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Abstract. Many interesting and useful symbolic computation algo-
rithms manipulate mathematical expressions in mathematically mean-
ingful ways. Although these algorithms are commonplace in computer
algebra systems, they can be surprisingly difficult to specify in a for-
mal logic since they involve an interplay of syntax and semantics. In
this paper we discuss several examples of syntax-based mathematical
algorithms, and we show how to specify them in a formal logic with
undefinedness, quotation, and evaluation.

1 Introduction

Many mathematical tasks are performed by executing an algorithm that manip-
ulates expressions (syntax) in a “meaningful” way. For instance, children learn
to perform arithmetic by executing algorithms that manipulate strings of digits
that represent numbers. A syntax-based mathematical algorithm (SBMA) is such
an algorithm, that performs a mathematical task by manipulating the syntac-
tic structure of certain expressions. SBMAs are commonplace in mathematics,
and so it is no surprise that they are standard components of computer algebra
systems.

SBMAs involve an interplay of syntax and semantics. The computational
behavior of an SBMA is the relationship between its input and output expres-
sions, while the mathematical meaning of an SBMA is the relationship between
the meaning1 of its input and output expressions. Understanding what a SBMA
does requires understanding how its computational behavior is related to its
mathematical meaning.

A complete specification of an SBMA is often much more complex than one
might expect. This is because (1) manipulating syntax is complex in itself, (2) the
interplay of syntax and semantics can be difficult to disentangle, and (3) seem-
ingly benign syntactic manipulations can generate undefined expressions. An
SBMA specification has both a syntactic component and a semantic component,
but these components can be intertwined. Usually the more they are separated,
the easier it is to understand the specification.

? This research is supported by NSERC.
1 I.e., denotation.
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This inherent complexity of SBMA specifications makes SBMAs tricky to
implement correctly. Dealing with the semantic component is usually the bigger
challenge for computer algebra systems as they excel in the realm of computation
but have weak reasoning facilities, while the syntactic component is usually the
bigger obstacle for proof assistants, often due to partiality issues.

In this paper, we examine four representative examples of SBMAs, present
their specifications, and show how their specifications can be written in
cttuqe [12], a formal logic designed to make expressing the interplay of syn-
tax and semantics easier than in traditional logics. The paper is organized as
follows. Section 2 presents background information about semantic notions and
cttuqe. Section 3 discusses the issues concerning SBMAs for factoring integers.
Normalizing rational expressions and functions is examined in section 4. Sym-
bolic differentiation algorithms are considered in section 5. Section 6 gives a
brief overview of related work. And the paper ends with a short conclusion in
section 7.

The principal contribution of this paper, in the author’s opinion, is not the
specifications themselves, but rather bringing to the fore the subtle details of
SBMAs themselves, along with the fact that traditional logics are ill-suited to
the specification of SBMAs. While here we use cttuqe for this purpose, the most
important aspect is the ability to deal with two levels at once, syntax and se-
mantics. The examples are chosen because they represent what are traditionally
understood as fairly simple, even straightforward, symbolic algorithms, and yet
they are nevertheless rather difficult to formalize properly.

2 Background

To be able to formally display the issues involved, it is convenient to first be
specific about definedness, equality, quasi-equality, and logics that can deal with
syntax and semantics directly.

2.1 Definedness, Equality, and Quasi-Equality

Let e be an expression and D be a domain of values. We say e is defined in D
if e denotes a member of D. When e is defined in D, the value of e in D is the
element in D that e denotes. When e is undefined in D (i.e., e does not denote
a member of D), the value of e in D is undefined. Two expressions e and e′ are
equal in D, written e =D e′, if they are both defined in D and they have the same
values in D and are quasi-equal in D, written e 'D e′, if either e =D e′ or e and
e′ are both undefined in D. When D is a domain of interest to mathematicians,
we will call e a mathematical expression.

