
PROGRAM VERIFICATION BY CALCULATING RELATIONS
Jacques Carette∗, Ryszard Janicki∗ and Yun Zhai∗†

Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada L8S 4K1
{carette,janicki,zhaiy}@mcmaster.ca

Abstract We show how properties of an interesting
class of imperative programs can be verifed by means of
relational modelling and symbolic computation.

Keywords Modelling, Proving Program Correctness,
Symbolic Computation, Recurrence Relations

1 Introduction

In late sixties and early seventies, a technique for verifica-
tions and analysis of computer programs based on a calcu-
lus of relations was proposed ([1, 2, 8, 15] and others). De-
spite many theoretical and methodological advantages (it
rather emphasises calculation insted of proving), the tech-
nique has never become widely accepted because of the
huge amount of symbolic computations that need to be per-
formed for even relatively simple cases.

The situation has dramatically changed today, as we
have very powerful tools supporting symbolic computation
such as Maple [5] and Mathematica [18]. The problem is
still non-trivial, as the most general cases can be proved to
be undecidable, but for many less general cases an efficient
solution seems to be feasible.

In this paper we show how to build a Maple [5]
based tool [19] that can either automatically computer a
closed form for simple programs with loops, or consider-
ably simplify that task by computing polynomial invariants
of such programs. Simple cases of recursion can also be
treated. For straight-line programs, this reduces to a tech-
nique called symbolic execution. The main idea behind
symbolic execution is to use symbolic expressions as input
values and to simulate the execution of the program state-
ments on this symbolic inputs. The formal specification of
our system was done using Maude [14].

Symbolic execution has wide range of potential appli-
cations, however, it has been rarely used for proving prop-
erties of programs ([16] is one of few exceptions). This is
because, in general, naı̈ve symbolic execution can lead to
exponential blow-ups.

Our symbolic analysis can be seen as a kind of com-
piler which can translate the input programs into a symbolic
expression, and then can transform this expression into an
output expression. From our point of view, recursion and

∗Partially Supported by NSERC of Canada Grant.
†Supported by Ontario Graduate Scholarship.

looping are essentially equivalent, and so we will mainly
restrict ourselves to loops as the source of our main diffi-
culties [9]. The basic technique used in such cases is to
find “loop invariants” proposed by C. A. R. Hoare in 1969
[6]. Unfortunately finding them is often problematic and
research on how to find them in some automatic manner
has only just begun [12, 16].

We will show that for many frequently occuring
loops, finding invariants is not necessary as the symbolic
expression for the output can be generated explicitly by
solving the recurrence equations generated from the loop.
Even if, due to structural complexity of a loop, finding loop
invariants is necessary, the technique we have proposed
might often help substantially.

2 Intuition and Motivation

The example below (from [2]) provides a motivation and
illustrates well the main ideas. In principle we first translate
a program into a relational expression and then we will try
to obtain the program properties by analysing this relational
expression. The full theory of those expressions can be
found in [13].

Consider the well-known procedure factorial, written
in a small subset of Maple [5]:

factorial:=proc(n::posint)
local i, fac;

i:=1;
fac:=1;
while i < n do
begin

i:=i+1;
fac:=fac*i;

end;
return fac

end proc;

Since n does not change its value in the above program
we may consder it as a constant, so we may assume the
above program has two integer variables i and fac. Define
D = Z× Z and denote the elements of D as (i, fac). Each
instruction can be modelled by a function Fi : D → D,
i = 1, 2, 4, 5, in the following manner:
"i:=1" corresponds to F1(i, fac) = (1, fac),
"fac:=1" corresponds to F2(i, fac) = (i, 1),
"i:=i+1" corresponds to F4(i, fac) = (i + 1, fac),

and "fac:=fac*i" maps to F5(i, fac) = (i, fac · i).
The test "i<n" can be modelled by two partial identity
functions, I3, Ī3 : D → D, where I3 models "i<n", and
Ī3 models its complement, i.e. "i≥n". More precisely,
"i<n" corresponds to I3(i, fac), and
"i≥n" corresponds to Ī3(i, fac), where

