
COG-PETS: CODE GENERATION FOR PARAMETER
ESTIMATION IN TIME SERIES

CHRISTOPHER KUMAR ANAND, JACQUES CARETTE,
ANDREW THOMAS CURTIS AND DAVID MILLER

1. Introduction

We have previously shown that symbolic computation coupled with ef-
ficient code generation can significantly simplify the development process
for image and signal processing applications [1]. In that work, our ap-
plication was the development of visual target tracking algorithms based
on continuous optimization. Simplifying the development process means
two things: faster development, and higher quality results. Faster develop-
ment stems from automating steps which previously involved tedious and
error-prone manipulations (like differentiation) and transcription (convert-
ing matrix multiplication to loops). Higher quality results arise because the
programmer now deals at the semantic level of the declarative mathematics
instead of at the level of imperative code.

Incorporating some verification steps into the process of compilation leads
to a further improvement in the development process. We also showed how
symbolic code generation can greatly simplify the generation of derivatives
of model functions (Jacobians and Hessians), as required by nonlinear opti-
mization based on Newton’s method. Furthermore, the aggressive common
subexpression elimination available through Maple’s code generation facili-
ties of the resulting code list can reduce computation time by half for typical
image processing task.

In this work, we take advantage of more of the structure present in the op-
timization problem. This lets us perform even more symbolic computations
on the model before code generation, which result in significant efficiency
gains. In particular, we deal with models that satisfy a recurrence relation in
the time domain and a system of linear differential equations in the param-
eter domain. These models are very general, as well as being pervasive in
a wide number of application domains. In our trials, we observed reduction
factors between 120 and 500 in computation time. Working at this level
also has the potential for increased software quality by ensuring that the
input models do satisfy the appropriate recurrences in time and differential
equations in parameter space. As the equations are generated rather than
user-entered, considerably more complex models can be handled, as these
models would have been prohibitively difficult to handle by hand.

Date: 18 May 2005.
1



2 ANAND, CARETTE, CURTIS, MILLER

In the applications we have in mind, these spectacular speedups matter
a lot: in the case of relaxometry, these calculations would be required for
all pixels of an image (i.e. millions of solves, and thus correspondingly more
inner loop calls), or in the case of spectroscopy, optimization across all pa-
tients in a clinical study means gigabytes of data processed in hundreds of
iterations.

Recurrence relations can be used for efficient evaluation of mathematical
objects [2], but in this work, we will restrict our attention to vector-valued
functions of the real line which are sampled at evenly spaced points. This
case arises naturally in image and signal processing from time-series and
pixelated images. Since they are commonly composed of combinations of
closed-form analytic functions, the assumption that they satisfy a linear
ordinary differential equation (ODE) in the parameters is more natural than
restrictive.

The novelty in this work comes from the combination of a wealth of
symbolic computations, namely automatic differentiation, automatic deriva-
tion of recurrences and differential equations, automatic transformations of
vectors-of-sums into sums-of-vectors, use of recurrence and differential equa-
tions for the simplification of the evaluation of the model, and finally code
generation.

Taken individually, these techniques measurably reduce the complexity
of the resulting expressions, which result in reduced execution time. Taken
together, we have measured a 120-fold reduction in execution time for real
valued exponential models when compared to a ‘vanilla’implementation, and
a 540-fold reduction for complex valued exponential models. Although we
wouldn’t expect this to be the case for all applications, we certainly expect
significant gains for many applications.

There are a multitude of physical processes involving decay equations
which can be efficiently computed using recurrence relations, and some of
them generate quantities of data which still pose a computational chal-
lenge with modern processors. Among these are Magnetic Resonance Spec-
troscopy (MRS) and Magnetic Resonance Relaxometry. The first is used to
identify the chemical composition within living tissue, and can be used both
in clinical diagnosis and biomedical research. We will explain this applica-
tion in some detail below. Relaxometry measures tissue properties which
depend on changes in pH and temperature, and has been proposed as a
method of diagnosis and treatment monitoring, in particular, non-invasive,
real-time temperature monitoring.

The rest of this paper is structured as follows: We first present the math-
ematical models of interest. The next two sections outline the model-based
manipulations that we perform, and the code generation infrastructure nec-
essary for generating code from the mathematical model. We then describe
one (new) application of our methods, namely Magnetic Resonance Spec-
troscopy. The next section gives the results of our experiments, and clearly



COG PETS 3

shows the cumulative benefits of our approach. We finally draw some con-
clusions and outline some future work.