2.2 CTTqe and CTTuqe

cttqe [13] is a version of Church’s type theory with a built-in global reflection
infrastructure with global quotation and evaluation operators geared towards
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reasoning about the interplay of syntax and semantics and, in particular, for
specifying, defining, applying, and reasoning about SBMAs. The syntax and
semantics of cttqe is presented in [13]. A proof system for cttqe that is sound
for all formulas and complete for eval-free formulas is also presented in [13].
(An expression is eval-free if it does not contain the evaluation operator.) By
modifying HOL Light [14], we have produced a rudimentary implementation of
cttqe called HOL Light QE [5].

cttuqe [12] is a variant of cttqe that has built-in support for partial functions
and undefinedness based on the traditional approach to undefinedness [10]. It
is well-suited for specifying SBMAs that manipulate expressions that may be
undefined. Its syntax and semantics are presented in [12]. A proof system for
cttuqe is not given there, but can be straightforwardly derived by merging those
for cttqe [13] and Qu

0 [11].

The global reflection infrastructure of cttuqe (and cttqe) consists of three
components. The first is an inductive type ε of syntactic values: these typically
represent the syntax tree of an eval-free expression of cttuqe. Each expression of
type ε denotes a syntactic value. Thus reasoning about the syntactic structure
of expressions can be performed by reasoning about syntactic values via the
expressions of type ε. The second component is a quotation operator p·q such
that, if Aα is an eval-free expression (of some type α), then pAαq is an expression
of type ε that denotes the syntactic value that represents the syntax tree of Aα.
Finally, the third component is an evaluation operator J·Kα such that, if Eε is
an expression of type ε, then JEεKα denotes the value of type α denoted by the
expression B represented by Eε (provided the type of B is α). In particular the
law of disquotation JpAαqKα = Aα holds in cttuqe (and cttqe).

The reflection infrastructure is global since it can be used to reason about the
entire set of eval-free expressions of cttuqe. This is in contrast to local reflection
which constructs an inductive type of syntactic values only for the expressions of
the logic that are relevant to a particular problem. See [13] for discussion about
the difference between local and global reflection infrastructures and the design
challenges that stand in the way of developing a global reflection infrastructure
within a logic.

The type ε includes syntax values for all eval-free expressions of all types as
well as syntax values for ill-formed expressions like (xα xα) in which the types
are mismatched. Convenient subtypes of ε can be represented via predicates of
type ε → o. (o is the type of boolean values.) In particular, cttuqe contains
a predicate is-exprαε→o for every type α that represents the subtype of syntax
values for expressions of type α.

Unlike cttqe, cttuqe admits undefined expressions and partial functions.
The formulas Aα ↓ and Aα ↑ assert that the expression Aα is defined and
undefined, respectively. Formulas (i.e., expressions of type o) are always defined.
Evaluations may be undefined. For example, JpAαqKβ is undefined when α 6= β.
See [11,12] for further details.
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3 Factoring Integers

3.1 Task

Here is a seemingly simple mathematical task: Factor (over N) the number 12.
One might expect the answer 12 = 22 ∗ 3 — but this is not actually the an-
swer one gets in many systems! The reason is, that in any system with built-
in beta-reduction (including all computer algebra systems as well as theorem
provers based on dependent type theory), the answer is immediately evaluated
to 12 = 12, which is certainly not very informative.

3.2 Problem

So why is 22 ∗ 3 not an answer? Because it involves a mixture of syntax and
semantics. A better answer would be p22 ∗3q (the quotation of 22 ∗3) that would
make it clear that ∗ represents multiplication rather than being multiplication.
In other words, this is about intension and extension: we want to be able to
both represent operations and perform operations. In Maple, one talks about
inert forms, while in Mathematica, there are various related concepts such as
Hold, Inactive and Unevaluated. They both capture the same fundamental
dichotomy about passive representations and active computations.

3.3 Solution

Coming back to integer factorization, interestingly both Maple and Mathematica
choose a fairly similar option to represent the answer — a list of pairs, with the
first component being a prime of the factorization and the second being the
multiplicity of the prime (i.e., the exponent). Maple furthermore gives a leading
unit (-1 or 1), so that one can also factor negative numbers. In other words, in
Maple, the result of ifactors(12) is

[1, [2, 2] , [3, 1]]

where lists are used (rather than proper pairs) as the host system is untyped.
Mathematica does something similar.

