). Its benefits were first
pointed out by [1] in the context of partial evaluation, and extensively used by
[17] for code generation. Now, param_code2 plus one gives us the desired code.

let letgen exp k = .<let t = .~exp in .~(k .<t>.)>.

let param_code2 plus one =

let gen x y k = letgen (plus y one) (fun ce -> k (plus ce (plus x ce)))

and k0 x = x

in .<fun x y -> .~(gen .<x>. .<y>. k0)>.

param_code2 plus one

=⇒.<fun x_1 -> fun y_2 -> let t_3 = (y_2 + 1) in (t_3 + (x_1 + t_3))>.

Comparison of the code that did let-insertion at the generating stage
let ce = (plus y one) in plus ce (plus x ce)

with the corresponding code inserting let at the generated code stage
letgen (plus y one) (fun ce -> k (plus ce (plus x ce)))

clearly shows the difference between direct-style and CPS code. What was
let ce = init in ... in direct style became init’ (fun ce -> ...) in CPS.
For one thing, let became “inverted”. For another, what used to be an expression
that yields a value, init, became an expression that takes an extra argument,
the continuation, and invokes it. The differences look negligible in the above
example. In larger expressions with many let-forms, the number of parentheses
around fun increases, the need to add and then invoke the k continuation argu-
ment become increasingly annoying. The inconvenience is great enough for some
people to explicitly avoid CPS or claim that numerical programmers (our users)
cannot or will not program in CPS. Clearly a better notation is needed.

The do-notation of Haskell [24] shows that it is possible to write CPS code in
a conventional-looking style. The do-notation is the notation for monadic code
[21]. Not only can monadic code represent CPS [12], it also helps in composability
by offering to add different layers of effects (state, exception, non-determinism,
etc) to the basic monad [19] in a controlled way.

A monad [21] is an abstract datatype representing computations that yield a
value and may have an effect. The datatype must have at least two operations,
return to build trivial effect-less computations and bind for combining compu-
tations. These operations must satisfy monadic laws : return being the left and
the right unit of bind and bind being associative. Figure 2 defines the monad
used throughout the present paper and shows its implementation.

type (’v,’s,’w) monad = ’s -> (’s -> ’v -> ’w) -> ’w

let ret a = fun s k -> k s a

let bind a f = fun s k -> a s (fun s’ b -> f b s’ k)

let fetch s k = k s s and store v s k = k (v::s) ()

let k0 s v = v

let runM m = m [] k0

let l1 f = fun x -> mdo { t <-- x; f t}
let l2 f = fun x y -> mdo { tx <-- x; ty <-- y; f tx ty}

let retN a = fun s k -> .<let t = .~a in .~(k s .<t>.)>.

let ifL test th el = ret .< if .~test then .~th else .~el >.

let ifM test th el = fun s k ->

k s .< if .~(test s k0) then .~(th s k0) else .~(el s k0) >.

Fig. 2. Our monad

Our monad represents two kinds of computational effects: reading and writing
a computation-wide state, and control effects. The latter are normally associated
with exceptions, forking of computations, etc. – in general, whenever a computa-
tion ends with something other than invoking its natural continuation in the tail
position. In our case the control effects manifest themselves as code generation.

In Figure 2, the monad is implemented as a function of two arguments:
the state (of type s) and the continuation. The continuation receives the current

state, the value (of the type v) and yields the answer of the type w. The monad is
polymorphic over the three type parameters. Other implementations are possible.
Except for the code in Figure 2, the rest of our code treats the monad as a truly
abstract data type. The implementation of the basic monadic operations ret

and bind are conventional. It is easy to see that the monadic laws are satisfied.
Other monadic operations construct computations that do have specific effects.
Operations fetch and store v construct computations that read and write the
state. In our case the state is a list (of polymorphic variants), which models an
open discriminated union, as we shall see later.

The operation retN a is the let-insertion operation, whose simpler version
we called letgen earlier. It is the first computation with a control effect: indeed,
the result of retN a is not the result of invoking its continuation k. Rather,
its result is a let code expression. Such a behavior is symptomatic of control
operators (in particular, abort).