2. Mathematical Problem

Parameter estimation from time-series data is a challenge occurring in
many problem domains including, determination of rate constants in phar-
maceutical drug transport, decomposing audio signals and voice recognition,
and measurement of metabolite levels in Magnetic Resonance Spectroscopy
and Relaxometry.

A common method of parameter estimation for time series data involves
modeling signal sources, f(x1, x2, . . . , xn, t), (where the xi are the model
parameters and f is in general a vector-valued function) and fitting a super-
position of the various sources to the measured data. Through minimization
of an objective function (commonly the difference between the model and the
measurements, in either a 2-norm or χ2 sense) an optimal set of parameters
may be determined:

(2.1) F = min
x1
1,x1

2,...,x1
n,...,xs

n

∑
t

∥∥∥∥∥∥y(t)−
∑

s∈{sources}

asfs(xs
1, x

s
2, . . . , x

s
n, t)

∥∥∥∥∥∥
2

.

where xs
j denotes the xj ’th parameter of peak s. With an objective func-

tion available, a choice of optimization method must be made. Assuming
the objective function is twice differentiable, algorithms based on Newton’s
method become an attractive choice. This is the case for a vast majority
of models (they in fact tend to be analytic), and as such we restrict our
discussion to the simple example of minimization via Newton’s method.

2.1. Structure of Newton Solvers. The example solvers given in this
paper are based on multivariate Newton’s method. It is well-known that
if our initial point is close to the solution, Newton’s method will converge.
If it is farther away, it may still converge, but very slowly, and numerical
errors may prevent it from converging. In general, it will not converge at
all. However under mild assumptions, every local minima is contained in a
neighbourhood which is contained in the basin of convergence of the local
minima under the Newton iteration. Depending on the structure of the
problem, it may be possible to find a series of functions which approximate
the objective function and which are sufficiently nice to make a staged solver
– one which solves a series of increasingly difficult problems – converge
efficiently in practical cases. The most straightforward method of finding
such a series of objective functions is to restrict the original function to
subspaces of the original domain, minimizing only a subset U ⊂ X of the
model parameters.



4 ANAND, CARETTE, CURTIS, MILLER

Let JU be the Jacobian of F and HU the Hessian of F with respect to the
variables U . The Newton iteration is defined by the recursion:

un+1 = un −HU (un)−1JU (un)

which in practice is implemented as solving

HU (un)(un − un+1) = JU (un).

2.2. Efficient Implementation. The advantages obtained by careful math-
ematical modeling and optimization-based parameter extraction can easily
be overwhelmed by development time, and sometimes by computational
costs as well. The expense comes from two sources: freedom in choosing the
target pattern/model and the need to develop multi-stage solvers to achieve
convergence requirements for the highly nonlinear models. The present
method of generating a family of efficient Newton solvers from any tar-
get model efficiently solves this problem. By generation of Newton solvers,
we mean generation of optimized Jacobian and Hessian matrices for differ-
ent sets of parameters, which are used in a basic Newton method iteration.
The code generator described in this paper currently generates solvers for 1
dimensional (time) models in an arbitrary number of parameters, is being
generalized to 2 dimensional grid-based models, and could easily be gener-
alized to higher dimensions.

In model fitting against signals and images, data is stored in large arrays.
Calculation of the sum over elements in arrays is an expensive procedure. Ef-
ficient use of the cache is required to minimize the execution time, which will
be bounded by memory accesses. The easiest way to ensure this is to group
all accesses to one sample/pixel of data (within a solver iteration) together.
Jacobian and Hessian matrices will contain many common subexpressions,
therefore optimization on “the inner sum” is crucial. Since Hessian matrices
are symmetric, we only need to calculate the upper triangular portion.

Given a family of Newton solvers (indexed by the power set of the set
of model parameters), we can use heuristics or benchmarking to assemble
them into a non-linear solver with good convergence properties.

2.3. Recurrence Relations. In many time-series models a simple time
evolution exists. This allows the use of recurrence relations instead of ex-
plicit calculations of the model function. This greatly increases the efficiency
of objective function evaluations, as well as the calculation of the Jacobian
and Hessian on each solver iteration. For instance, in the case of an expo-
nentially damped oscillatory signal, ae−(d+if)t of frequency f , amplitude a,
and damping coefficient d, the sequence a, ae−(d+if), ae−2(d+if), . . . can be
calculated using the recursion

(2.2) z0 = a, zi+1 = kzi, k = e−(d+if).

