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Abstract. We describe a method for managing large expressions in sym-
bolic computations which combines a hierarchical representation with
signature calculations. As a case study, the problem of factoring matri-
ces with non-polynomial entries is studied. Gaussian Elimination is used.
Results on the complexity of the approach together with benchmark cal-
culations are given.
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1 Introduction

One of the attractions of Maple is that it allows users to tackle large problems.
However, when users undertake large-scale calculations, they often find that
expression swell can limit the size of the problems they can solve [31]. Typically,
users might meet two types of expression swell: one type we can call inherent
expression swell, and the other intermediate expression swell.

A number of strategies have been proposed for coping with the large expres-
sions generated during symbolic computation. We list a number of them here,
but lack of space precludes an extensive discussion.

– Avoid the calculation. This strategy delays computation of a quantity whose
symbolic expression is large until numerical data is given. For example, if
the determinant of a matrix is needed in a computation, one uses an inert
function until the point at which the elements of the matrix can be evaluated
numerically, and then jumps to a numerical evaluation.

– Use signatures. See, for example, [5]. Signatures are one of the ideas used in
this paper.



– Use black-box calculations. This is a strength of the Linbox project [7].
– Approximate representations. This is the growing area of symbolic-numeric

computation.
– Use hierarchical representations. These are studied in this paper, and the

term will be abbreviated to HR.

Each of the above methods is successful for a different class of problems. This
paper addresses a class of problems in which large expressions are built up from
identifiable sub-expressions, and which as a result are suitable applications for
hierarchical representations (HR). Hierarchical representations per se are not
new in computer algebra. Similar ideas have appeared in the literature under a
variety of names. Examples are as follows:

– Maple DAGs. Expressions in Maple are represented as DAGs with sub-
expressions being reused and hence stored only once. For example, [13] uses
this data structure to compute the determinant of polynomial matrices.

– Straight-line programs. The Dagwood [9] system computes with straight-
line programs.

– Common subexpression identification. The Maple command codegen[opti-
mize] searches a large expression for common subexpressions. (Also available
as an option to commands in CodeGeneration) [16]

– Computation sequences and Maple’s CompSeq. An early example is given
by Zippel in 1993 [11]. The function CompSeq in Maple is a placeholder for
representing a computation sequence.

– Large Expression Management (LEM). This term was introduced in [10],
and is the name of a Maple package.

The goal of this work is the combination of HR with signatures. We do this by
modifying the LargeExpressions package in Maple and then applying it to a
case study. The case study comes from Dynaflex [8], a system which computes
the equations of motion for a mechanical device created from rigid or flexible
bodies. It uses Maple for its computations and requires the factoring of matri-
ces whose elements are multivariate polynomials or non-polynomial functions. In
this paper, therefore, we consider the factoring of matrices with elements that are
multivariate polynomials and exponential polynomials. We could have consid-
ered any application where the algorithm at hand only requires zero-recognition
on the elements (as well as basic “arithmetic” operations); if obtaining other in-
formation, like degree or structural “shape” is absoluately necessary, this would
need new ideas on top of the ones we present here.

2 Hierarchical representation

The first point to establish is the need for a modified HR implementation. We
begin by giving our definition of HR for this paper, with the purpose of dis-
tinguishing our implementation from similar definitions, such as straight-line
programs.



Definition 1 An exponential polynomial p over a domain K and a set of inde-
pendent variables {x1, ..., xm} is a polynomial p ∈ K[x1, ..., xm, y1, ..., ym] with
yk = exk , k = 1..m.

Definition 2 A hierarchical representation (HR) over a domain K and a set
of independent variables {x1, ..., xm} is an ordered list [S1, S2, ..., Sl] of symbols,
together with an associated list [D1, D2, ..., Dl] of definitions of the symbols. For
each Si with i ≥ 1, there is a definition Di of the form Si = f(σ1, σ2, ..., σk)
where f ∈ K[σ1, ..., σk], and each σj is either a symbol in [S1, S2, ..., Si−1] or an
exponential polynomial in the independent variables.

Hierarchical representation is a more general idea than the (algebraic) straight-
line program defined in [14] and used in [12, 9, 23, 27]. A given expression can
have different HR, i.e. different lists of definitions [D1, D2, ...]. The strategy used
to assign the symbols during the generation of expressions will be something that
can be varied by the implementation. The reason for enquiring an ordered list is
to exclude implicit definitions. Details on how to build HR are in the section 4.