I3(i, fac) =

{
(i, fac) if i < n

⊥ if i ≥ n

Ī3(i, fac) =

{
(i, fac) if i ≥ n

⊥ if i < n

It is a well known fact that non-recursive programs can
be modelled adequately with Kleene Algebras of Relations
with Tests (see [13]) by using the following scheme. Let
R,R1, R2 be relations (each function is a relation!) that
model the program statements S, S1, S2, respectively. Let
T be a test modelled by IT and ĪT , and let the symbols “◦”
and “∗” denote the (forward) composition of relations, and
transitive and reflexive closure of relations (Kleene star),
respectively. Then :
"S1;S2" is modelled by R1 ◦R2,
"if T then S1 else S2" is modelled by
(IT ◦R1) ∪ (ĪT ◦R2),

and "while T do S" by (IT ◦R)∗ ◦ ĪT .
Using this scheme one can easily model the above program
by writing the following relational expression:

F = F1 ◦ F2 ◦ (I3 ◦ F4 ◦ F5)∗ ◦ Ī3

Calculating “◦” is easy, but calculating “∗” is not. Let
G = I3 ◦ F4 ◦ F5. Then we have:

G(i, fac) = (I3 ◦ F4 ◦ F5)(i, fac)
= F5(F4(I3(i, fac)))

=

{
(i + 1, fac · (i + 1)) if i < n

⊥ if i ≥ n

Similarly :

G2(i, fac) = G(G(i, fac))

=

{
(i + 2, fac · (i + 1) · (i + 2)) if i + 1 < n

⊥ if i + 1 ≥ n

Hence :

Gk(i, fac) =

(i + k, fac · (i + 1) · (i + 2) . . . (i + k))

if i + k − 1 < n

⊥ if i + k − 1 ≥ n

Since G∗ is not a function, we need to express Gk in terms
of the relation calculus:
(i, fac)Gk(i′, fac′) ⇐⇒ i′ = i + k ∧

fac′ = fac · (i + 1) · . . . · (i + k) ∧ i + k − 1 < n.
We have G∗ =

⋃∞
i=0 Gi, hence:

(i, fac)G∗(i′, fac′) ⇐⇒ ∃k ≥ 0, (i, fac)Gk(i′, fac′)

⇐⇒ ∃k, 0 ≤ k < n− i + 1 ∧ i′ = i + k ∧
fac′ = fac · (i + 1) · . . . · (i + k).

We may now make some simplification:
(F1 ◦ F2)(i, fac) = F2(F1(i, fac)) = (1, 1).

This means:
(i, fac)F1 ◦ F2 ◦G∗(i′, fac′) ⇐⇒ (1, 1)G∗(i′, fac′)
⇐⇒ ∃k, 0 ≤ k < n ∧ i′ = k + 1 ∧ fac′ = (k + 1)!
Let us calculate : (1, 1)G∗ ◦ Ī3(i′, fac′).
The partial function Ī3 in the relational representation looks
as follows:
(i, fac)Ī3(i′, fac′) ⇐⇒ i ≥ n ∧ i = i′ ∧ fac = fac′. From
the definition of ” ◦ ” we have :
(1, 1)G∗ ◦ Ī3(i′, fac′) ⇐⇒ ∃i, fac, (1, 1)G∗(i, fac) ∧
(i, fac)Ī3(i′, fac′) ⇐⇒ (∃k, 0 ≤ k < n∧i = k+1∧fac =
(k + 1)!) ∧ (i ≥ n ∧ i = i′ ∧ fac = fac′).

Note that i = k + 1∧ i ≥ n ⇒ k + 1 ≥ n ⇐⇒ k ≥
n − 1, and 0 ≤ k < n ∧ k ≥ n − 1 ⇒ k = n − 1 ⇐⇒
n = k + 1.
So now, we do not have a general ∃k, but a very specific
k=n-1, which means G∗ ◦ Ī3 is a function again, and the
statement (∃k, 0 ≤ k < n∧i = k+1∧fac = (k+1)!)∧(i ≥
n ∧ i = i′ ∧ fac = fac′) is reduced to:

i′ = k + 1 = n− 1 + 1 = n ∧ fac′ = n!
In this way we have proved that F (i, fac) = (n, n!), so
the program is correct. To make this technique feasible for
bigger, more realistic programs, we need a tool that would
be able to do all those symbolic calculations. Our tool [19]
will take the text of the program factorial as an input
and will return the text “n!” as output. In the next sec-
tions we will show how it can be done with some help from
Maple [5]. Our system [19] can also deal with some kind
of limited recursion as well.