This requires two real variables for each constant k, two variables for the
most recent value zi, and one temporary variable to do the multiplication.
If d > 0, the sequence converges to 0 (geometrically in norm). In this case,



COG PETS 5

the numerical errors do not accumulate appreciably, in the absolute sense,
although they will accumulate relatively. Since errors in the measurements
are commonly assumed to be uniformly and independently distributed, we
are usually only concerned with absolute errors. When f is vector-valued,
the same ideas often work component-wise.

2.4. Differential Equations. If the model happens to have a simple de-
pendence on the parameters, then it is possible that the derivatives that
appear in the Jacobian and Hessian of 2.1 are simply expressible in terms
of the model itself. Here we only illustrate what happens for a first-order
dependence, which can be used to simplify both the Jacobian and the Hes-
sian. If there is just a second-order dependence, then that can be used to
simplify the Hessian.

Considering a simple model with first-order dependence on a parameter
b,

(2.3) f(b) = aebp(x)

then the derivative can be re-expressed in terms of f as follows.

(2.4)
∂f

∂b
= p(x)aebp(x) = p(x)f(b)

The above can be deduced by constructing the ODE that f(b) satisfies,
namely

(2.5)
∂f

∂b
− p(x)f(b) = 0.

If the dependence is algebraic - which can be considered to be a zeroth
order differential equation - this can naturally be used as well for simplifica-
tions. As such dependencies are sources of redundant computations in the
resulting code, it is important to factor them out.

3. Model Manipulation

The process of going from a formal mathematical model of the underlying
problem, to actual C code is easiest done by first manipulating the problem
description directly into a form more suitable for algorithmic solution. Of
course, to be able to perform computer-based manipulations of a mathemat-
ical problem, we need an explicit representation of the problem that can be
embedded (semantically) into software that is well suited to this task. This
is where Maple shines, especially as our problem is one which involves a lot
of manipulations of analytic functions.

Abstractly, what we really want to do is to be able to solve any parameter-
fitting problem such as 2.1 by describing the class of functions f that we
want to use, which parameters to optimize for, and how many superpositions
of the basis function should be used for fitting. We can then symbolically
obtain



6 ANAND, CARETTE, CURTIS, MILLER

(1) The recurrence equation satisfied by the model f with respect to the
main variable t.

(2) The differential equation(s) satisfied by the model f with respect to
the parameters xi.

(3) The Jacobian of the fitting equation 2.1 with respect to all the pa-
rameters xi.

(4) The (upper triangle of the) Hessian of the fitting equation 2.1 with
respect to all of the parameters xi.

(5) Using the recurrence and the differential equations, a reduction of
the Jacobians and the Hessians with respect to the structure of the
model f and the linearity of 2.1.

The first step above is obtained via RationalNormalForms[IsHypergeometricTerm],
a function which uses some advanced symbolic techniques to decide if a given
term f(t) is such that f(t+1)

f(t) is a rational function of t, and returns this ra-
tional function if it is the case. This allows us to handle any model family
f which is a Hypergeometric term in t. This includes functions such as
Γ(a ∗ t + b) (and thus factorial), the pochhammer symbol (a)t (or rising fac-
torial at ), the falling factorial at, as well as polynomials, rational functions,
and linear exponentials eat+b, as well as finite products and ratios of any of
the aforementioned. Our method easily generalizes to higher order recur-
rences, but we are not aware of a simple way to obtain these recurrences
using the current version of Maple.

The second step is obtained via gfun[holexprtodiffeq]. The abbrevia-
tions stand respectively for generating function and holonomic expression to
differential equation. The package gfun is described in [6] while the theory
of holonomic (or D-finite) functions is described in [4]. For the time being,
we can only take advantage of either zero-th and first-order differential de-
pendence on parameters. In other words, for arbitrary functions f, g and h,
we can handle models that look like g(a)× h(t) + f(b) as well as eh(a)t+g(b)

for parameters a, b.
The Jacobians and Hessians can easily be computed via symbolic differ-

entiation of the corresponding expressions. Note that although we could,
in principle, use automatic differentiation to compute derivatives of model
function code, this would obscure the role of the recurrence relations and
differential equations, and make it much harder to leverage them in the
reduction of code complexity.

