
Case Studies in Model Manipulation for
Scientific Computing

J. Carette, S. Smith, J. McCutchan, C. Anand, and A. Korobkine

Computing and Software Department, McMaster University, Hamilton, ON,
CANADA

{carette, smiths, mccutcjs, anandc, korobkao}@mcmaster.ca

Abstract. The same methodology is used to develop 3 different applica-
tions. We begin by using a very expressive, appropriate Domain Specific
Language, to write down precise problem definitions, using their most
natural formulation. Once defined, the problems form an implicit def-
inition of a unique solution. From the problem statement, our model,
we use mathematical transformations to make the problem simpler to
solve computationally. We call this crucial step “model manipulation.”
With the model rephrased in more computational terms, we can also
derive various quantities directly from this model, which greatly simplify
traditional numeric solutions, our eventual goal. From all this data, we
then use standard code generation and code transformation techniques
to generate lower-level code to perform the final numerical steps. This
methodology is very flexible, generates faster code, and generates code
that would have been all but impossible for a human programmer to get
correct.

1 Introduction

Collectively, the authors have been developing various scientific applications for
several decades. Over time, we have independently drifted towards the same
development methodology. The basic ingredients involve a (declarative) domain-
specific language (DSL) in which to express our model(s)1, model transforma-
tions, code generation and program transformation. The steps involved are shown
in Fig. 1. Through 3 case studies, we show that the methodology is flexible, gen-
erates faster code, and generates code that would have been all but impossible
for a human programmer to get correct.

For scientific applications, the most appropriate DSL is well-known: mathe-
matics. More difficult is finding computer-based tools that can easily deal with
the kinds of mathematics involved in typical scientific applications. Further-
more, not only does this language need to be “declarative,” it should also allow
direct manipulation, in and by the language itself, of mathematical expressions
(and more generally of mathematical specifications). The only languages that
currently combine the necessary richness and ease of manipulation are the lan-
guages of Computer Algebra Systems. In our case, because it is the system we are
1 Note that where we use “model,” mathematicians would use “problem” instead.
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1. Express the Model - the model is declaratively expressed in a DSL,
2. Transform the Model - transform the initial model into a form more suitable

for computational solutions,
3. Extract Structure - structure and properties are directly extracted from the

model,
4. Optimize the Computation - the structure is used to optimize the computa-

tional “solution” of the model,
5. Generate the Code - low-level code is generated for the solution.

Fig. 1. Typical model manipulation steps

(by far) the most familiar with, we have used Maple. It is then straightforward
to directly phrase the kinds of models we are most interested in: (solutions of)
differential equations, and (solutions of) continuous optimization equations.

We will show that given explicit representations of equations whose solution
we seek, the intentional structure of those equations can be mined to obtain a
wealth of information about the structure of the solution. This, in turn, allows
one to make better choices about (numerical) solution methods. We call this step
“model manipulation.” This is the step where human creativity and ingenuity is
most needed. This is also the step where the domain expert can bring important
insights. We recommend spending relatively more time on model manipulation
because an investment of time here makes subsequent steps much simpler to
automate.

With a model rephrased in more computational terms, we can apply well-
known techniques (like symbolic differentiation, common subexpression elimina-
tion, finding of differential or recurrence relations, etc.) to further optimize the
computational structure of the model. At this point, classical code generation
techniques can be applied to generate C code with embedded calls to optimized
numerical libraries.

In scientific computation, there are at least two circumstances in which code
generation has proven to be quite effective:

1. when complex program transformations are needed [11,22],
2. when a program can be expressed succinctly in a domain-specific language,

but requires lengthy and complex code in a mainstream language. [6,7]

The first situation occurs most famously when automatic differentiation [13]
is required and applicable. There is ample literature (from [25] onwards) that
shows that smooth optimization problems are incomparably easier to solve when
Jacobians and Hessians are available. Computing derivatives numerically is well-
known to be a futile task, and computing them by hand (symbolically) is so
fraught with error as to be deemed impossible. On the other hand, differentiation
is a simple (symbolic) program.

The second situation from the above list is now emerging as rather common
as well, which has caused the growing popularity of GUI-builders, lexer and
parser generators, Java-from-DTD builders, etc. This trend is also present in the
scientific computation community [8,9].
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The problems well-suited to our approach are those which:

1. can be succinctly described using mathematics as the “domain language,”
2. needs information, like derivatives, easily obtained from the model, and
3. requires experimentation and manipulation at the “model” level.