3 Loops and Recurrence Equations

A formula that expresses the meaning of a loop can be ex-
plicitly derived (in some cases) by solving appropriate re-
currence equations.

Consider our program factorial. Every time the
loop is executed, the value of i is incremented by one and
the value of fac is incremented i times. We may express
this change in a form of recurrences. For this example,
the recurrence relation is the following i(k + 1) = i(k) +
1, fac(k + 1) = fac(k) · i(k + 1), where i(k + 1) and
fac(k + 1), for k ≥ 0 are the values of i and fac at the end
of iteration k + 1. In this sense, k represents time, which is
the important new concept in this representation. Because
time is explicitly reified in the recurrence, this allows many
techniques from symbolic computation to apply. Before
entering the loop, the value of i is 1 and the value of fac is
1, so we initialize the recurrence by i(0) = 1 and fac(0) =
1. Hence the following recurrence equations describe the
meaning of our loop.

i(0) = 1; fac(0) = 1;
i(k + 1) = i(k) + 1; fac(k + 1) = fac(k) · i(k + 1);

These recursive function can not be solved by Maple [5] di-
rectly since they are non-linear recurrences. However, we
can clearly see that i(k + 1) is independent of fac(k), but
fac(k + 1) is not independent of i(k + 1), i.e. we may not
be able to solve the system directly, but we might be able
to solve it incrementally. From a simple data-flow anal-
ysis, this order can be determined. If we solve for i(k)
first (including initial conditions), we get i(k) = k + 1.
Replacing i(k) by k + 1, in the equation for fac, we get
fac(k + 1) = fac(k) · (k + 2), which is also solveable.
Putting the solution together, we get

i(k) = k + 1 (3.1)
fac(k) = (k + 1)! (3.2)

Note that the above solution is still in terms of time; how-
ever, regardless of whether the loop terminates or not, we
have found the core meaning of the loop!

This technique can be applied to any loop if the set of
appropriate recurrence equations that the loop defines is es-
sentially triangular, with polynomial solutions for the non-
linearities (or it can be transformed into such a system).

4 Loop Termination

To determine the value of recurrence variables after the
loop, we need the recurrence condition which symbolically
determines the number of iterations for the recurrence. In
our example, the recurrence variables are i and fac, and the
recurrence condition is given by i(k) < n, which, together
with equation (3.1) gives us the following formula for the
loop termination (see [17]):

min
k≥0

{k | i(k) ≥ n} = min
k≥0

{k | k + 1 ≥ n} = n− 1

In order to compute the value of fac at the loop exit, we
have to substitute n− 1 for k in (3.2). So, we get “n!”.

Note that it is only necessary to obtain a closed-form
solution to the recurrences involving for those variables
which actually occur in the stopping condition to determine
loop termination. This can frequently be much simpler, as
is the case for all for loops!

5 Input Language and Relation Generator

The language for input programs (like factorial) was
chosen as a subset of Maple [5], and it is a combination of
the following statements

1. var:=expr
2. if T then S1 else S2
3. while T do statement end do
4. for i from i1 to i2 by i3 do S end do
5. Recursive Function Calls

In our system, we have two main modules: the Rela-
tion Generator and Relation Solver, both written in Maple
[5]. This is made especially easy since Maple has some

Program Statements Relations Generated
var:=expr StateTransition
if-then-else Piecewise
while C do Fixedpoint([C],...)
for-from-to-by-do Fixedpoint(For(),...)
Recursion RecursionCall

Table 1. Rules for program transformation

Input Program Relations
factorial:=proc(n)
i:=1 F1:StateTransition(i,1)
fac:=1 F2:StateTransition(fac,1)
while i < n do F3:FixedPoint([i < n],

i:=i+1 [StateTransition(i,i+1),
fac:=fac*i StateTransition(fac,fac*i)]

end do)
fac F4:fac
end proc;

Table 2. Translation of factorial into the set of appro-
prate relations

very powerful reflection capabilities through its ToInert
function, which gives an accurate AST representation for
any Maple program (or expression). The first one gener-
ates a series of appropriate relations (recurrence, state tran-
sition, etc.) for the given input program, while the second
one solves the relations and produces an output expresion,
either in an explicit form, or, if an explicit form cannot be
found, then implicit forms (like invariants) are returned.