4. Code Generation

Turning the mathematics of the previous sections into (pseudo) code, we
are looking to generate something like
procedure GeneratedCode(y, n)
integer n, t
real f_1, f_2, ..., f_k, h_1, h_2, ..., h_k, F
real array y, Jacobian, Hessian



COG PETS 7

begin
f_1 := f_1(0);
h_1 := recurrence ratio of f_1;
...
f_k := f_k(0);
h_k := recurrence ratio of f_k;
F := 0;
Jacobian := 0;
Hessian := 0;
for t := 0 to (n-1) begin
F := F + (y[t] - sum(f_i, 1 to k))^2;
Jacobian := Jacobian + Jacobian at t;
Jacobian := Hessian + Hessian at t;
f_1 := h_1 * f_1;
...
f_k := h_k * f_k;

end;
return F, Jacobian, Hessian;
end;

In other words, we need to generate a procedure which computes F , its
Jacobian and Hessian, taking full advantage of the fact that F is a sum, and
that all its sub-terms satisfy a recurrence.

The algorithm can be explained as

(1) get recurrence relation of f on t (via IsHypergeometricTerm),
(2) construct Jacobian and Hessian for the model function f in terms of

f ,
(3) if f is a complex function, split the above into real and imaginary

parts,
(4) generate code to calculate the initial value of f , the recurrence ratio

h, as well as code to calculate successive terms using h and the last
calculated term; do this for each superposition of f ;

(5) generate code to calculate, by summing in a loop, F , Jacobian(F ),
Hessian(F ); use previously computed relations on derivatives of f
(from step (2)), as well as re-using the recurrence for f ;

(6) the above code uses local variables (in the generated code) to store
the Jacobian and Hessian, to enable common-subexpression elimi-
nation (as it cannot be done on Matrix/Vector entries).

(7) generate “cleanup” code to assign locally stored Jacob(F ) and Hess(F )
to arrays that are “returned”

(8) wrap F , Jacob(F ), Hess(F ) and recurrence code in a loop on t and
apply sub-expression elimination optimization

(9) “paste” code together and transform to C code

There are a few things to note about the algorithm. First, f is represented
abstractly in the intermediate steps of generating the code. This is useful
because we know that the information derived from f is correct generically,



8 ANAND, CARETTE, CURTIS, MILLER

and the details of f would actually hinder rather than help these computa-
tions. Second, all parameters of f are indexed by the superposition to which
they belong.

The user inputs the model function f , the main variable t, the parameters
to optimize α, and the number of superpositions k to fit.

Figure 1. Generator Control Flow

Recurrence Relation Differential Equation

Generate Jacobian/Hessian

Generate Initialization Code Optimize

Wrap in Loop

Join Code

Transform into C

Model Function

The code determines if f is a first-order recurrence on t and, if it is, ex-
tracts the recurrence ratio h. If f is not a first-order recurrence, the code
terminates and prints out an appropriate error message. Next, the Jaco-
bian of f with respect to the parameters α is computed symbolically, using
the previously computed differential relations. If the differential equation
technique fails for any a ∈ α, that partial derivative is computed by direct
symbolic differentiation. Direct symbolic differentiation is then used on the
Jacobian to get the Hessian. Any occurrence of ∂f

∂a in the Hessian is replaced
by the appropriate Jacobian entry. Since the Jacobian is given in terms of
f the Hessian will be as well.

If f is a complex (vector) function, f , h (the recurrence multiplier), and
the Jacobian and Hessian of f are separated into real and imaginary parts
at this point. We must eventually convert all our computations to real
computations only, and this point in the algorithm is where we gain the
most benefit: previous computations are simpler on the complex function,
while more common sub-expressions can be pulled out from the expanded
version.



COG PETS 9

For each superposition of the model function (i.e. a peak), code is gener-
ated to calculate the initial term of the recurrence of f , the recurrence ratio
h, and successive terms. To calculate the (2-norm) error function F , and the
Jacobian (and Hessian of F ), the following can be used where f is assumed
to take values in Rm and y is also in Rm, and we used αp as a short-hand
for the parameter vector.