Remark 1 An important part of the creation of HRs is the order in which
assignments happen. For instance to use codegen[optimize], an expression
is completely generated first. Clearly, some expressions will be too large to be
generated explicitly, in which case codegen[optimize] would have nothing to
work with.

Remark 2 There are many types of computational procedures which naturally
generate HR. One example is Gaussian elimination, which we study here. An-
other is the calculation described in [10]. Other computations that are known to
generate large expressions, for example Gröbner basis calculations, do not have
a obvious hierarchy, although [13] hints at one.

Remark 3 One can understand HRs as a compromise between full computa-
tions and no computations. Enough of the computation is performed to give a
correct result, but not so much that a closed-form can be output. It is a compro-
mise between immediately returning a placeholder and never returning a giant
result.

The key issue is control over expression simplification; this includes the iden-
tification of a zero expression. In an ordinary computer algebra system, the usual
way this proceeds is by normalizing expressions, a step which frequently destroys
the HR and causes the appearance of additional expression swell. For example,
most systems will normalize1 the expression

(2781 + 8565x− 4704x2)23(1407 + 1300x− 1067x2)19 − α
(1809 + 9051x + 9312x2)19(2163− 2162x + 539x2)19 ∗ (27 + 96x)4(103− 49x)4

1 normalization is often confused with simplification, but [29] argues otherwise.



by expanding it. The same strategy would be used by the system whether α = +1
or α = −1. However, in one case the result is zero, while in the other it is just a
large expression, which now fills memory.

Consequently, the main purpose of creating user-controlled HR is to control
normalization and to integrate more different (often more efficient) zero-testing
strategies into a computation in a convenient way. As well as creating a HR, one
must give equal importance to the prevention of its destruction.

The original LargeExpressions package in Maple was created as a result
of the investigations in [10]. The authors had external mathematical reasons for
knowing that their expressions were nonzero, and hence no provision was made
for more efficient testing. In the current implementation, we intend to apply the
resulting code more widely, with the consequent need to test efficiently for zero.
This we do by incorporating signature testing.

The basic action is the creation of a label for a sub-expression. The command
for this was given the name Veil in the original LargeExpressions package,
and so this will be used as the general verb here. Once an expression has been
veiled, the system treats it as an inert object unless the user or the program
issues an unveiling command, which reveals the expression associated with the
label.

3 Signatures

The idea of using signatures is similar to the probabilistic identity testing of
Zippel-Schwartz theorems [2, 1], and to the basis of testeq in Maple by Gonnet
[3, 4], also studied in [5, 6]. The original polynomial results of Zippel-Schwartz
were extended to other functions in [3, 4, 15].

Since we need to apply our method to matrices containing exponential poly-
nomials, we first define a signature function that is appropriate for this class of
functions.

Definition 3 Given an expression e, an exponential polynomial, the signature
s(e) with characteristic prime p is defined in the following steps.

– If e is a variable, then its signature equals a random value of Z/pZ.
– If e = e1 + e2 then s(e) = s(e1) + s(e2) mod p.
– If e = e1 ∗ e2 then s(e) = s(e1) ∗ s(e2) mod p.
– If e = en

1 , where n is a positive integer, then s(e) = s(e1)n mod p.
– If e = ax is an exponential function ax, where a could be the base of natural

logarithms or any (non-zero) number less than p, then s(e) = rt mod p,
where r is a primitive root of p, and t = x mod φ(p). Here φ(p) is Euler’s
totient function.

Note that unlike [3], we explicitly do not treat towers of exponentials, but
only simple exponentials, which is frequently sufficient in applications.

Proposition 1 For all non-zero y ∈ Z/pZ, there exists a unique x ∈ Z/φ(p)Z,
s.t. s(ax) = y.



Proof: By the definition of a signature s(ax), r = s(a) is a primitive root modulo
p. By the definition of a primitive root of a prime [26], the multiplicative order
of r modulo p is equal to φ(p) = p− 1. So the powers ri, i = 1..p− 1 range over
all elements of Z/pZ− {0}. �

For the following theorems, we suppose that all random choices are made
under the uniform probability distribution.

Theorem 1 (Zippel-Schwartz theorem) Given F ∈ Z[x1, ..., xn], F mod p 6= 0,
and deg(F ) ≤ d, the probability Pr{s(F ) = 0|F 6= 0} ≤ d

p .

A proof can be found in [2, 1].

Theorem 2 Let F ∈ Z[y], y = ax, where a could be the base of the natural
logarithms or any (non-zero) number less than p, F mod p 6= 0,deg(F ) = d,
the probability Pr{s(F ) = 0|F 6= 0} ≤ d

p−1 .