The downsides of using a DSL, as given by [7], are not relevant when using a
mathematical programming language (such as Maple).

It is worth repeating that the most important step is that of “model manipu-
lation.” Our aim is to automate every other step of the problem-solving process
to ensure that a designer’s time is spent thinking about the semantics and the
structure of the problem to solve, and not wasted on mundane computational
tasks. Eventually, we would hope to provide higher-level abstractions for this
step as well. Several reviewers have, näıvely in our opinion, asked why we do
not provide more automation for this step. The answer is simple: we only know
how to automate very particular cases, and in fact believe that there are no
general recipes to follow. This is not to say that particular cases cannot be fully
automated, nor even that these particular cases are “rare” – quite the contrary.

Part of our aim is to free our own time, so that we can concentrate on the pure
problem-solving parts of scientific software development. Once we have reliably
achieved that, we will then strive to develop automated tools, using our scientific
and engineering knowledge of typical solutions, to as many problem classes as
possible.

We will present 3 applications developed using this methodology: real-time
visual tracking of a target, data fitting in model-based time series and material
behaviour modelling. To highlight the similarities between the examples, in each
case reference will be made to the model manipulation steps shown in Fig. 1.
Significantly more details on these examples can be found in [3].

2 Visual Tracking

This example is based on [1]. In visual tracking applications, a series of images
captured from CCD (Charge-Coupled Device) cameras must be processed in
real-time to extract information about spatial positioning. This information can
be used for target identification, object measurement, and closed-loop target
acquisition. Here we will focus on recognition of radially-symmetric, essentially
compact targets, which we will call spots.

2.1 Model of Spot Fitting

We can Express the Model of spot recognition as the least squares fit between
actual light intensity (φp) and the equation (v1f(p) + v0) describing the spot:

min
U

F =
∑

p∈Ω

(φp − (v1f(p) + v0))2 (1)
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Fig. 2. Actual image of a gray-scale
target, showing the spot’s centre (1),
shape (2) and cross-section (3, 4)

where v0 is the background illumination,
v1 is the brightness of the centre of the
spot, p is a pixel, Ω is a region of pix-
els and f(p) is a polynomial. The func-
tion f(p) depends on k1, k2, which de-
termine the radial profile of the spot;
bx, by, which define the coordinates of
the ellipse centre; and finally a1, a2, a3,
which define the shape of the elliptical
boundary. We minimize F over U , where
U ⊆ {v0, v1, k1, k2, bx, by, a1, a2, a3}. Fig-
ure 2 shows an example.

Equation 1 actually represents a fam-
ily of models, distinguished by the choice
of U . Domain-specific information allows
us to Extract Structure via appropriate
choices of U . Note that a naive implemen-
tation where we simultaneously optimize
all variables will fail because the target recognition problem is not convex, forcing
us into multiple solver stages.

2.2 Transformed Model (Newton’s Method Solver)

The Transformed Model for finding the minimum in Eq. 1 consists of searching
for a common zero of all the partial derivatives with respect to all the parameters
of U , using Newton’s method. Denoting by JU the Jacobian of F and HU the
Hessian of F with respect to the variables U , Newton iteration for an iterative
solution vector un is defined by:

un+1 = un − HU(un)−1JU (un) (2)

2.3 Extracting Structure and Generating Code

To improve performance, we can Extract Structure (again) from the transformed
model. In particular, we know that large arrays are needed to store the captured
images and that computing the sum over each elements in those arrays is expen-
sive. Efficient use of cache would help reduce execution time (as this is bounded
by memory accesses). This is most easily done by localizing computations within
a solver iteration. Furthermore, from their definitions, we know that Jacobian
and Hessian matrices will contain many common subexpressions; therefore, op-
timization on the “the inner sum” is crucial. We also know that since Hessian
matrices are symmetric, we only need to calculate their upper triangular por-
tion. Using this information suggests that for the Jacobian and the Hessian we
should jointly Optimize the Code. Measurements of floating point operations
in code generated using these optimization strategies confirms our expectations
(see Table 1).
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Table 1. Number of flops per pixel in generated solvers

jointly optimized separately optimized
+tryhard +tryhard

b 78 112 97 152
a 88 135 117 176

a,b 205 325 220 396
a,b,v 230 394 284 461

There is an advantage to the joint optimization of the Jacobian and the Hes-
sian matrices, which would not be feasible without Optimizing the Code. Maple’s
codegen[optimize] function, especially with the tryhard option, eliminates
common subexpressions very effectively when these matrices are generated to-
gether. If the optimization of code is performed separately and the results are
concatenated (which is closer to the code that would be obtained without using
the model manipulation process), both the length of the solver and the number
of flops per pixel are roughly doubled. This does not reflect the equally im-
portant reduction in memory traffic and reduction in local variables by jointly
calculating the Jacobian and Hessian in one loop.