2-norm Error Function:

(4.1) F =
n−1∑
t=0

∥∥∥∥∥∥y(t)−
k∑

p=1

f(t, αp)

∥∥∥∥∥∥
2

=
n−1∑
t=0

m−1∑
s=0

ys(t)−
k∑

p=1

fs(t, αp)

2

Jacobian:

(4.2) Jαi
q

= 2
n−1∑
t=0

m−1∑
s=0

 k∑
p=1

fs(t, αp)− ys(t)

∂fs(t, αq)
∂αi

q

Formulas for the Hessian can be similarly derived. It is very important
to note that the formulas for the Jacobian above are completely uniform in
the parameter i. This means that instead of computing each component as
a sum over very similar entries, it is more efficient to compute the Jacobian
as a sum of vectors, as this allows significantly more common computations
to be extracted.

For every occurrence of ∂f
∂a in Jacob(F ) and Hess(F ), the corresponding

entries of the pre-computed Jacob(f) and Hess(f) are substituted in. Along
with code to calculate F , Jacob(F ) and Hess(F ), code is generated to ini-
tialize the local variables of F, Jacob(F ) and Hess(F ) and assign the local
variables of Jacob(F ) and Hess(F ) to 1-D arrays.

At this point, all abstract representations of the function f are replaced
by the previously computed term of f . Also, all of the indexed parameters
of f in the generated code are combined into a single 1-D array. This is done
to simplify use of the generated function. It provides a common interface
and, if you wish to optimize two or more parameters separately, it eliminates
the need for array manipulation between optimizations.

The code to calculate F, J and H is combined with the code to calcu-
late successive terms of f . This then makes up the body of a loop on the
main variable t. Common sub-expresion elimination is used on the loop
body via codegen[optimize] with the tryhard option, and the optimized
code is wrapped in a loop on t from 0 to n − 1, where n (number of data
points) is an argument of the generated function. The loop is then spliced
with the previous code, transformed into a C function with arguments
(double *y, int n, double *gama, double *J, double *H) and the re-
turn value F. Finally, the C code is output to a file specified by the user.



10 ANAND, CARETTE, CURTIS, MILLER

Figure 2. Soya bean oil phantom 1H-MR spectrum (ma-
roon) and component estimates.

5. Applications

We give two examples from Magnetic Resonance. The first example pro-
vided the impetus for this work, and in addition to developing the model
functions, we sketch the arguments for using a series of subspace searches
to try to find the global minimum for a highly non-convex function. The
second shows the use of real exponentials.

5.1. Magnetic Resonance Spectroscopy. MRS provides a method for
quantifying the concentrations of chemical constituents of a given tissue
sample, both in vitro and in vivo.

Signal in conventional MRS is attained from hydrogen atoms bound to
the molecules of interest. The different bonding patterns found in these
molecules slightly alter the base resonance frequency of the hydrogens and
lead to an effect referred to as chemical shift. Other factors such as bulk
magnetic susceptibility and tissue orientation (with respect to the magnetic
field) also contribute to chemical shift, but generally to a lesser extent. Dif-
ferent chemicals can therefore be identified by their frequency shift relative
to some reference (usually water). In order to quantify the amounts of
chemical present, we model the signal generation and find the maximum
likelihood estimate for the model parameters. Figure 2 shows the resulting
decomposition of a measured spectrum.

Unfortunately this objective function is not convex. By approximating the
problem by one which is convex, and then successively introducing greater
complexity in successive approximations, and switching between the fre-
quency and time domains, we are able to stay within the basin of conver-
gence of Newton’s method for the successive problems. We can ignore the
signal phase while still fitting the peak positions in the frequency domain,
and then switch to the time domain, increasing the accuracy of the deter-
mined model parameters. Using prior knowledge of fixed peak resonance
frequency relationships of the compounds we expect to find in the samples,
we both increase the accuracy of our estimates, and–because we are using
symbolic code generation–reduce the complexity and memory footprint of
the solver. We find that this method fits spectra very quickly and provides



COG PETS 11

good results. To understand the source of non-convexity and the need for
multiple solution stages, we briefly outline the models in this section.

The time-domain signal that is measured is the free induction decay
(FID), which is the superposition of signals from several different tissues,
each having the form

(5.1) ae−(d+if)t

where a ∈ C is the signal strength and phase, d is the damping (called 1/T2

in the MR literature), and f is the frequency (peak position).
The Fourier Transform of one signal is a Lorentzian:

1
d + i(f − x)

=
d

d2 + (f − x)2
+ i

x− f

d2 + (f − x)2
.