Finally, runM runs our monad, that is, performs the computation of the
monad and returns its result, which in our case is the code expression. We run
the monad by passing it the initial state and the initial continuation k0. We can
now re-write our param_code2 example of the previous section as param_code3.

let param_code3 plus one =

let gen x y = bind (retN (plus y one)) (fun ce ->

ret (plus ce (plus x ce)))

in .<fun x y -> .~(runM (gen .<x>. .<y>.))>.

let param_code4 plus one =

let gen x y = mdo { ce <-- retN (plus y one);

ret (plus ce (plus x ce)) }
in .<fun x y -> .~(runM (gen .<x>. .<y>.))>.

let ifM’ test th el = mdo {
testc <-- test; thc <-- th; elc <-- el;

ifL testc thc elc}
let gen a i = ifM’ (ret .<(.~i) >= 0>.)

(retN .<Some (.~a).(.~i)>.) (ret .<None>.)

in .<fun a i -> .~(runM (gen .<a>. .<i>.))>.

=⇒.<fun a_1 i_2 ->let t_3 = (Some a_1.(i_2)) in if (i_2 >= 0) then t_3 else None>.

let gen a i = ifM (ret .<(.~i) >= 0>.)

(retN .<Some (.~a).(.~i)>.) (ret .<None>.)

in .<fun a i -> .~(runM (gen .<a>. .<i>.))>.

=⇒.<fun a_1 i_2 ->if (i_2 >= 0) then let t_3 = (Some a_1.(i_2)) in t_3 else None>.

That does not seem like much of an improvement. With the help of camlp4
pre-processor, we introduce the mdo-notation (cite XXX), patterned after the
do-notation of Haskell. The function param_code4, written in the mdo-notation,
is equivalent to param_code3 – in fact, the camlp4 preprocessor will convert the
former into the latter. And yet, param_code4 looks far more conventional, as if
it were indeed in direct style.

We can write operations that generate code other than let-statements, e.g.,
conditionals: see ifL in Figure 2. The function ifL, albeit straightforward, is
not as general as we wish: its arguments are already generated pieces of code
rather than monadic values. We “lift it”, see ifM’. We define functions l1,

l2, l3 (analogues of liftM, liftM2, liftM3 of Haskell) to make such a lifting
generic. However we also need another ifM function, with the same interface (see
Figure 2). The difference between them is apparent: in the code above with ifM’,
the let-insertion happened before the if-expression, that is, before the test that
the index i is positive. If i turned out negative, a.(i) would generate an out-
of-bound array access error. On the other hand, the code with ifM accesses the
array only when we have verified that the index is non-negative. This example
makes it clear that the code generation (such as the one in retN) is truly an effect
and we have to be clear about the sequencing of effects when generating control
constructions such as conditionals. The form ifM handles such effects correctly.
We need similar operators for other Ocaml control forms: for generating case-
matching statements and for- and while-loops.

3 Aspects and Functors

The monad represents finer-scale code generation. We need tools for larger-scale
modularization; we can use any abstraction mechanisms we want to structure
our code generators, as long as none of those abstractions infiltrate the generated
code.

While the Object-Oriented Design community has acquired an extensive vo-
cabulary for describing modularity ideas, the guiding principles for modular
designs has not changed since they were first articulated by Parnas [23] and
Dijkstra [10]: information hiding and separation of concerns. To apply these
principles to the study of Gaussian Elimination, we need to understand what
are the changes between different implementations, and what concerns need to
be addressed. We also need to study the degree to which these concerns are inde-
pendent. A study of Gaussian Elimination [3] shows that the following variations
occur:

1. Domain: In which (algebraic) domain do the matrix elements belong to.
Sometimes the domains are very specific (e.g., Z, Q, Zp and floating point
numbers), while in other cases the domains were left generic, e.g., multivari-
ate polynomials over a field. In the roughly 85 pieces of code surveyed [3] 20
different domains were encountered.

2. Container: Whether the matrix is represented as an array of arrays, a one-
dimensional array, a hash table, a sparse matrix, etc., and whether indexing
is done in C or Fortran style. Additionally, if a particular representation had
a special mechanism for efficient row exchanges.

3. Output choices: Whether just the reduced matrix, or additionally the rank,
the determinant, and the pivoting matrix are to be returned. In the larger
algorithm family, routines like Maple’s LinearAlgebra:-LUDecomposition
have up to 26 + 25 + 22 = 100 outputs.

4. Fraction-free: Whether the Gaussian Elimination algorithm is allowed to
use unrestricted division, or only exact (remainder-free) division.

5. Pivoting: Whether to use no pivoting, column-wise pivoting, or full pivot-
ing.

6. Augmented Matrices: Whether we are doing GE on a full matrix, or only
a restricted number of columns, while doing elimination on the full matrix.
We currently do not treat this aspect in our code.