3 Parameter Estimation in Model-Based Time Series

This example of parameter estimation from time-series data is extracted from [2].
Parameter estimation is important in many problem domains including determi-
nation of rate constants in pharmaceutical drug transport, decomposing audio
signals and voice recognition, and measurement of metabolite levels in Magnetic
Resonance Spectroscopy (MRS) and Relaxometry. Figure 3 shows an example
from MRS of the decomposition of a measured magnetic resonance spectrum for
soya bean oil.

3.1 Expressing the Mathematical Model

Expressing the Model for parameter estimation shows that we have a more gen-
eral version of the least squares fitting example presented in the previous section.
A common method of parameter estimation for time series data involves mod-
elling signal sources, f(x1, x2, . . . , xn, t), (where the xi are the model parameters
and f is in general a vector-valued function) and fitting a superposition of the

Fig. 3. Soya bean oil spectrum (maroon) and component estimates
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various sources to the measured data. Through minimization of an objective
function F , an optimal set of parameters may be determined:

min
x1
1,x1

2,...,x1
n,...,xs

n

∑

t

∥∥∥∥∥∥
y(t) −

∑

s∈{sources}
asfs(xs

1, x
s
2, . . . , x

s
n, t)

∥∥∥∥∥∥

2

. (3)

where xs
j denotes the xj ’th parameter of peak s. Equation 3 Expresses the Model

for parameter estimation of a time series. An important part of the mathematical
modelling step is to explicitly declare the class of functions f to consider, which
parameters to optimize for, and how many superpositions of the basis function
should be used for fitting. This gives important structural information from
which we can Extract Structure.

As our objective functions will all be analytic, we can safely use Newton’s
method to solve the minimization problem; therefore, Newton’s method forms
the Transformed Model, as it did for the last example (see subsection 2.2).

3.2 Extracting Structure

Extracting Structure from the model shows the frequent occurrence of recur-
rence relations, since in many time-series models, a simple time evolution ex-
ists. This allows the use of recurrence relations instead of explicit calculations
of the model function. This greatly increases the efficiency of objective func-
tion evaluations, as well as the calculation of the Jacobian and Hessian on each
solver iteration. For instance, in the case of an exponentially damped oscilla-
tory signal, ae−(d+if)t of frequency f , amplitude a, and damping coefficient d,
the sequence a, ae−(d+if), ae−2(d+if), . . . can be calculated using the recursion
z0 = a, zj+1 = kzj, k = e−(d+if).

We symbolically obtain the recurrence equation satisfied by the model f with
respect to the main variable t via the IsHypergeometricTerm function from the
RationalNormalForms Maple package. This function uses advanced symbolic
techniques to decide if a given term f(t) is such that f(t+1)

f(t) is a rational function
of t, and returns this rational function if this is the case.

Further efforts to Extract Structure show that if the model happens to have
a simple dependence on the parameters, then it is usually the case that the
derivatives that appear in the Jacobian and Hessian are simply expressible in
terms of the model itself. Considering a simple model with first-order dependence
on a parameter b,

f(b) = aebp(x) and
∂f

∂b
= p(x)aebp(x) = p(x)f(b) (4)

which shows that the derivative can be expressed in terms of f . If the dependence
is algebraic, which can be considered to be a zeroth order differential equation,
this can also be used for simplifications. As such dependencies are sources of
redundant computations, it is important to factor them out.



30 J. Carette et al.

gfun[holexprtodiffeq] is used to determine the differential equation(s) sat-
isfied by the model f . The abbreviations stand respectively for generating func-
tion and holonomic expression to differential equation. The package gfun and
the theory of holonomic (or D-finite) functions are described in [24] and [4],
respectively.