A delay in sampling will create a complex phase ramp eikt where k is related
to the delay. Since spectroscopy pulse sequences are complicated, including
water suppression, the phases of the different resonances are unlikely to be
exactly the same.

The squared norm of the spectrum is not affected by delays in sampling,
nor by the overall phase of the signal. If peaks are well-separated, or have
similar phase, the spectrum is not affected by the phase differences between
different peaks either. Under these assumptions, we can fit the peaks without
worrying about phase. This reduces the dimensionality of the problem and
eliminates a large source of non-convexity caused by the ambiguity in phase
angles.

Fitting a single peak is equivalent to minimizing the convex objective:

min
a,d,f

∑
x

(
Fy(x)− aā

d2 + (f − x)2

)2

.

Once we add a series of peaks, we must take the norm of the sum of the
real and imaginary parts, and not the sum of the norms. This makes the
model function more complicated, and again breaks the convexity of the
objective function. For example, if we have two well-separated peaks, the
objective function will have a global minimum at the correct fit and also a
local minimum where the left model peak is fitting the right observed peak
or vice versa.

To do unattended peak fitting we approximate the problem with a (sim-
plified) convex problem; its solution can then be used as a good starting
point for Newton’s method to converge to the global minimum of the non-
convex objective function. This is achieved by smoothing out the peaks
until the spectrum itself becomes convex. We add in a damping factor k
and multiply the time-domain data by e−kt, and then try to fit it with a sum
of Lorentzians with d replaced by kd. As the Newton method converges, the
damping is iteratively decreased until the original problem is recovered.

Writing the objective function in terms of the FID or its DFT is almost
equivalent, since adding white noise before a DFT is equivalent to adding it



12 ANAND, CARETTE, CURTIS, MILLER

afterwards. We have seen that fitting the spectrum in the frequency domain
has the advantage that we can easily fit individual peaks in the magnitude
as a way of obtaining an initial guess. Time-domain fitting,

(5.2) min
a0,d0,f0,...,dk,fk

∑
t

∥∥∥∥∥∥y(t)−
∑

s∈{sources}

ape
−(dp+ifp)t

∥∥∥∥∥∥
2

,

(where y(t) is the complex sample at time t), has the advantage that there
is no Gibb’s ringing, it is easier to fit asymmetric echos, and the model
functions can be calculated using only additions and multiplications via the
recurrence relations given in equation (2.2).

In the frequency domain, the magnitude of the peaks is the easiest and
most intuitive to fit. In the model we use for our specific application, there
are theoretically 12 distinct signals that compose the FID. Some of these
peaks will always have fixed frequency offsets from one another, and gen-
erally all 12 peaks should appear in more or less fixed locations. This fact
allows us to greatly simplify the process of finding an initial guess by first
fitting the location of the set of fixed peaks. In a second step, we can in-
dividually fit the frequencies in the time domain. Fitting the complex data
in the time domain is most useful for determining the peak area, as the
complex area values carry the signal phase information with them. This be-
comes a linear problem with a quadratic objective function, yielding a best
fit solution in only one iteration of the solver. Performing this operation in
the frequency domain would require guessing the phase angles. In addition
to fitting the area, attaining accurate values for damping is also simplified in
the time domain. In our method, the complex data is iteratively fit for area,
phase and damping, until the change in residual area after each iteration is
very small.

Although all of the inner loops were generated symbolically, we only ben-
efit from the improvements in this paper when fitting in the time domain.

5.2. Magnetic Resonance Relaxometry. A real-valued example prob-
lem can be drawn from MR Relaxometry, where the purpose of experiment
is not to acquire an image or FID spectrum as in MRI or MRS, but to de-
termine the time constants of the signal decay, which vary due to chemical
environment, including pH levels and temperature, making relaxometry a
useful non-invasive tool for determination of these quantities in-vivo in real
time. Changes in time constants are also useful as indicators of disease not
apparent when examining MR images, such as susceptibility for seizure [5].

The time constants arise from the Bloch equations [3], which govern the
response of a proton in a magnetic field. The decay constant T1 relates
to the longitudinal relaxation (spin-lattice interactions) of the protons, and
manifests itself in the re-growth of the proton magnetization in the direction
of the main field. The decay constant T2, or transverse relaxation (spin-spin



COG PETS 13

interaction) is a measure of the rate of signal de-phasing. Depending on the
set-up of the MR Relaxometry experiment, one can measure either constant.