In addition to the above variations, there are two aspects that recur frequently:

1. Length measure: For stability reasons (numerical or coefficient growth), if
a domain possesses an appropriate length measure, this is sometimes used
to choose an “optimal” pivot.

2. Normalization and zero-equivalence: Whether the arithmetic opera-
tions of the domain at hand gives results in normalized form, and whether
a specialized zero-equivalence routine needs to be used.

These are separated out from the others are they are cross-cutting concerns:
in the case of the length measure, a property of the domain will influence the
method used to do pivoting if pivoting is to be performed.

The simplest parametrization is to make the domain abstract. As it turns
out, we need the following to exist in our domains: 0, 1, +, ∗, (unary and binary)
−, at least exact division, normalization, and potentially a relative size measure.
The simplest case of such domain abstraction is param_code1 in Fig. 2. There,
code-generators such as plus and one were passed as arguments. We need far
more than two parameters, so we have to group them. Instead of the group-
ing offered by regular records, we use Ocaml structures (i.e., modules) so we
can take advantage of extensibility, type abstraction and constraints, and espe-
cially parameterized structures (functors). We define the type of the domain,
the signature DOMAIN which different domains must satisfy:

module type DOMAIN = sig

type v type ’a vc = (’a,v) code

type kind (* Field or Ring ? *)

val zero : ’a vc val one : ’a vc

val plus : ’a vc -> ’a vc -> (’a vc, ’s, ’w) monad

(* times, minus, uminus, div elided for brevity *)

val better_than : (’a vc -> ’a vc ->

((’a,bool) code, ’s, ’w) monad) option

val normalizerf : ((’a,v -> v) code) option

end

module IntegerDomain : DOMAIN = struct

type v = int type kind = domain_is_ring

type ’a vc = (’a,v) code

let zero = .< 0 >. and one = .< 1 >.

let plus x y = ret .<.~x + .~y>.

let better_than = Some (fun x y -> ret .<abs .~x > abs .~y >.)

let normalizerf = None

...

end

The types above are generally lifted twice: once from the value domain v to
the code domain ’a vc, and once more from values to monadic computations
(’a vc, ’s, ’w) monad.

One particular domain instance is IntegerDomain. The notation
module IntegerDomain : DOMAINmakes the compiler verify that our IntegerDomain
is indeed a DOMAIN, that is, satisfies the required signature. The constraint
DOMAIN may be omitted; in that case, the compiler will verify the type when
we try to use that structure as a DOMAIN. In any case, the errors such as missing
“methods” or methods with incorrect types will be caught statically, even before

any code generation takes place. The abstract type domain_is_ring encodes a
semantic constraint that the full division is not available. While the DOMAIN type
may have looked daunting to some, the implementation is quite straightforward.
Other domains such as float and arbitrary precision exact rational numbers
Num.num are equally simple.

Parametrizing by the kind of container representing a matrix is almost as
straightforward. Our containers are parametric over a DOMAIN, i.e., functors from
a DOMAIN module to the actual implementation of a container. The functor sig-
nature CONTAINER2D specifies that a container must provide functions dim1 and
dim2 to extract the dimensions, functions get and set to generate container
getter and setters, the cloning generator copy and functions that generate code
for row and column swapping. The inclusion of these functions in the signature
of all containers makes it simpler to optimize the relevant functions depending
on the actual representation of the container while not burdening the users of
containers with efficiency details.

The use of a functor for making a container parametric is fairly straightfor-
ward. More interesting is the aspect of what to return from the GE algorithm.
One could create an algebraic data type (as was done in [3]) to encode the various
choices: the matrix, the matrix and the rank, the matrix and the determinant,
the matrix, rank and determinant, and so on. This is wholly unsatisfying as
we know that for any single use, only one of the choices is ever possible, yet
any routine which calls the generated code must deal with these unreachable
options. Instead we use a module type with an abstract type res for the result
type; different instances of the signature set the result type differently. Given
below is this module type and one instantiation, which specifies the output of
a GE algorithm as a 3-tuple contr * Det.outdet * int of the U-factor, the
determinant and the rank.

module type OUTPUT = sig

type contr type res

module D : DETERMINANT module R : RANK module P : TRACKPIVOT

val make_result : (’a,contr) code ->

((’a,res) code,

[> ‘TDet of ’a D.lstate | ‘TRan of ’a R.lstate | ‘TPivot of ’a P.lstate]

list, (’a,’w) code) monad

end

module OutDetRank(Dom:DOMAIN)(C: CONTAINER2D)