3.3 Code Generation

We need to Generate Code that computes F , its Jacobian and Hessian, taking
full advantage of the fact that F is a sum, and that all of its sub-terms satisfy
a recurrence. Using this structure allows us to Optimize the Computation.

The Jacobian with respect to the parameters α is computed symbolically,
using the previously computed differential relations. If the differential equation
technique fails for any a ∈ α, that partial derivative is computed by direct
symbolic differentiation. Direct symbolic differentiation is then used on the Ja-
cobian to get the Hessian. Any occurrence of ∂f

∂a in the Hessian is replaced by
the Jacobian entry.

If f is a complex (vector) function, then f , and the Jacobian and Hessian of
f are separated into real and imaginary parts at this point. We must eventually
convert all our computations to real computations only, and this point in the
algorithm is where we gain the most benefit: previous computations are simpler
on the complex function, while more common sub-expressions can be pulled out
from the expanded version.

The code to calculate F , J and H is combined with the code to calcu-
late successive terms of f . This then makes up the body of a loop on the
main variable t. Common sub-expression elimination is used on the loop body
via codegen[optimize] with the tryhard option, and the optimized code is
wrapped in a loop on t from 0 to n − 1, where n (number of data points) is an
argument of the generated function. The loop is then spliced with the previous
code and transformed into a C function.

The generation algorithm can be explained more specifically as

1. get recurrence relation for f on t (via IsHypergeometricTerm),
2. construct the Jacobian and the Hessian for the model function f in terms of

f ,
3. if f is a complex function, split the above into real and imaginary parts,
4. generate code to calculate the initial value of f , the recurrence ratio h, as

well as code to calculate successive terms using h and the last calculated
term; do this for each superposition of f ;

5. generate code to calculate, by summing in a loop, F , Jacobian(F ),
Hessian(F ); use previously computed relations on derivatives of f (from step
(2)), as well as re-using the recurrence for f ;

6. the above code uses local variables (in the generated code) to store the
Jacobian and Hessian, to enable common-sub-expression elimination (as it
cannot be done on Matrix/Vector entries).

7. generate “cleanup” code to assign locally stored Jacob(F ) and Hess(F ) to
arrays that are “returned”
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8. wrap F , Jacob(F ), Hess(F ) and recurrence code in a loop on t and apply
sub-expression elimination optimization

9. “paste” code together and transform to C code

This is about 500 lines (counting comments and blank lines) of very clear Maple
code. The core ideas fit in about 50 lines, with the rest needed to get around
various idiosyncracies, keep the code modular and clean, and simply further
automate the process.

Using model manipulation we have measured a 120-fold reduction in exe-
cution time for real valued exponential models when compared to a “vanilla”
implementation, and a 540-fold reduction for complex valued exponential mod-
els. Although we would not expect this to be the case for all applications, we
certainly expect significant gains for many applications.

4 Material Behaviour Modelling

Modelling the response of materials under loading is of critical importance to
scientists and engineers. To model the deformation and stress within a solid
body, we turn to the constitutive equation, which postulates a dependence of
the stress on the history of deformation. A wide range of varied and complex
constitutive equations are used in practise. Although the behaviour of these
models can vary greatly, the underlying mathematics is very similar. Using the
correct abstraction, a wide range of material behaviours form a family of material
models. Using model manipulation we can quickly generate code for a specific
member of this family.

4.1 The Mathematical Model Relating Stress and Deformation

The goal of material modelling is to find the stress (σ : R
6) as a function of time

(t : R). That is, to return the function σ(t) : {t : R|tbeg ≤ t ≤ tend} → R
6, where

tbeg and tend delimit the duration of the simulation. The stress can be found by
solving the constitutive equation, which in rate form is:

σ̇ = D
(

ε̇ − γ < φ(F (σ, κ)) >
∂Q(σ)

∂σ

)
and σ(tbeg) = σ0 (5)

where < φ(F ) >= φ(F ), if F > 0, and 0 otherwise. This equation is based on
the viscoplastic constitutive equation presented by Perzyna [19], which depends
on the elastic constitutive matrix (D : R

6×6), the fluidity parameter (γ : R),
the function φ (φ : R → R), the yield function (F (σ, κ) : R

6 × R → R), the
plastic potential function (Q(σ) : R

6 → R), the stress tensor (σ : R
6), the strain

rate tensor (ε̇ : R
6) and the hardening parameter (κ : R

6 → R), which measures
the accumulated strain. In Eq. 5, the condition F = 0 defines a surface in 6
dimensional stress space, which can be visualized as in Fig. 4. Inside the surface
(F < 0) the material response will be purely elastic, and outside the response is
viscoplastic. When the material has yielded, which occurs when the stress path
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F = 0

∂Q

∂σ

Q = 0

Fig. 4. Yield Function, Hardening and the Plastic Potential in Stress Space

reaches the yield surface, this surface may change shape, as shown in Fig. 4 by
the dashed line. Details on material behaviour modelling can be found in [16].