3.4 Specification in Maple

Given the following Maple routine2

remult := proc(l :: [{-1,1}, list([prime,posint])])

local f := proc(x, y) (x[1] ^ x[2]) * y end proc;

l[1] * foldr(f, 1, op(l[2]))

end proc;

2 There are nonessential Maple-isms in this routine: because of how foldr is defined,
op is needed to transform a list to an expression sequence; in other languages, this is
unnecessary. Note however that it is possible to express the type extremely precisely.
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then the specification for ifactors is that, for all n ∈ Z, (A) ifactors(n) repre-
sents a signed prime decomposition and

(B) remult (ifactors (n)) = n.

(A) is the syntactic component of the specification and (B) is the semantic
component.

3.5 Specification in CTTuqe

We specify the factorization of integers in a theory T of cttuqe using cttuqe’s
reflection infrastructure. We start by defining a theory T0 = (L0, Γ0) of inte-
ger arithmetic. L0 contains a base type i and the constants 0i, 1i, 2i, . . ., −i→i,
+i→i→i, ∗i→i→i, and ∧i→i→i . Γ0 contains the usual axioms of integer arithmetic.

Next we extend T0 to a theory T1 = (L1, Γ1) by defining the following two
constants using the machinery of T0:

1. Numeralε→o is a predicate representing the subtype of ε that denotes the sub-
set {0i, 1i, 2i, . . .} of expressions of type i. Thus, Numeralε→o is the subtype
of numerals and, for example, Numeralε→o p2iq is valid in T1.

2. PrimeDecompε→o is a predicate representing the subtype of ε that denotes
the subset of expressions of type i of the form 0i or

±1 ∗ pe00 ∗ · · · ∗ p
ek
k

where parentheses and types have been dropped, the pi are numerals denot-
ing unique prime numbers in increasing order, the ei are also numerals, and
k ≥ 0. Thus PrimeDecompε→o is a subtype of signed prime decompositions
and, for example, PrimeDecompε→o p1 ∗ 22 ∗ 31q (where again parentheses
and types have been dropped) is valid in T2.

Finally, we can extend T1 to a theory T = (L, Γ ) in which L contains the
constant factorε→ε and Γ contains the following axiom specFactoro:

∀uε .
if (Numeralε→o uε)

(PrimeDecompε→ε(factorε→ε uε) ∧ JuεKi = Jfactorε→ε uεKi)
(factorε→ε uε)↑

specFactoro says that factorε→ε is only defined on numerals and, when ue is a
numeral, factorε→ε ue is a signed prime decomposition (the syntactic compo-
nent) and denotes the same integer as ue (the semantic component). Notice that
specFactoro does not look terribly complex on the surface, but there is a sig-
nificant amount of complexity embodied in the definitions of Numeralε→o and
PrimeDecompε→ε.
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3.6 Discussion

Why do neither of Maple or Mathematica use their own means of representing
intensional information? History! In both cases, the integer factorization rou-
tines predates the intensional features by more than two decades. And backward
compatibility definitely prevents them from making that change.

Furthermore, factoring as an operation produces output in a very predictable
shape: s ∗ pe00 ∗ p

e1
1 ∗ · · · ∗ p

ek
k . To parse such a term’s syntax to extract the

information is tedious and error prone, at least in an untyped system. Such a
shape could easily be coded up in a typed system using a very simple algebraic
data type that would obviate the problem. But computer algebra systems are
very good at manipulating lists3, and thus this output composes well with other
system features.

It is worth noting that none of the reasons for the correctness of this repre-
sentation is clearly visible: once the integers are partitioned into negative, zero
and positive, and only positive natural numbers are subject to “prime factoriza-
tion”, their structure as a free commutative monoid on infinitely many generators
(the primes) comes out. And so it is natural that multisets (also called bags) are
the natural representation. The list-with-multiplicities makes that clear, while in
some sense the more human-friendly syntactic representation s∗pe00 ∗p

e1
1 ∗· · ·∗p

ek
k

obscures that.
Nevertheless, the main lesson is that a simple mathematical task, such as

factoring the number 12, which seems like a question about simple integer arith-
metic, is not. It is a question that can only be properly answered in a context
with a significantly richer term language that includes either lists or pairs, or
an inductive type of syntactic values, or access to the expressions of the term
language as syntactic objects.