The typical MR Relaxometry experiment involves exciting the sample
as usual, and waiting for some time before measuring the magnitude of
the MR signal. This is repeated with a small number (typically 6-10) of
different measurement delays, which have the form of a real-valued, damped
exponential,

(5.3) ae−dt.

When information is required about the decay constants of multiple species
present in one sample, the problem becomes very similar to that of spec-
troscopy, where the objective function has the form:

(5.4) min
a0,d0,...,ak,dk

∑
t

∥∥∥∥∥∥y(t)−
∑

s∈{sources}

ape
−dpt

∥∥∥∥∥∥
2

.

In order to make use of MR Relaxometry for real-time applications, quick
and accurate estimation of d is necessary.

Symbolic code generation made the development of this multitude of fast
solvers easy.

6. Results

Performance testing of the generated code for calculation of the Hessian
and Jacobian was performed for both a real and a complex model function
(equations (5.4) and (5.2)) with 12 signal sources. The execution time was
measured as the average of 1000 iterations of the solver on a 1.33 GHz
PowerPC G4 processor, over 1024 pseudo-random sample data points. All
C code was compiled with GCC 3.3, with full optimizations (-O3) enabled.

The benchmarks were run with different combinations of Maple-based
optimizations enabled: no Maple-level optimizations, incorporation of the
recurrence relation (R), incorporation of the symbolic differential equations
(D), and both (R + D). In addition, different common sub-expression elim-
ination routines in Maple were tested, as detailed in the tables.

Tables 1 and 2 give the run time and relative speed improvements (with
respect to a non-optimized version) of the generated code for the real-valued
model function, where the derivatives are taken with respect to the di terms
in the exponential.

Tables 3 and 4 present the data for the complex-valued objective, with
derivatives that are taken with respect to the imaginary fi terms in the
exponential.

Lastly, tables 5 and 6 present the data for the complex-valued objective,
but with derivatives that are taken with respect to the real di terms in the



14 ANAND, CARETTE, CURTIS, MILLER

exponential. As one would expect (since both f and d are in the expo-
nent), the performance of generating Hessians and Jacobians for d is nearly
identical to the cost of doing so for f .

The trend is clear: in all cases, a large benefit is to be gained by exploit-
ing the problem structure. Not surprisingly, Maple’s common sub-expression
elimination by itself yields a large improvement in execution time, as the
‘base’ code contains sums of constant exponential terms (as well as sines and
cosines in the complex case). While the recurrence relation and differential
equation optimizations alone lend a small speed increase, the maximum
speedup is gained when both are put to work. This jump in performance
is due to the fact that when working together, all exponential and trigono-
metric function calls are eliminated from the loop over the data points, (see
section 4 for pseudo-code) leaving only addition and multiplication opera-
tions.

Table 1. Time for generation of one Hessian and Jacobian
for real model function (5.4) with 12 sources and 1024 sample
points. Derivatives taken w.r.t. d.

Time per iteration (seconds).
Base Base + R Base + D Base + R + D

No Maple optim. 0.2340 0.0622 0.2283 0.0060
codegen[optimize] 0.0111 0.0077 0.0103 0.0033
’tryhard’ optimize 0.0079 0.0059 0.0080 0.0019

Table 2. Average speed improvement factor for real model
function (5.4) with 12 sources and 1024 sample points.
Derivatives taken w.r.t. d.

Relative speedup due to optimizations.
Base Base + R Base + D Base + R + D

No Maple optim. 1 4 1 39
codegen[optimize] 21 30 23 72
’tryhard’ optimize 30 40 29 124

7. Conclusion

Our results are very promising. We are continuing to improve the un-
derlying infrastructure, to be able to deal with wider classes of models. In
particular, we should be able to use models which satisfy a linear recurrence
equation of any (fixed, small) order. We also hope to be able to generalize to
multi-dimensional recurrences, for example for both scalar and vector data
on a 2 dimensional grid; naturally higher dimensions are possible as well.

We also want to further experiment and see more precisely what the source
of the common sub-expressions that remain is. We have quite conclusively



COG PETS 15

Table 3. Time for generation of one Hessian and Jacobian
for complex model function (5.2) with 12 sources and 1024
sample points. Derivatives taken w.r.t. f .