The above constitutive equation, together with the equilibrium equation, are
the Expression of the Model. The model is very similar between different prob-
lems. The only variabilities, which need to be set for a specific material before
solving a given problem, are the following: F , Q, φ, κ, γ and the property vector,
where the property vector consists of the material properties. These variabilities
can be explicitly specified in a DSL that describes (declaratively) a particular
material model from the family.

4.2 Transformed Model (Finite Element Algorithm)

The second step in the model manipulation process is Transforming the Model.
In this example, the common parts of the model are transformed into their
finite element (FE) method [27] equivalents. This step leaves the variabilities as
unspecified; therefore, the algorithm will remain generic and thus be applicable
to any material in the family. At the moment, there is no clear algorithm to
automatically transform Eq. 5 to an FE equivalent. Currently the transformation
seems to require human insight and expert knowledge of the available family of
algorithms. However, by keeping the algorithm generic, multiple instances that
apply to a variety of materials can quickly be generated.

The FE algorithm selected is a fully implicit time-stepping algorithm that
includes a correction back to the yield surface when this is required. The algo-
rithm involves vector and matrix operations and the calculation of the gradients
of F and Q with respect to σ [3]. The FE equation to solve for the displacement
degrees of freedom (a) is as follows:

Ka = F (6)

where K is known as the stiffness matrix and F as the load vector. Neither of
these quantities depends on a, which makes this a linear system of equations.
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For the first iteration of the algorithm, the values of K and F are as follows:

K =
∫

V

BT DvpBdV ;F = Ri −
∫

V

BT σidV +
∫

V

BT ΔσvpdV (7)

with

Dvp = D

[
I − ΔtC1λ

′ ∂Q

∂σ

(
∂F

∂σ

)T

D

]
, λ′ =

dλ

dF
(8)

Δσvp = ΔtC1λD
∂Q

∂σ
(9)

C1 = [1 + λ′Δt(He + Hp)]−1 (10)

He =
(

∂F

∂σ

)T

D(
∂Q

∂σ
) (11)

Hp = −∂F

∂κ

(
∂κ

∂εvp

)T
∂Q

∂σ
(12)

where I is the identity matrix.
For subsequent passes within an equilibrium iteration loop, the FE equations,

which provide a correction Δai for ai, simplify to

K =
∫

V

BT DBdV ;F = Ri −
∫

V

BT σidV (13)

The equilibrium iteration loops ceases when the convergence criteria satisfies a
given tolerance (toler) as follows:

||Δa||
||a|| ≤ toler (14)

where ||a|| represents the Euclidean norm of the vector a. After solving for the
displacements for a given time step the local stresses and strains are updated
using a return map algorithm [26], which is described in [17].

4.3 Extracting Structure and Code Generation

After Extracting the Structure, which consists of the terms involving F , Q etc.,
from the Transformed Model, the next step is Generating Code using a DSL
specification to replace the generic parts with material specific code. A program
called MatGen [17] was developed to do this. MatGen needs to calculate the
required derivatives and output source code for terms such as He (Eq. 11). Like
the other examples in this paper, Maple was used to do this. Maple performs the
necessary symbolic computations and is then used to convert from mathematical
expressions into C expressions using the “CodeGeneration” package. These C
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expressions are inlined into a C++ class defining the material model. This class
can then be used by an FE analysis program.