All the issues we have seen with the factorization of integers appear again
with the factorization of polynomials.

4 Normalizing Rational Expressions and Functions

Let Q be the field of rational numbers, Q[x] be the ring of polynomials in
x over Q, and Q(x) be the field of fractions of Q[x]. We may assume that
Q ⊆ Q[x] ⊆ Q(x).

The language Lre of Q(x) is the set of expressions built from the symbols
x, 0, 1,+, ∗,−,−1, elements of Q, and parentheses (as necessary). For greater
readability, we will take the liberty of using fractional notation for −1 and the
exponential notation xn for x∗· · ·∗x (n times). A member of Lre can be something

simple like x4−1
x2−1 or something more complicated like

1−x
3/2x18+x+17

1
9834∗x19393874−1/5

+ 3 ∗ x− 12

x
.

3 This is unsurprising given that the builders of both Maple and Mathematica were
well acquainted with Macsyma which was implemented in Lisp.
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The members of Lre are called rational expressions (in x over Q). They denote
elements in Q(x). Of course, a rational expression like x/0 is undefined in Q(x).

Let Lrf be the set of expressions of the form (λx : Q . r) where r ∈ Lre. The
members of Lrf are called rational functions (in x over Q). That is, a rational
function is a lambda expression whose body is a rational expression. Rational
functions denote functions from Q to Q. Even though rational expressions and
rational functions look similar, they have very different meanings due to the role
of x. The x in a rational expression is an indeterminant that does not denote a
value, while the x in a rational function is a variable ranging over values in Q.

4.1 Task 1: Normalizing Rational Expressions

Normalizing a rational expression is a useful task. We are taught that, like for
members of Q (such as 5/15), there is a normal form for rational expressions.
This is typically defined to be a rational expression p/q for two polynomials
p, q ∈ Q[x] such that p and q are themselves in polynomial normal form and
gcd(p, q) = 1. The motivation for the latter property is that we usually want to

write the rational expression x4−1
x2−1 as x2+1 just as we usually want to write 5/15

as 1/3. Thus, the normal forms of x4−1
x2−1 and x

x are x2 + 1 and 1, respectively.
This definition of normal form is based on the characteristic that the elements
of the field of fractions of a integral domain D can be written as quotients r/s
of elements of D where r0/s0 = r1/s1 if and only if r0 ∗ s1 = r1 ∗ s0 in D.

We would like to normalize a rational expression by putting it into normal
form. Let normRatExpr be the SBMA that takes r ∈ Lre as input and returns the
r′ ∈ Lre as output such that r′ is the normal form of r. How should normRatExpr
be specified?

4.2 Problem 1

normRatExpr must normalize rational expressions as expressions that de-
note members of Q(x), not members of Q. Hence normRatExpr(x/x) and
normRatExpr(1/x − 1/x) should be 1 and 0, respectively, even though x/x and
1/x− 1/x are undefined when the value of x is 0.

4.3 Solution 1

The hard part of specifying normRatExpr is defining exactly what rational ex-
pressions are normal forms and then proving that two normal forms denote the
same member of Q(x) only if the two normal forms are identical. Assuming
we have adequately defined the notion of a normal form, the specification of
normRatExpr is that, for all r ∈ Lre, (A) normRatExpr(r) is a normal form and
(B) r 'Q(x) normRatExpr(r). (A) is the syntactic component of the specification,
and (B) is the semantic component. Notice that (B) implies that, if r is unde-
fined in Q(x), then normRatExpr(r) is also undefined in Q(x). For example, since
r = 1

x−x is undefined in Q(x), normRatExpr(r) should be the (unique) undefined
normal form (which, for example, could be the rational expression 1/0).
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4.4 Task 2: Normalizing Rational Functions

Normalizing a rational function is another useful task. Let f = (λx : Q . r) be a
rational function. We would like to normalize f by putting its body r in normal
form of some appropriate kind. Let normRatFun be the SBMA that takes f ∈ Lrf

as input and returns a f ′ ∈ Lrf as output such that f ′ is the normal form of f .
How should normRatFun be specified?