Time per iteration (seconds).
Base Base + R Base + D Base + R + D

No Maple optim. 1.1522 0.4121 0.5829 0.0038
codegen[optimize] 0.0245 0.0208 0.0202 0.0021
’tryhard’ optimize 0.0226 0.0196 0.0194 0.0021

Table 4. Average speed improvement factor for complex
model function (5.2) with 12 sources and 1024 sample points.
Derivatives taken w.r.t. f .

Relative speedup due to optimizations.
Base Base + R Base + D Base + R + D

No Maple optim. 1 3 2 300
codegen[optimize] 47 55 57 548
’tryhard’ optimize 51 59 59 547

Table 5. Time for generation of one Hessian and Jacobian
for complex model function (5.2) with 12 sources and 1024
sample points. Derivatives taken w.r.t. d.

Time per iteration (seconds).
Base Base + R Base + D Base + R + D

No Maple optim. 1.1237 0.4037 0.5712 0.0037
codegen[optimize] 0.0231 0.0196 0.0198 0.0021
’tryhard’ optimize 0.0227 0.0197 0.0191 0.0021

Table 6. Average speed improvement factor for complex
model function (5.2) with 12 sources and 1024 sample points.
Derivatives taken w.r.t. d.

Relative speedup due to optimizations.
Base Base + R Base + D Base + R + D

No Maple optim. 1 3 2 301
codegen[optimize] 49 57 57 541
’tryhard’ optimize 50 57 59 546

shown that taking advantage of the structure of the problem (linearity be-
cause of the summation, recurrence equations, differential equations, sym-
metry of the Hessian) leads to very significant speedups. We would like to
understand (as much as possible) what is the underlying structure which



16 ANAND, CARETTE, CURTIS, MILLER

accounts for the many common sub-expressions left and which, when elimi-
nated, contribute such an additional speedup factor.

It is worthwhile remembering that these calculations would either be re-
quired for all pixels in an image (millions of solves) for relaxometry, or for
optimization across all patients in a clinical study for spectroscopy, which
means several gigabytes of data processed in hundreds of iterations. There-
fore speedups such as the ones we demonstrate are not merely academic,
but make a substantial impact on the size of problems that can be tackled.
As these are important health-related applications, we believe this is a very
promising area of research.

Finally, it is worth noting that while we have concentrated on spec-
troscopy and relaxometry applications in this paper, we are aware of quite
a number of applications which are mathematically quite similar, but from
widely different domains. We still need to ascertain if, in practice, we see
gains which are as significant as the current application. We certainly are
hopeful that this will be the case.

References

[1] C. Anand, J. Carette, and A. Korobkine. Visual tracking employing Maple code gen-
eration. In Maple Summer Workshop 2004, 2004.

[2] Olaf Bachmann, Paul S. Wang, and Eugene V. Zima. Chains of recurrences - a method
to expedite the evaluation of closed-form functions. In International Symposium on
Symbolic and Algebraic Computation, pages 242–249, 1994.

[3] F. Bloch. Nuclear induction. Phys. Rev., 70:460, 1946.
[4] Frédéric Chyzak and Bruno Salvy. Non-commutative elimination in Ore algebras proves

multivariate holonomic identities. Journal of Symbolic Computation, 26(2):187–227,
August 1998.

[5] Andres M. Kanner. Abnormalities identified with t2 relaxometry in hippocampi remote
from the seizure focus: Do they mean anything?. Epilepsy Currents, 4(3):120–121,
2004.

[6] Bruno Salvy and Paul Zimmermann. Gfun: a Maple package for the manipulation of
generating and holonomic functions in one variable. ACM Transactions on Mathemat-
ical Software, 20(2):163–177, 1994.

McMaster University, Department of Computing and Software
E-mail address: {anandc,carette,curtia,milled3}@mcmaster.ca


	1. Introduction
	2. Mathematical Problem
	2.1. Structure of Newton Solvers
	2.2. Efficient Implementation
	2.3. Recurrence Relations
	2.4. Differential Equations

	3. Model Manipulation
	4. Code Generation
	5. Applications
	5.1. Magnetic Resonance Spectroscopy
	5.2. Magnetic Resonance Relaxometry

	6. Results
	7. Conclusion
	References