The Relation Generator is a total function – it trans-
lates the given input program into a sequence of appropriate
relations. Table 1 shows the relationship between parts of
program and names of the relations used. Table 2 shows
what is generated for our program factorial.

6 Solving Relations: Overview

The method for solving relations depends on the kind of
function that generates them. The technique described in
this and almost all remaining chapters is a refinement and
generalisation of many results from [3, 12, 17]. Of course,
if code does not contain either loops nor recursion, from
a symbolic point of view such straight-line code is com-
pletely trivial, and we can simply compute the result. The
only drawback is that such an answer can be exponentially
larger than the input program.

For the case where we have either a while or for
loop whose body is straight-line code, we generate a system
of recurrence equations, which we try to solve in closed-
form, using whatever triangular structure we may find. Us-
ing similar ideas, we can also generate systems of recur-
rences for programs containing recursion.

When loops contain branches (i.e.
if-then-else), the resulting system of reccurences es-
sentially never falls within a class of solvable recurrence.

Relations Recurrence and Initial Condition
StateTransition(i,1) Initial Condition: i(0) = 1
StateTransition(fac,1) Inital Condition: fac(0) = 1
FixedPoint(i< n, Loop Termination:

t = min{k ≥ 0 | i(k) ≥ n}
StateTransition(i,i+1), Recurrence:

i(k + 1) = i(k) + 1
StateTransition(fac,fac*i), Recurrence:
) fac(k+1) = fac(k) · i(k+1)
return fac fac(t)

Table 3. Recurrence Equation and Initial Conditions for
factorial.

At present, we immediately shift to generating implicit
results, in the form of polynomial invariants [12].

7 Generating Recurrences: while

If the input program is a simple while loop, without
if-then-else statements inside the while loop, the
core relation we generate will be FixedPoint. Table 3
shows the results for our factorial program. In this
case our system [19] will produce the output formula “n!”.

7.1 Generating Recurrence Relations

In this case all we have inside the loop are assignment state-
ments which are represented by StateTransition re-
lations. These relations might however be mixed, in other
words a variable at time k + 1 might occur on both the left
and right hand sides. This occurs in our factorial code,
where fac depends on i(k+1) rather than i(k). However, a
simple program transformation related to Static Single As-
signment (SSA) form [20] takes care of this issue.

7.2 Generating Initial Conditions

The initial conditions are easily determined: they are the
values of each of the loop variables (i.e. those which
change) right before the loop starts. These can be deter-
mined by unwinding the stack of StateTransition
calls preceding the loop. This is always possible, though
might again generate very large answers.

7.3 Stopping Conditions

If we want to find the actual stopping condition for a loop,
we need to solve (symbolically) the recurrence equations
(with known initial functions) just generated. Suppose the
solution is:

v1(k) = F1(k), v2(k) = F2(k), . . . , vm(k) = Fm(k).

Now, we can decide the loop stop condition on the basis of
the condition C in FixedPoint([C],...). In general,
this condition reads

min
k≥0

{k | ¬C}

R < ≤ > ≥ = 6=
¬R ≥ > ≤ < 6= =

Table 4. Boolean symbols and their opposite values

where C depends on the state variables at time k. In gen-
eral, this is a diophantine equation, and thus well-known to
be unsolvable. But in many practical situations, the actual
equations are simple. We draw attention to three such
cases.

• Case 1 C = vi R c, where v1, . . . , vm are the recur-
rence variables, c is constant with respect to the vi’s, and
R is a relational operator from Table 4. The converse of
R can easily be computed explicitly, also shown in Table
4. Assuming that the expression for vi = Fi(k) is simple
enough (in terms of k), this can be solved in closed form.
• Case 2 C = vi R φ(vj), where v1, . . . , vm are the
recurrence variables, and some of them occur in the ex-
pression φ, with R as before.

z = min
k≥0

{k|¬(vi(k) R φ(vj(k))}

= min
k≥0

{k|Fi(k)− φ(vj(k)) S 0}

where S = ¬R.
• Case 3 C is a conjunction of terms which satisfy Case
1 or Case 2. Then we can simply take the minimum of all
the conjuncts.