4.5 Problem 2

If fi = (λx : Q . ri) are rational functions for i = 1, 2, one might think that
f1 =Q→Q f2 if r1 =Q(x) r2. But this is not the case. For example, the rational
functions (λx : Q . x/x) and (λx : Q . 1) are not equal as functions over Q
since (λx : Q . x/x) is undefined at 0 while (λx : Q . 1) is defined everywhere.
But x/x =Q(x) 1! Similarly, (λx : Q . (1/x − 1/x)) 6=Q→Q (λx : Q . 0) and
(1/x − 1/x) =Q(x) 0. (Note that, in some contexts, we might want to say that
(λx : Q . x/x) and (λx : Q . 1) do indeed denote the same function by invoking
the concept of removable singularities.)

4.6 Solution 2

As we have just seen, we cannot normalize a rational function by normalizing
its body, but we can normalize rational functions if we are careful not to remove
points of undefinedness. Let a quasinormal form be a rational expression p/q
for two polynomials p, q ∈ Q[x] such that p and q are themselves in polynomial
normal form and there is no irreducible polynomial s ∈ Q[x] of degree ≥ 2
that divides both p and q. One should note that this definition of quasinormal
form depends on the field Q because, for example, the polynomial x2 − 2 is
irreducible in Q but not in Q (the algebraic closure of Q) or R (since x2−2 =R[x]
(x−

√
2)(x+

√
2).)

We can then normalize a rational function by quasinormalizing its body.
So the specification of normRatFun is that, for all (λx : Q . r) ∈ Lrf ,
(A) normRatFun(λx : Q . r) = (λx : Q . r′) where r′ is a quasinormal form
and (B) (λx : Q . r) 'Q→Q normRatFun(λx : Q . r). (A) is the syntactic
component of its specification, and (B) is the semantic component.

4.7 Specification in CTTuqe

We specify normRatExpr and normRatFun in a theory of cttuqe again using
cttuqe’s reflection infrastructure. A complete development of T would be long
and tedious, thus we only sketch it.

The first step is to define a theory T0 = (L0, Γ0) that axiomatizes the field
Q; L0 contains a base type q and constants 0q, 1q, +q→q→q, ∗q→q→q, −q→q, and
−1q→q representing the standard elements and operators of a field. Γ0 contains
axioms that say the type q is the field of rational numbers.



9

The second step is to extend T0 to a theory T1 = (L1, Γ1) that axiomatizes
Q(x), the field of fractions of the ring Q[x]. L1 contains a base type f ; constants
0f , 1f , +f→f→f , ∗f→f→f , −f→f , and −1f→f representing the standard elements
and operators of a field; and a constant Xf representing the indeterminant of
Q(x). Γ1 contains axioms that say the type f is the field of fractions of Q[x].
Notice that the types q and f are completely separate from each other since
cttuqe does not admit subtypes as in [9].

The third step is to extend T1 to a theory T2 = (L2, Γ2) that is equipped to
express ideas about the expressions of type q and q → q that have the form of
rational expressions and rational functions, respectively. T2 is obtain by defining
the following constants using the machinery of T1:

1. RatExprε→o is the predicate representing the subtype of ε that denotes the
set of expressions of type q that have the form of rational expressions in
xq (i.e., the expressions of type q built from the variable xq and the con-
stants representing the field elements and operators for q). So, for example,
RatExprε→o pxq/xqq is valid in T2.

2. RatFunε→o is the predicate representing the subtype of ε that denotes the
set of expressions of type q → q that are rational functions in xq (i.e., the
expressions of the form (λxq . Rq) where Rq has the form of a rational
expression in xq). For example RatFunε→o pλxq . xq/xqq is valid in T2.

3. val-in-fε→f is a partial function that maps each member of the subtype
RatExprε→o to its denotation in f . So, for example,

val-in-fε→f pxq +q→q→q 1qq = Xf +f→f→f 1f

and (val-in-fε→f p1q/0qq)↑ are valid in T2. val-in-fε→f is partial on is domain
since an expression like 1q/0q does not denote a member of f .

4. Normε→o is the predicate representing the subtype of ε that denotes the
subset of the subtype RatExprε→o whose members are normal forms. So, for
example, ¬(Normε→o pxq/xqq) and Normε→o p1qq are valid in T2.