Proof: The polynomial F ∈ Z[y] has at most d roots in Z/pZ. For z ∈ Z/pZ
such that F (z) = 0, Proposition 1 gives that there exists unique uz ∈ Z/φ(p)Z,
s.t. s(auz ) = z. Thus the number of values x such that s(F (ax)) = 0 is at most
d. Because the total number of choices for nonzero y is p − 1, the probability
Pr{s(F ) = 0|F 6= 0} ≤ d

p−1 . �

Theorem 3 Let F ∈ Z[x, y], y = ax, where a could be the base of natural loga-
rithms or any non-zero integer less than p, F mod p 6= 0, and deg(F ) = d, the
probability Pr{s(F ) = 0|F 6= 0} ≤ d

p−1 .

Proof: The polynomial F ∈ Z[x, y] has at most dp roots in Z/pZ. For (xi, yi)
such that F (xi, yi) = 0, based on Proposition 1, there exists unique xu, s.t.
s(axu) = yi. If xu = xi, then the solution (xi, yi) is the one to make s(F (xi, a

xi)) =
0. Therefore the number of roots for x, such that s(F (x, ax)) = 0 is at most dp.

As the total number of (indpendent) choices for (x, y) is p(p− 1), the prob-
ability Pr{s(F ) = 0|F 6= 0} ≤ d.p

p(p−1) = d
p−1 . �

Signatures can be used to test if an expression is zero, as testeq does. How-
ever, testeq always starts fresh for each new zero-test. This is a source of ineffi-
ciency when the signature is part of a continuing computation, and will be seen
in later benchmarks which use testeq.

The signature of the expression is computed before veiling an expression in
HR. This value then becomes the signature of the veiling symbol. When that
symbol itself appears in an expression to be veiled, the signature of the symbol
is used in the calculation of the new signature. In particular, it is not necessary
to unveil any symbol in order to compute its signature.

Other important references on this topic are [22, 21, 24]. Applications of this
basic test is the determination of singularity and rank of a matrix [25] shows
two applications of this basic technique: determining whether a matrix (of poly-
nomials) is singular, and determining the rank of a polynomial matrix.



4 An Implementation of HR with signatures

The simplest method for tracking HRs is to maintain an association list between
an expression and its (new) label. This is easily implemented via (hash) tables;
one table associates a “current” number to a symbol (used as an indexed name
to generate fresh labels), and another table which associates to each indexed
name to the underlying (unveiled) expression. The indexed names play the role
of the ordered list of symbols in definition 2. The main routine is Veil[K](A).
Here K is the symbol and A is the expression to be veiled. This routine stores
the expression A in the slot associated to K[c] where c is the “current” number,
increments c and returns the new symbol. For interactive use, a wrapper function
subsVeil can be used.
> subsVeil:=(e,A)->algsubs(e=Veil[op(procname)](e),A);
> A:= (x+y)^{10} + e^{x+y} + (x^2+1)^5 - 1:
> B:= subsVeil[K](x^2+1,A):
> C:= subsVeil[K](x+y, B);

k10
2 + ek2 + k5

1 − 1

Notice that there is no longer a danger of expanding the expression (x2 +1)5−1
in a misguided attempt to simplify it. In order to retrieve the original expression,
one uses Unveil.
> Unveil[K](C) ;

(x + y)10 + ex+y + (x2 + 1)5 − 1

At present, the expressions corresponding to K are stored in the memory space
of the implementation module2. After a computation is completed and the in-
termediate results are no longer needed. The memory occupied by K can be
cleared using the command forgetVeil(K).

The signature must be remembered between calls to Veil, as commented
above. The signature could be attached more directly to K, or kept in a separate
array specified by the user. The above implementation seemed to provide the
best information hiding. Until we see, with more experience of case studies, which
method is best, we have for the present implementation used the Maple facility
option remember internally for handling some of the tables, for convenience
and efficiency. Thus after a call to the routine SIG, the signature of any veiled
expression is stored in an internal remember table and not re-computed.

The use of Veil to generate HRs together with the calculation of signatures
will be called Large Expression Management (LEM). In fact it is just expression
management, because the Veil tool can be used even on expressions which are
not large, for the convenience they give to understanding algebraic structure.