8 Solving with for loops

Since a for loop is a special case of a while loop, this
case is very similar to the previous. Generating recurrences
is exactly the same. Assume the following pattern for the
for: loop

for i from s to e by step do S.

8.1 Generating Initial Conditions

Initial functions are generated from the stack of
StateTransitions preceding the loop for all variables,
with the addition of i(0) = s.

8.2 Number of Loop Iterations

We have to consider two cases:
• Case 1 The variable i, i.e. loop counter, is not modified
by S. In this case the number of iterations z can be solved
explicitly and uniformly for all cases, and is given by

z =
⌊

e− s + 1
step

⌋
• Case 2 The variable i, i.e. loop counter, is modified by
S. In this case we have to transform the loop for into an
equivalent while loop and proceed as in Chapter 7.3.

Input program Relations
chebyshev:=proc(n)
u0:=1 F1:StateTransition(u0,1)
u1:=x F2:StateTransition(u1,x)
for i from 2 to n-1 F3:Fixedpoint(For([i,2,n-1,1]),

do u0:=u1 [StateTransition(u0,u1),
u1:=-u0+2*x*u1 StateTransition(u1,-u0+2*x*u1)]

end do)
return -u0+2*x*u1 F4: -u0+2*x*u1
end proc

Table 5. Translation of chebyshev into the set of appro-
priate relations

9 Solving Relations involving recursion

If a recursive function is correctly defined, it defines both
recurrence functions and initial conditions in quite natural
way. However, we can not always solve (symbolically) the
recurrence equations thus generated (for instance we can-
not do it for Ackerman function).

Note that it is important here to assume that we have
a meaningful program, as otherwise a recursively defined
function might come equipped with naturally defined initial
conditions.

10 The case of branches in loops

When we have if-then-else inside a while, we usu-
ally are not able to generate explicit symbolic output. We
can often generate implicit output, or invariants, in a way
similar to that desribed in [12, 16]. More details can be
found in [19].

11 Example 2: Chebyshev Polynomials

The program factorial involves while loop. We
show a simple example with for loop.

chebyshev:=proc(n)
local i, u0, u1, t;

u0 := 1;
u1 := x;
for i from 2 to n-1 do

u0 := u1;
u1 := -u0+2*x*u1;

end do;
return -u0+2*x*u1

end proc:

Translation of the program into set of appropriate relations
in given in Table 5, whilst recursive functions, initial func-
tions, and loop termination condition is in Table 6.

Our system [19] has produced the following output
for the above program chebyshev:

−x(−1 + 2x)(n−3) + 2x2(−1 + 2x)(n−2).

Relations Recursive and Initial Functions
StateTransition(u0,1) Initial Function: u0(1) = 1
StateTransition(u1,x) Initial Function: u1(1) = 1
FixedPoint(Loop Termination:
For([i,2,n-1,1]), t =

¨
n−1−2+1

1

˝
= n − 2

StateTransition(u0,u1), Recursive Function:
u0(k + 1) = u1(k)

StateTransition Recursive Function:
(u1, -u0+2*x*u1), u1(k + 1) =

]) −u0(k + 1) + 2 · x · u1(k)
-u0+2*x*u1 −u0(t) + 2 · x · u1(t)

Table 6. Recursive and Initial Functions for chebyshev

12 Related work

Symbolic execution has been studied since seventies, how-
ever with different goals than ours. King [11] in 1976 has
developed EFFIGY, a symbolic execution system with a
fixed number of integers.

Kemmerer and Eckmann [10] have presented an ap-
proach to symbolic execution based on the concept of path
expressions and path conditions.

DISSECT [7] and SELECT [4] are another symbolic
execution systems that use the path conditions concept.
DISSECT can be used to symbolically execute some sim-
ple FORTRAN programs. The main purpose of SELECT
[4] is to complement mechanical program verification and
debug programs.