5. Quasinormε→o is the predicate representing the subtype of ε that denotes the
subset of the subtype RatExprε→o whose members are quasinormal forms. So,
for example, Quasinormε→o pxq/xqq and ¬(Quasinormε→o pAq/Aqq), where
Aq is x2q +q→q→q 1q, are valid in T2.

6. bodyε→ε is a partial function that maps each member of ε denoting an ex-
pression of the form (λxα . Bβ) to the member of ε that denotes pBβq and
is undefined on the rest of ε. Note that there is no scope extrusion here as,
in syntactic expressions, the xα is visible.

The final step is to extend T2 to a theory T = (L, Γ ) in which L has
two additional constants normRatExprε→ε and normRatFunε→ε and Γ has two
additional axioms specNormRatExpro and specNormRatFuno that specify them.
specNormRatExpro is the formula
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∀uε . (1)

if (RatExprε→o uε) (2)

(Normε→ε(normRatExprε→ε uε) ∧ (3)

val-in-fε→f uε ' val-in-fε→f (normRatExprε→ε uε)) (4)

(normRatExprε→ε uε)↑ (5)

(3) says that, if the input to RatExprε→o represents a rational expression in
xq, then the output represents a rational expression in xq in normal form (the
syntactic component). (4) says that, if the input represents a rational expression
in xq, then either the input and output denote the same member of f or they
both do not denote any member of f (the semantic component). And (5) says
that, if the input does not represent a rational expression in xq, then the output
is undefined.

specNormRatFuno is the formula

∀uε . (1)

if (RatFunε→o uε) (2)

(RatFunε→o (normRatFunε→ε uε) ∧ (3)

Quasinormε→ε(bodyε→ε(normRatExprε→ε uε)) ∧ (4)

JuεKq→q = JnormRatExprε→o uεKq→q) (5)

(normRatFunε→ε uε)↑ (6)

(3–4) say that, if the input to RatFunε→o represents a rational function in xq,
then the output represents a rational function in xq whose body is in quasinormal
form (the syntactic component). (5) says that, if the input represents a rational
function in xq, then input and output denote the same (possibly partial) function
on the rational numbers (the semantic component). And (6) says that, if the
input does not represent a rational function in xq, then the output is undefined.

Not only is it possible to specify the algorithms normRatExpr and normRatFun
in cttuqe, it is also possible to define the functions that these algorithms imple-
ment. Then applications of these functions can be evaluated in cttuqe using a
proof system for cttuqe.

4.8 Discussion

So why are we concerned about rational expressions and rational functions?
Every computer algebra system implements functions that normalize rational
expressions in several indeterminants over various fields guaranteeing that the
normal form will be 0 if the rational expression equals 0 in the corresponding field
of fractions. However, computer algebra systems make little distinction between
a rational expression interpreted as a member of a field of fractions and a rational
expression interpreted as a rational function.
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For example, one can always evaluate an expression by assigning values to
its free variables or even convert it to a function. In Maple4, these are done
respectively via eval(e, x = 0) and unapply(e, x). This means that, if we

normalize the rational expression x4−1
x2−1 to x2 + 1 and then evaluate the result at

x = 1, we get the value 2. But, if we evaluate x4−1
x2−1 at x = 1 without normalizing

it, we get an error message due to division by 0. Hence, if a rational expression r
is interpreted as a function, then it is not valid to normalize it, but a computer
algebra system lets the user do exactly that since there is no distinction made
between r as a rational expression and r as representing a rational function, as
we have already mentioned.

The real problem here is that the normalization of a rational expression and
the evaluation of an expression at a value are not compatible with each other.
Indeed the function gq : Q(x)→ Q where q ∈ Q that maps a rational expression
r to the rational number obtained by replacing each occurrence of x in r with
q is not a homomorphism! In particular, x/x is defined in Q(x), but g0(x/x) is
undefined in Q.

To avoid unsound applications of normRatExpr, normRatFun, and other SB-
MAs in mathematical systems, we need to carefully, if not formally, specify what
these algorithms are intended to do. This is not a straightforward task to do in
a traditional logic since SBMAs involve an interplay of syntax and semantics
and algorithms like normRatExpr and normRatFun can be sensitive to defined-
ness considerations. We can, however, specify these algorithm, as we have shown,
in a logic like cttqe.