Note that the step Optimize the Computation was not emphasized in this
example. Instead the goal was to automatically generate code for new constitu-
tive equations in a manner that is simpler, less time consuming and less error
prone than using hand calculations. We can illustrate that we reached this goal
by considering the calculation of the example term, He. Comparing the sym-
bolic output from Maple to a hand derived versions of He for a viscoelastic fluid
shows the same result that He = 3G, where G is the shear modulus [17]. How-
ever, the hand derivation was complicated, took a nontrivial amount of time,
and required expert knowledge. In particular, the hand derivation took 5 pages
of equations and explanation [17, pages 77–81]. The derivation used the chain
rule of calculus, several stress invariants, the Einstein index notation, vector cal-
culus, and knowledge from continuum mechanics, such as the fact that the trace
of the deviatoric stress tensor is zero. The MatGen version, on the other hand,
only required using the DSL to specify the model for a viscous fluid, as follows:
F = Q = q; φ = F ; κ = 0; γ = 1/2η, where q is the effective stress, which is
provided by a macro in MatGen, and η is the material property of viscosity. The
calculation of other terms in the FE algorithm are at least as complex, time con-
suming and error prone, as the calculation of He. In these other cases MatGen
was just as simple and effective, although Maple was unable to simplify these
other expressions to be identical to the hand derived versions. In these cases
though the expressions were found to be equivalent by verifying their numerical
agreement.

Although the Optimize the Computation step was not emphasized for the cur-
rent example, the possibility certainly exists that the FE algorithm can be mined
for structure in a manner similar to what was done for the previous two exam-
ples. Although the code generated by Maple is not currently efficient, an expert
could potentially further Extract Structure to improve the efficiency. This possi-
bility illustrates the current need for human insight in the model manipulation
process. Additional human creativity and ingenuity at the initial stages of the
model manipulation process can facilitate the subsequent automated steps and
result in much more efficient code. Further investigation of material behaviour
modelling is left as future work.

5 Related Work

The many people working on Problem Solving Languages [25] and Problem Solv-
ing Environments [10,12,14,18,20,21,23] (to cite just a few) implicitly believe in
our thesis. By and large, they are however working at creating environments for
solving particular problems. For each problem class, the solving methodology
is well-enough understood that most of the process can be encapsulated in one
piece of software.

Take one of the most impressive examples: SPIRAL [21]. They are essen-
tially following the same approach that we are, but they have concentrated on
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documenting different aspects of their work. We have concentrated on pulling out
the process, and making sure that we automate all that we can. In the domain of
signal processing, they have achieved a high level of automation by doing exactly
as we preach: automating the “rest” of the process, and then concentrating on
the part where new mathematical insight makes a real difference. We believe
that this can be done in general by using “mathematics” as the DSL.

Another approach is code extraction from constructive proofs, most notably
from Coq proofs [15]. This is an extremely exciting prospect, but is too far on the
leading edge of current research to be properly evaluated at this time. Certainly
there are issues [5] where the style of one’s proof has dramatic effects on the
quality of the extracted software! Of course, there is also the issue that many
parts of advanced mathematics (like holonomy) are not yet implemented in Coq,
but have quite mature implementations in CASes.

6 Conclusion

We have demonstrated that the model manipulation development methodology
for generation of (numeric) solution to scientific computation problems has sev-
eral advantages.

1. The conventional approach, for example where the various gradients are
worked out by hand in advance of implementation, is difficult and error
prone. Replacing this step by symbolic processing reduces the workload,
allows non-experts to deal with new problems, and increases reliability.

2. Although the generated code is for a particular numerical algorithm, given
the existing framework, it is straightforward to generate new programs that
meet the needs of other algorithms.

3. Any additional information available at the symbolic processing stage can
be used to improve performance. For instance, if there is a known differential
or recurrence relation in the model, this can be used for optimizing the code.

4. In certain situations, the performance gains from taking advantage of the
problem structure can be impressive.

We have chosen to be pragmatic and reuse a well-known existing tool: Maple.
We are well aware that this is a far from optimal choice. A better approach
would require the use of a semantically richer tool (as provided by many theorem
proving environments); but none of these tools have existing libraries as rich as
Maple’s. Certainly none of them, to our knowledge, contain tools for dealing
with holonomic functions. We look forward to the day where semantically richer
environments are as computationally capable as today’s CASes.

We believe that we are discovering a new development methodology for high-
level scientific applications that leverages DSLs, model transformations and pro-
gram transformation to yield a process that is friendlier to the domain expert,
provides insights into the original problem, and produces faster and more reli-
able code. We believe that tool developers who keep this process firmly in mind
when they design new tools (or improve old ones) can produce environments
which will improve the productivity of scientific software developers.
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