(Det : DETERMINANT with type indet = Dom.v and type outdet = Dom.v)

(Rank : RANK) = struct

module Ctr = C(Dom)

type contr = Ctr.contr

type res = contr * Det.outdet * int

module D = Det module R = Rank module P = DiscardPivot

let make_result b = mdo { det <-- D.fin (); rank <-- R.fin ();

ret .< (.~b, .~det, .~rank) >. }
end

As is apparent from the output choices, several different quantities may need
to be tracked in a particular GE implementation. We therefore need to be able
to conditionally generate variables representing the tracking state, and weave
in corresponding tracking code. We may need to (independently) keep track of
the rank, the determinant and the permutation list. The tracking state variables
then become part of the state that is tracked by our monad. To have all this
choice when needed, and yet have our code be modular and composable as well
as ensuring that the generated code does not contain any abstraction artifacts,
it is important to make this state modular. For example,

module type DETERMINANT = sig

type indet type outdet type ’a lstate

type tdet = outdet ref

val decl : unit ->

(unit, [> ‘TDet of ’a lstate] list, (’a,’b) code) monad

val upd_sign : unit ->

((’a,unit) code, [> ‘TDet of ’a lstate] list, (’a,’b) code) monad

...

end

determinant tracking aspects involves being able to generate code that defines
variables used for tracking (decl), generate code that updates the sign or the
absolute value of the determinant, and finally, converting the tracking state to the
final determinant value of the type outdet. GE of a floating-point matrix with
no determinant tracking uses the instantiation of DETERMINANT where outdet is
unit and all the functions of that module generate no code. For integer matrices,
we have to track some aspects of the determinant, even if we don’t output it. The
determinant tracking aspect is complex because tracking variables, if any, are to
be declared at the beginning of GE; the sign of the determinant has to be updated
on each row or column permutation; the value of the determinant should be
updated per each pivoting. We use lstate to pass the tracking state, e.g., a piece
of code for the value of the type Dom.v ref, among various determinant-tracking
functions. The lstate is a part of the overall monadic state. Other aspects, e.g.,
rank tracking, may use the monadic state for passing of rank tracking variables.
To be able to compose determinant and rank tracking functors – each of which
may (or may not) use the monadic state for passing its own data – we make
extensive use of open records (a list of polymorphic variants appeared to be the
easiest way to implement such a union, in a purely functional way). This lets us
freely compose determinant-tracking, rank-tracking, and other aspects.

The GE generator functor itself is parameterized by the domain, container,
pivoting policy (full, row, nonzero, nopivoting), update policy (that use either
“fraction-less’ or full division), and by what to yield as the result. Some of the

module Gen(Dom: DOMAIN)(C: CONTAINER2D)(PivotF: PIVOT)

(Update: UPDATE with type baseobj = Dom.v and type ctr = C(Dom).contr)

(Out: OUTPUT with type contr = C(Dom).contr and type D.indet = Dom.v

and type ’a D.lstate = ’a Update.D.lstate) = struct

module Ctr = C(Dom)

module Pivot = PivotF(Dom)(C)(Out.D)

let gen =

let zerobelow b r c m n brc =

let innerbody i = mdo {
bic <-- Ctr.get b i c;

whenM (l1 LogicCode.not (LogicCode.equal bic Dom.zero))

(seqM (retLoopM (Idx.succ c) (Idx.pred m)

(fun k -> Update.update b r c i k))

(Ctr.set b i c Dom.zero)) } in

mdo {
seqM (retLoopM (Idx.succ r) (Idx.pred n) innerbody)

(Update.update_det brc) } in

let dogen a = mdo {
r <-- Out.R.decl ();

c <-- retN (liftRef Idx.zero);

b <-- retN (Ctr.mapper Dom.normalizerf (Ctr.copy a));

m <-- retN (Ctr.dim1 a);

n <-- retN (Ctr.dim2 a);

() <-- Update.D.decl ();

() <-- Out.P.decl ();

seqM

(retWhileM (LogicCode.and_ (Idx.less (liftGet c) m)

(Idx.less (liftGet r) n))

(mdo {
rr <-- retN (liftGet r);

cc <-- retN (liftGet c);

pivot <-- l1 retN (Pivot.findpivot b rr m cc n);

seqM (retMatchM pivot (fun pv ->

seqM (zerobelow b rr cc m n pv)

(Out.R.succ ()))

(Update.D.zero_sign ()))

(Code.update c Idx.succ) }))