5 Symbolically Differentiating Functions

5.1 Task

A basic task of calculus is to find the derivative of a function. Every student
who studies calculus quickly learns that computing the derivative of f : R→ R
is very difficult to do using only the definition of a derivative. It is a great
deal easier to compute derivatives using an algorithm that repeatedly applies
symbolic differentiation rules. For example,

d

dx
sin(x2 + x) = (2x+ 1)cos(x2 + x)

by applying the chain, sine, sum, power, and variable differentiation rules, and
so the derivative of

λx : R . sin(x2 + x)

is

λx : R . (2x+ 1)cos(x2 + x).

4 Mathematica has similar commands.
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Notice that the symbolic differentiation algorithm is applied to expressions (e.g.,
sin(x2 +x)) that have a designated free variable (e.g., x) and not to the function
λx : R . sin(x2 + x) the expression represents.

5.2 Problem

Let f = λx : R . ln(x2 − 1) and f ′ be the derivative of f . Then

d

dx
ln(x2 − 1) =

2x

x2 − 1

by standard symbolic differentiation rules. But

g = λx : R .
2x

x2 − 1

is not f ′! The domain of f is Df = {x ∈ R | x < −1 or x > 1} since the natural
log function ln is undefined on the nonpositive real numbers. Since f ′ is undefined
wherever f is undefined, the domain Df ′ of f ′ must be a subset of Df . But the
domain of g is Dg = {x ∈ R | x 6= −1 and x 6= 1} which is clearly a superset
of Df . Over C there are even more egregious examples where infinitely many
singularities are “forgotten”. Hence symbolic differentiation does not reliably
produce derivatives.

5.3 A solution

Let L be the language of expressions of type R built from x, the rational numbers,
and operators for the following functions: +, ∗, −, −1, the power function, the
natural exponential and logarithm functions, and the trigonometric functions.
Let diff be the SBMA that takes e ∈ L as input and returns the e′ ∈ L by
repeatedly applying standard symbolic differentiation rules in some appropriate
manner. The specification of diff is that, for all e ∈ L, (A) diff(e) ∈ L and (B), for
a ∈ R, if f = λx : R . e is differentiable at a, then the derivative of f at a is
(λx : R . diff(e))(a). (A) is the syntactic component and (B) is the semantic
component.

5.4 Specification in CTTuqe

We specify diff in a theory T of cttuqe once again using cttuqe’s reflection
infrastructure. Let T0 = (L0, Γ0) be a theory of real numbers (formalized as the
theory of a complete ordered field) that contains a base type r representing the
real numbers and the usual individual and function constants.

We extend T0 to a theory T1 = (L1, Γ1) by defining the following two con-
stants using the machinery of T0:

1. DiffExprε→o is a predicate representing the subtype of ε that denotes the
subset of expressions of type r built from xr, constants representing the
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rational numbers, and the constants representing +, ∗, −, −1, the power
function, the natural exponential and logarithm functions, and the trigono-
metric functions. Thus, DiffExprε→o is the subtype of expressions that can be
symbolically differentiated and, for example, DiffExprε→o pln(x2r−1)q (where
parentheses and types have been dropped) is valid in T1.

2. deriv(r→r)→r→r is a function such that, if f and a are expressions of type
r → r and r, respectively, then deriv(r→r)→r→r f a is the derivative of f at
a if f is differentiable at a and is undefined otherwise.

Finally, we can extend T1 to a theory T = (L, Γ ) in which L contains the
constant diffε→ε and Γ contains the following axiom specDiffo:

∀uε . (1)

if (DiffExprε→o uε) (2)

(DiffExprε→ε(diffε→ε uε) ∧ (3)

∀ ar . (4)

(deriv(r→r)→r→r (λxr . JueKr) ar)↓ ⊃ (5)

deriv(r→r)→r→r (λxr . JueKr) ar = (λxr . Jdiffε→ε ueKr) ar (6)

(diffε→ε uε)↑ (7)

(3) says that, if the input ue to specDiffo is a member of the subtype DiffExprε→o,
then the output is also a member of DiffExprε→o (the syntactic component).
(4–6) say that, if the input is a member of DiffExprε→o and, for all real numbers
a, if the function f represented by ue is differentiable at a, then the derivative of f
at a equals the function represented by diffε→ε ue at a (the semantic component).
And (7) says that, if the input is not a member of DiffExprε→o, then the output
is undefined.