2 In other words, it is a stateful module, à la Parnas, which is also rather like a
singleton class in OO.



5 LU Factoring with LEM

A well-known method for solving matrix equations is LU factoring, in which a
matrix A is factored such that PA = LU , where L and U are triangular matrices
and P is a permutation matrix; see [18] for further details. The Maple com-
mand LUDecomposition uses large amounts of memory and is very slow for even
moderately sized matrices of polynomials. The large expression trees generated
internally are part of the reason for this slowdown, but equally significant is the
time taken to check for zero. For example,
> M :=Matrix(10,10,symbol=m);
> LinearAlgebra[LUDecomposition](M);

This LU factoring will not terminate. If the environment variable Normalizer
is changed from its default of normal to the identity function, i.e. Normalizer:=
x− > x, then the LU factoring can complete. This is why Large Expression
Management requires both HR and signatures for its zero-test.

We modified the standard code for LU decomposition to include veiling and
signature calculations. At the same time, we generalized the options for selecting
pivots and added an option to specify a veiling strategy. One can see [30] for even
more design points, and a general design strategy, for this class of algorithms.

Our LU factoring algorithm in high-level pseudo-code:

Get maximum_column, maximum_row for matrix A
For current_column from 1 to maximum_column
for current_row from current_column to maximum_row
Check element for zero.
Test element for being ‘‘best’’ pivot
Veil pivot [invoke Veiling strategy]
move pivot to diagonal, recording interchanges.
row-reduce matrix A with veiling strategy
store multipliers in L

end do:
end do:

return permutation_matrix, L, reduced matrix A

The function has been programmed with the following calling sequence.

LULEM(A, K, p, Pivoting, Veiling, Zerotesting)
Parameters

A - square matrix
K - unassigned name to use as a label
p - prime
Pivoting - decide a pivot for a column
Veiling - decide to veil an expression or not
Zerotesting - decide if the expression is zero.



5.1 Pivoting Strategy

The current Maple LUDecomposition function selects one of two pivoting strate-
gies on behalf of the user, based on data type. Thus, at present, we have
> LUDecomposition(<<12345,1>|<1,1>>);[

1 0
0 1

]
,

[
1 0

1/12345 1

]
,

[
12345 1

0 12344/12345

]
even though [

0 1
1 0

]
,

[
1 0

12345 1

]
,

[
1 1
0 −12344

]
is more attractive. If the matrix contains floating-point entries, partial pivoting
is used.
> LUDecomposition(<<1,12345.>|<1,1>>);[

0 1
1 0

]
,

[
1. 0.

(8.1)10−5 1.

]
,

[
12345. 1

0 0.99992

]
Since we wished to experiment with different pivoting strategies, we made

it an option. Rather than make up names, such as ‘partial pivoting’ or ‘non-
zero pivoting’, to describe strategies, we allow the user to supply a function
which takes 2 arguments. The function returns true if the second argument
is a preferred pivot to the first argument. For example, the preferred pivoting
strategy for the example above (choose the smallest pivot) can be specified by the
function (p1,p2)->evalb(abs(p2)<abs(p1)). In a symbolic and veiling context
there are a number of conceivable strategies which one might wish to try. These
can be based on operation count, size of expression or number of indeterminants.
However, the definition of LU factors only allows pivoting on one column, so no
form of full pivoting is offered.

5.2 Veiling Strategy

In the same spirit of experimentation, we have used a function to specify a veiling
strategy. This function takes one argument and returns true if the expression
should be veiled. The current LargeExpressions package, for example, follows
a strategy of ignoring integers. Thus an integer, however large, cannot be veiled
at present. Similarly, integer content is extracted from expressions before veiling.
Rather than make these decisions in advance, we leave them to the declaration
of a veiling-strategy function.

Of particular interest is the ‘granularity’ of the HR, namely whether one
veils every pairwise operation, or whether one waits until an expression of a
pre-determined size is allowed to accumulate. In the former case, the HR would
look similar to a straight-line program as defined in [14]. For our experiments, we
have based our strategies on the Maple length command, as being a convenient
measure of expression complexity.



5.3 Zero Test Strategy

We need to do zero tests to find pivots. This can also help us simplify our
expressions, if needed. During the LU factoring, we use signatures to perform
this test quickly (more precisely, in random polynomial time). It is important to
note that for LU factoring, we only need to find a provably non-zero pivot, so
that a false positive (an entry which seems to be zero but in fact is not) rarely
leads to a problem. And, in that case, we can always resort to a full zero-test.

We use the signatures computed along with the hierarchical representations
to do the zero test for the expressions in HR. But a user could choose any Maple
commands, like Normalizer, testeq, simplify or evalb, to do the zero test.
Which one is best depends on the application at hand.