(Out.make_result b) } in

.<fun a -> .~(runM (dogen .<a>.)) >.

end

argument modules such as PIVOT are functors themselves (parameterized by the
domain, the container, and the determinant functor). The sharing constraints
express obvious constraints on the instantiation of Gen, for example, pivoting,
determinant etc. components all use the same domain. It must be stressed that
all structures (i.e., module instances) are stateless, and so we never have to worry
that different aspect functors (such as CONTAINER2D and PIVOT) are instantiated
with different but type-compatible instances of DOMAIN. That is, we are not con-
cerened at all about the value sharing. Aspects such as determinant tracking

may be stateful so that the determinant update code have access to the deter-
minant tracking variables declared previously. But that state is handled via the
monadic state. As we have shown, open unions makes the overall monadic state
compositional with respect to the state of various aspects.

In addition to the “regular” type sharing constraints shown in the Gen func-
tor, there are also “semantic” sharing constraints, shown in the following struc-
ture of the UPDATE signature:

module DivisionUpdate

(Dom:DOMAIN with type kind = domain_is_field)

(C:CONTAINER2D)

(Det:DETERMINANT with type indet=Dom.v) = struct ... end

This structure implements an update policy of using Dom.div operation without
restrictions – which is possible only if the domain has such unrestricted opera-
tion. A domain such as the integer domain may still provide Dom.div of the same
type, but that operation may only be used when we are sure that the division
is exact. Our type sharing constraint expresses such domain-specific knowledge:
instantiating DivisionUpdate with integerDomain leads to a compile-time er-
ror, when compiling the generator code. Thus, in some cases we can use module
types for “semantic” constraints that cannot normally be expressed via the types
of module members.

module GenIV5 = Gen(IntegerDomain)

(GenericVectorContainer)(FullPivot)

(FractionFreeUpdate(IntegerDomain)(GenericVectorContainer)(IDet))

(OutDetRank(IntegerDomain)(GenericVectorContainer)(IDet)(Rank))

module GenFA1 = Gen(FloatDomain)

(GenericArrayContainer)(RowPivot)

(DivisionUpdate(FloatDomain)(GenericArrayContainer)(NoDet(FloatDomain)))

(OutJustMatrix(FloatDomain)(GenericArrayContainer)(NoDet(FloatDomain)))

We can instantiate the Gen functor as shown above and inspect the gener-
ated code, e.g., by printing GenFA1.gen. The code can then be “compiled” as
!. GenFA1.gen or with off-shoring. The code for GenIV5 (Appendix A) shows
full pivoting, determinant and rank tracking. The code for all these aspects
is fully inlined; no extra functions are invoked and no tests other than those
needed by the GE algorithm itself are performed. The GE function returns a
triple int array * int * int of the U-factor, determinant and the rank. The
code generated by GenFA1 (Appendix B) shows absolutely no traces of determi-
nant tracking: no declaration of spurious variables, no extra tests, etc. The code
appears as if the determinant tracking aspect did not exist at all. The generated
code for the above and other instantiations of Gen can be examined at [5].

4 Related and future work

Note that the monad is similar to the one used in [17]. However, the latter work
used only retN of all monadic operations, and used fixpoints (for performing
iterations at generation time). In this paper we do not use monadic fixpoints

(because the generator is not recursive) but we make extensive use of monadic
operations for generating conditional and looping operations.

Blitz++ [30] and in general template meta-programming in C++ achieve
similar results of eliminating levels of abstraction. Using traits and concepts,
some domain-specific knowledge can also be encoded. However inlining criti-
cally depends on the compiler’s fully inlining of all methods, and as has been
reported in the literature, this can be challenging to insure. Furthermore, all
errors (such as type errors and concept violation errors, that is, composition
errors) are detected only when compiling the generated code. It is immensely
difficult to correlate errors (e.g., line numbers) to the ones in the generator itself.
Furthermore, as templates cannot be local, a lot of code generation is scattered
around instead of being modularized.

ATLAS [33] is another successful project in this area. However they use much
simpler weaving technology, which leads them to note that generator complex-

ity tends to go up along with flexibility, so that these routines become almost

insurmountable barriers to outside contribution. Our results show how to sur-
mount this barrier, by building modular, composable generators. SPIRAL [25]
is another such even more ambitious project. But SPIRAL does intentional code
analysis, relying on a set of code transformation “rules” which make sense, but
which are not proved to be either complete or confluent. The strength of both of
these project relies on their platform-specific optimizations performed via search
techniques, something we have not attempted here.