5.5 Discussion

Merely applying the rules of symbolic differentiation does not always produce
the derivative of function. The problem is that symbolic differentiation does
not actually analyze the regions of differentiability of a function. A specification
of differentiation as a symbolic algorithm, to merit the name of differentiation,
must not just perform rewrite rules on the syntactic expression, but also compute
the corresponding validity region. This is a mistake common to essentially all
symbolic differentiation engines that we have been able to find.

A better solution then is to have syntactic representations of functions have
an explicit syntactic component marking their domain of definition, so that a
symbolic differentiation algorithm would be forced to produce such a domain on
output as well.

In other words, we should regard the “specification” f = λx : R . ln(x2−1) it-
self as incorrect, and replace it instead with f = λx : {y ∈ R | y < −1 or y > 1} .
ln(x2 − 1).



14

6 Related Work

The literature on the formal specification of symbolic computation algorithms
is fairly modest; it includes the papers [7,17,18,19]. One of the first systems to
implement SBMAs in a formal setting is MATHPERT [2] (later called MathX-
pert), the mathematics education system developed by Michael Beeson. Another
system in which SBMAs are formally implemented is the computer algebra sys-
tem built on top of HOL Light [14] by Cezary Kaliszyk and Freek Wiedijk [16].
Both systems deal in a careful way with the interplay of syntax and semantics
that characterize SBMAs. Kaliszyk addresses in [15] the problem of simplifying
the kind of mathematical expressions that arise in computer algebra system re-
sulting from the application of partial functions in a proof assistant in which all
functions are total. Stephen Watt distinguishes in [22] between symbolic com-
putation and computer algebra which is very similar to the distinction between
syntax-based and semantics-based mathematical algorithms.

There is an extensive review in [13] of the literature on metaprogramming,
metareasoning, reflection, quotation, theories of truth, reasoning in lambda
calculus about syntax, and undefinedness related to cttqe and cttuqe. For
work on developing infrastructures in proof assistants for global reflection,
see [1,3,4,6,8,20,21], which covers, amongst others, the recent work in Agda,
Coq, Idris, and Lean in this direction. Note that this infrastructure is all quite
recent, and has not yet been used to deal with the kinds of examples in this
paper — thus we do not yet know how adequate these features are for the task.

7 Conclusion

Commonplace in mathematics, SBMAs are interesting and useful algorithms
that manipulate the syntactic structure of mathematical expressions to achieve
a mathematical task. Specifications of SBMAs are often complex because manip-
ulating syntax is complex by its own nature, the algorithms involve an interplay
of syntax and semantics, and undefined expressions are often generated from the
syntactic manipulations. SBMAs can be tricky to implement in mathematical
software systems that do not provide good support for the interplay of syntax
and semantics that is inherent in these algorithms. For the same reason, they are
challenging to specify in a traditional formal logic that provides little built-in
support for reasoning about syntax.

In this paper, we have examined representative SBMAs that fulfill basic
mathematical tasks. We have shown the problems that arise if they are not
implemented carefully and we have delineated their specifications. We have also
sketched how their specifications can be written in cttuqe [12], a version of
Church’s type that is well suited for expressing the interplay of syntax and
semantics by virtue of its global reflection infrastructure.

We would like to continue this work first by writing complete specifications
of SBMAs in cttuqe [12], cttqe [13], and other logics. Second by formally defin-
ing SBMAs in cttuqe and cttqe. Third by formally proving in cttuqe [12] and
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cttqe [13] the mathematical meanings of SBMAs from their formal definitions.
And fourth by further developing HOL Light QE [5] so that these SBMA def-
initions and the proofs of their mathematical meanings can be performed and
machine checked in HOL Light QE. As a small startup example, we have defined
a symbolic differentiation algorithm for polynomials and proved its mathematical
meaning from its definition in [13, subsections 4.4 and 9.3].
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