Rodrı́guez-Carbonell and Kapur [16] have recently
developed some interesting techniques for automatic find-
ing loop invariants.

13 Conclusions and Future Work

We have described a symbolic execution system that can
be used to analyse properties of programs. The sys-
tem performs a symbolic execution of the input pro-
gram and get either an explicit or implicit symbolic out-
put. The system [19] can handle assignment statetements,
if-then-else statements, for-do statements, and
while-do statements, the latter with some restrictions.

Despite the restrictions, it can be used for a huge va-
riety of programs, including programs like Binomial Co-
efficients, Bessel Functions, Greater Common Divisor, etc.
[19].

For the future work, we would like to loosen the re-
striction for while-do loop we have now. We also would
like to be able to produce explicit symbolic solutions in
some cases where now we can only produce invariants.

References

[1] H. Bekić, Definable operations in general algebras
and the theory of automata and flowcharts, Unpub-
lished Manuscript, IBM Laboratory, Vienna 1969.

[2] A. Blikle, An anlysis of programs by algebraic means,
In A. Mazurkiewicz, Z Pawlak (eds), Mathemati-
cal Foundation of Computer Science, Banach Center
Publications, Vol. 2, pp. 167–213, Polish Scientific
Publishers, Warsaw 1977.

[3] T. E. Cheatham, J. A. Townley, Symbolic Evaluation
of Programs: A look at Loop Analysis, Proc. of ACM
Symposium on Symbolic and Algebraic Computation,
1976, pp. 90-96.

[4] B. Elspas, R. S. Boyer, K. N. Levitt, SELECT-A for-
mal system for testing and debugging programs by
symbolic execution. ACM SIGPLAN Notices, 10(6),
pages 234–245, June 1975.

[5] M. B. Monagan and K. O. Geddes and K. M. Heal and
G. Labahn and S. M. Vorkoetter, Maple Programming
Guide, Springer Verlag, 1998.

[6] C. A. R. Hoare, An Axiomatic Basis of Computer
Programming, Comm. of ACM 12 (1969), 576-580.

[7] W. E. Howden. Symbolic Testing and the DISSECT
Symbolic Evaluation System. IEEE Trans. on Soft-
ware Engineering SE-3, 4, pages 266–278, July 1977.

[8] R. Janicki, Analysis of Coroutines by Means of Vec-
tors of Coroutines, Fundamenta Informaticae, 2, 2
(1979), 289-316.

[9] A. Kaldewaij, Programming. The Derivation of Algo-
rithms, Prentice-Hall 1990.

[10] R. A. Kemmerer, S. T. Eckmann. UNISEX: A UNix-
based symbolic Executor for Pascal. Softw. Pratt. Ex-
per. 15,5, pages 439–457, May 1985.

[11] J. C. King, Symbolic Execution and program test-
ing. Communications of the ACM, pages 385–394,
July 1976.

[12] L. I. Kovács, T. Jebelean, Automated Generation of
Loop Invariants by Recurrence Solving in Theorema,
Proc. of SNASC’04 (Symbolic and Numeric Algo-
rithms for Scientific Computing).

[13] D. Kozen, A completeness theorem for Kleene alge-
bras and the algebra of regular events, Information
and Computation 110 (1994), 366-390.

[14] The Maude System, http://maude.cs.uiuc.edu

[15] A. Mazurkiewicz, Proving algorithms by tail func-
tion, Information and Control, 18 (1971) 793-798.

[16] E. Rodrı́guez-Carbonell, D. Kapur, Program Verifica-
tion Using Automatic Generation of Invariants, Proc.
of ICTAC’05, Lecture Notes in Computer Science
3407, Springer 2005, pp. 325-340.

[17] B. Scholz, T. Fahringer, Advanced Symbolic Analysis
for Compilers. Springer-Berlin, 2003.

[18] S. Wolfram, The Mathematica Book, Cambridge Uni-
versity Press, 1999.

[19] System website or Yun Thesis, hidden for reviewing
process.

[20] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman
and F. K. Zadeck, Efficiently computing static single
assignment form and the control dependence graph,
ACM Trans. Program. Lang. Syst., Vol 13, Number
4, 1991, ACM Press, pp. 451–490.