The highly parametric version of our Gaussian Elimination is directly influ-
enced by the generic implementations available in Axiom [13] and Aldor [32].
Even though the Aldor compiler frequently can optimize away a lot of abstrac-
tion overhead, it does not provide any guarantees that it will do so, unlike our
approach.

To the best of our knowledge, nobody has yet used functors to abstract code
generators, or even mixed functors and multi-stage programming.

We plan to further investigate the connection between delimited continua-
tions and our implementations of code generators like ifM. As well, by using
some additional syntactic sugar (for ifM, whileM, etc.), the available notation
should be even more direct-style, and potentially clearer.

There are many more aspects which can also be handled Input variations
(augmented matrices), error reporting (i.e. asking for the determinant of a non-
square matrix), memory hierarchy issues, loop-unrolling [6], warnings when zero-
testing is undecidable and a value is only probabilistically non-zero, etc. The
larger program family of LU decompositions contains more aspects still.

Finally, we would like to be able to make the Gen functor applicable to
runnable functors in Ocaml, as well as to code generation functors in MetaOCaml
- for ease of debugging. The current use of abstract types should make this
straightforward.

5 Conclusion

The combination of stateless modules (functors and structures), and our monad
with the compositional state makes aspects freely composable without having to

worry about the presence or absense of value aliasing. The only constraints to
compositionality are the typing constraints plus the constraints we specifically
impose, including semantic constraints (e.g., rings do not have full division).

There is an interesting relation with aspect-oriented code [16]: in AspectJ,
aspects are (comparatively) lightly typed, and are post-facto extensions of an
existing piece of code. Here aspects are weaved together “from scracth” to make
up a piece of code/functionality. One can understand previous work to be more
akin to dynamically typed aspect weaving, while we have started investigating
statically typed aspect weaving.

References

1. Anders Bondorf. Improving binding times without explicit CPS-conversion. In 1992
ACM Conference on Lisp and Functional Programming. San Francisco, California,
pages 1–10, 1992.

2. Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implementing
multi-stage languages using asts, gensym, and reflection. In Krzysztof Czarnecki,
Frank Pfenning, and Yannis Smaragdakis, editors, Generative Programming and
Component Engineering (GPCE), LNCS. Springer-Verlag, 2003.

3. Jacques Carette. Gaussian Elimination: a case study in efficient genericity with
MetaOCaml, 2005. submitted.

4. Zizhong Chen, Jack Dongarra, Piotr Luszczek, and Kenneth Rothe. Lapack for
clusters project: An example of self adapting numerical software. Hawaii Interna-
tional Conference on System Sciences HICSS-37, 2004.

5. Source code. http://www.cas.mcmaster.ca/~carette/metamonads/.
6. Albert Cohen, Sebastien Donadio, Mari’a Jesu’s Garzara’n, Cristoph Herrmann,

and David Padua. In search for a program generator to implement generic transfor-
mations for high-performance computing. MetaOCaml Workshop, October 2004.

7. Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: methods,
tools, and applications. ACM Press/Addison-Wesley Publishing Co., 2000.

8. Krzysztof Czarnecki, John T. O’Donnell, Jörg Striegnitz, and Walid Taha. DSL im-
plementation in MetaOCaml, Template Haskell, and C++. In Christian Lengauer,
Don S. Batory, Charles Consel, and Martin Odersky, editors, Domain-Specific Pro-
gram Generation, volume 3016 of Lecture Notes in Computer Science, pages 51–72.
Springer, 2003.

9. Daniel de Rauglaudre. Camlp4 reference manual. http://caml.inria.fr/camlp4/
manual/, Jan. 2002.

10. Edsger W. Dijkstra. On the role of scientific thought. published as [11].
11. Edsger W. Dijkstra. On the role of scientific thought. In Selected Writings on

Computing: A Personal Perspective, pages 60–66. Springer-Verlag, 1982.
12. Andrzej Filinski. Representing monads. In POPL, pages 446–457, 1994.
13. Richard D. Jenks and Robert S. Sutor. AXIOM: The Scientific Computation

System. Springer Verlag, 1992.
14. III John V.W. Reynders and Julian C. Cummings. The POOMA framework.

Comput. Phys., 12(5):453–459, 1998.
15. Ken Kennedy, Bradley Broom, Keith Cooper, Jack Dongarra, Rob Fowler, Dennis

Gannon, Lennart Johnsson, John Mellor-Crummey, and Linda Torczon. Telescop-
ing languages: A strategy for automatic generation of scientific problem-solving
systems from annotated libraries. Journal of Parallel and Distributed Computing,
61(12):1803–1826, December 2001.

16. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

17. Oleg Kiselyov, Kedar N. Swadi, and Walid Taha. A methodology for generating
verified combinatorial circuits. In ACM International conference on Embedded
Software (EMSOFT), 2004.

18. Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce F. Duba.
Hygienic macro expansion. In LISP and Functional Programming, pages 151–161,
1986.

19. Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In POPL ’95: Conference Record of the Annual ACM Symposium
on Principles of Programming Languages, pages 333–343, New York, 1995. ACM
Press.

20. MetaOCaml. http://www.metaocaml.org.

21. Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93(1):55–92, 1991.

22. David R. Musser and Alexander A. Stepanov. Algorithm-oriented generic libraries.
Software - Practice and Experience, 24(7):623–642, 1994.

23. David Lorge Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058, 1972.

24. Simon Peyton Jones et al. The Revised Haskell 98 Report. Cambridge Univ. Press,
2003. Also on http://haskell.org/.

25. Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela
Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca Gačić, Yevgen
Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo. SPIRAL: Code
generation for DSP transforms. Proceedings of the IEEE, special issue on ”Pro-
gram Generation, Optimization, and Adaptation”, 93(2), 2005.

26. Jeremy Siek, Lee-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Addison-Wesley, 2002.

27. Walid Taha. Multi-Stage Programming: its theory and applications. PhD thesis,
Oregon Graduate Institute of Science and Technology, 1999.

28. Walid Taha. A sound reduction semantics for untyped cbn mutli-stage computa-
tion. or, the theory of metaml is non-trival. In PEPM, pages 34–43, 2000.

29. Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations.
In Proceedings of the Symposium on Partial Evaluation and Semantic-Based Pro-
gram Manipulation (PEPM), pages 203–217, Amsterdam, June 1997. ACM Press.

30. Todd L. Veldhuizen. Arrays in Blitz++. In Proceedings of the 2nd International
Scientific Computing in Object-Oriented Parallel Environments (ISCOPE’98), Lec-
ture Notes in Computer Science. Springer-Verlag, 1998.

31. Todd L. Veldhuizen. Active Libraries and Universal Languages. PhD thesis, Indi-
ana University Computer Science, May 2004.

32. Stephen M. Watt. Aldor. In J. Grabmeier, E. Kaltofen, and V. Weispfennig, editors,
Computer Algebra Handbook: Foundations, Applications, Systems. Springer Verlag,
2003.

33. R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical
optimization of software and the ATLAS project. Parallel Computing, 27(1–2):3–
35, 2001.

6 Appendix A

The code generated for GenIV5, fraction-free GE of the integer matrix repre-
sented by a flat vector, full pivoting, returning the U-factor, the determinant and
the rank.

val resIV5 :

(’a,

Funct4.GenIV5.Ctr.contr ->

Funct4.OutDetRank(Funct4.IntegerDomain)(Funct4.GenericVectorContainer)

(Funct4.IDet)(Funct4.Rank).res)

code =

.<fun a_405 ->

let t_406 = (ref 0) in

let t_407 = (ref 0) in

let t_408 = arr = (Array.copy a_405.arr) (a_405) in

let t_409 = a_405.m in

let t_410 = a_405.n in

let t_411 = (ref 1) in

let t_412 = (ref 1) in

while (((! t_407) < t_409) && ((! t_406) < t_410)) do

let t_413 = (! t_406) in

let t_414 = (! t_407) in

let t_415 = (ref (None)) in

let t_435 =

begin

for j_431 = t_413 to (t_410 - 1) do

for j_432 = t_414 to (t_409 - 1) do

let t_433 = (t_408.arr).((j_431 * t_408.m) + j_432) in

if (not (t_433 = 0)) then

(match (! t_415) with

| Some (i_434) ->

if ((abs (snd i_434)) > (abs t_433)) then

(t_415 := (Some ((j_431, j_432), t_433)))

else ()

| None -> (t_415 := (Some ((j_431, j_432), t_433))))

else ()

done

done;

(match (! t_415) with

| Some (i_416) ->

if ((snd (fst i_416)) <> t_414) then begin

let a_424 = t_408.arr

and nm_425 = (t_408.n * t_408.m)

and m_426 = t_408.m in

let rec loop_427 =

fun i1_428 ->

fun i2_429 ->

if (i2_429 < nm_425) then

let t_430 = a_424.(i1_428) in

a_424.(i1_428) <- a_424.(i2_429);

a_424.(i2_429) <- t_430;

(loop_427 (i1_428 + m_426) (i2_429 + m_426))

else () in

(loop_427 t_414 (snd (fst i_416)));

(t_412 := (~- (! t_412)))

end else ();

if ((fst (fst i_416)) <> t_413) then begin

let a_417 = t_408.arr

and n_418 = t_408.n

and m_419 = t_408.m in

let i1_420 = (t_413 * m_419)

and i2_421 = ((fst (fst i_416)) * m_419) in

for i_422 = 0 to (m_419 - 1) do

let t_423 = a_417.(i1_420 + i_422) in

a_417.(i1_420 + i_422) <- a_417.(i2_421 + i_422);

a_417.(i2_421 + i_422) <- t_423

done;

(t_412 := (~- (! t_412)))

end else ();

(Some (snd i_416))

| None -> (None))

end in

(match t_435 with

| Some (i_436) ->

begin

for j_437 = (t_413 + 1) to (t_410 - 1) do

if (not ((t_408.arr).((j_437 * t_408.m) + t_414) = 0)) then begin

for j_438 = (t_414 + 1) to (t_409 - 1) do

(t_408.arr).((j_437 * t_408.m) + j_438) <-

((((t_408.arr).((j_437 * t_408.m) + j_438) *

(t_408.arr).((t_413 * t_408.m) + t_414)) -

((t_408.arr).((t_413 * t_408.m) + j_438) *

(t_408.arr).((j_437 * t_408.m) + t_413))) / (! t_411))

done;

(t_408.arr).((j_437 * t_408.m) + t_414) <- 0

end else ()

done;

(t_411 := i_436)

end;

(t_406 := ((! t_406) + 1))

| None -> (t_412 := 0));

(t_407 := ((! t_407) + 1))

done;

(t_408,

if ((! t_412) = 0) then 0

else if ((! t_412) = 1) then (! t_411)

else (~- (! t_411)), (! t_406))>.

7 Appendix B

The code generated for GenFA1, GE of the floating point matrix represented by
a 2D array, row pivoting, returning just the U-factor.

val resFA1 :

(’a,

Funct4.GenFA1.Ctr.contr ->

Funct4.OutJustMatrix(Funct4.FloatDomain)(Funct4.GenericArrayContainer)

(Funct4.NoDet(Funct4.FloatDomain)).res)

code =

.<fun a_1 ->

let t_2 = (ref 0) in

let t_3 = (ref 0) in

let t_5 = (Array.map (fun x_4 -> (Array.copy x_4)) (Array.copy a_1)) in

let t_6 = (Array.length a_1.(0)) in

let t_7 = (Array.length a_1) in

while (((! t_3) < t_6) && ((! t_2) < t_7)) do

let t_8 = (! t_2) in

let t_9 = (! t_3) in

let t_10 = (ref (None)) in

let t_16 =

begin

for j_13 = t_8 to (t_7 - 1) do

let t_14 = (t_5.(j_13)).(t_9) in

if (not (t_14 = 0.)) then

(match (! t_10) with

| Some (i_15) ->

if ((abs_float (snd i_15)) < (abs_float t_14)) then

(t_10 := (Some (j_13, t_14)))

else ()

| None -> (t_10 := (Some (j_13, t_14))))

else ()

done;

(match (! t_10) with

| Some (i_11) ->

if ((fst i_11) <> t_8) then begin

let t_12 = t_5.(t_8) in

t_5.(t_8) <- t_5.(fst i_11);

t_5.(fst i_11) <- t_12;

()

end else ();

(Some (snd i_11))

| None -> (None))

end in

(match t_16 with

| Some (i_17) ->

begin

for j_18 = (t_8 + 1) to (t_7 - 1) do

if (not ((t_5.(j_18)).(t_9) = 0.)) then begin

for j_19 = (t_9 + 1) to (t_6 - 1) do

(t_5.(j_18)).(j_19) <-

((t_5.(j_18)).(j_19) -.

(((t_5.(j_18)).(t_9) /. (t_5.(t_8)).(t_9)) *.

(t_5.(t_8)).(j_19)))

done;

(t_5.(j_18)).(t_9) <- 0.

end else ()

done;

()

end;

(t_2 := ((! t_2) + 1))

| None -> ());

(t_3 := ((! t_3) + 1))

done;

t_5>.