6 Time complexity analysis for LU with veiling and
signatures

Since our case study compares current LU factoring and LU factoring with ex-
pression management, it is important to have some measure of the time com-
plexity of each procedure. We therefore start with the time complexity of con-
ventional Gaussian elimination (see [19, 20, 17] for early work). Although some
cases of the following theorems are “well known”, there seem to be no convenient
published statement of them.

Here we consider the time complexity measure is the number of bit oper-
ations, which can be rigorously defined as the number of steps of a Turing or
register machine or the number of gates of a Boolean circuit implementing the
algorithm. [28] Throughout, we make the simplifying assumption that entries
grow linearly, in both degree and in coefficient size. This is actually optimistic,
as growth is usually worse than this.

Theorem 4 For a matrix A = [ai,j ]n×n, where n is the size of A, and ai,j ∈
Z[x1, . . . , xm], the time complexity of LU factoring for A is at least Ω(n2m+5)
for naive arithmetic.

Proof: Let deg(ai,j , xi) < di,i = 1..m, and the length of coefficient is at most
l. Suppose the sizes of entries are growing, linearly, i.e. d1k = k.d1, d2k =
k.d2, ..., dmk = k.dm, lk = k.l. When we do LU factoring, at each step k, we
have (n− k)2 entries to manipulate. For each new entry from step k− 1 to step
k, we need to do at least one multiplication, one substraction and one division.
The cost will be at least Ω((d1k...dmk.lk)2) for naive arithmetic.

The total cost for the LU factoring will be at least
∑n−1

k=1(n−k)2×Ω((k.d1×
k.d2 × ...× k.dm × k.l)2) = Ω(d2

1d
2
2...d

2
ml2n2m+5) (for naive arithmetic). �

Corollary 1 For a univariate matrix A = [ai,j ]n×n, where ai,j ∈ Z[x], the
time complexity of LU factoring is at least Ω(n7) for naive arithmetic. It is
Ω(n5 log n log log n) for using FFT multiplication.



Proof: Let deg(ai,j(x)) < d, the length of coefficient is at most l. For naive
arithmetic, this is just the m = 1 case of the previous theorem. For the FFT
bound, we only need duplicate the above proof (for m = 1 again) but use
c = Ω((k.d.k.l) log(k.d.k.l) log log(k.d.k.l)) for the arithmetic cost (based on
Schönhage & Strassen (1971), or Schönhage (1977) or Cantor & Kaltofen (1991)
[28]). For FFT, the total cost for the LU factoring will be at least

∑n−1
k=1(n −

k)2 × c, which is Ω(n5 log n log log n). �
With respect to the time complexity for LU factoring with veiling and signa-

tures, we separate the time complexity analysis for LU factoring into two parts.
Lemma 1 shows the time complexity for LU with veiling but without signature.
Lemma 2 gives the time complexity for LU with signatures. The total cost will
be the complexity for LU with veiling and signatures in Theorem 5.

This first lemma is valid for the following veiling strategy: we veil any ex-
pression whose coefficient length is larger than c1, or whose degree in xi is larger
than c2, where c1, c2 are positive constants. The cost for veiling an expression is
Ω(1). Then the length of each coefficient will be less than c = c1 ∗ cm

2 and the
degree in xi will be less than c2.

Lemma 1 For matrix A = [ai,j ]n×n, where n is the size of matrix A. The time
complexity of LU factoring with large expression management (and the above
veiling strategy) is O(n3).

Proof: Let ai,j ∈ Z[x1, ..., xm], deg(ai,j , xk) < dk, k = 1..m, and the length
of coefficient is at most l. At each step there are at most two multiplications,
one division and one substraction. The cost of each step will be less than 4 ×
O((c1.c

m
2 )2) + O(1) for naive arithmetic. For each step k, one must perform

arithmetic on (n−k)2 elements, for a total cost of
∑n−1

k=0(n−k)2×O((c1.c
m
2 )2) =

O(n3) �
To prevent the cost from growing exponentially with the number of variables,

the above computation clearly shows that it is best to choose c2 = 1.

Lemma 2 For matrix A = [ai,j ]n×n, where n is the size of matrix A, and
ai,j ∈ Z[x1, ..., xm]. The time complexity for computing signatures along the LU
factoring will be O((log p)2n3).

Proof: Let deg(ai,j , xk) < dk, k = 1..m, the length of coefficient is at most l, T
be the maximum number of operations needed to evaluate ai,j , i = 1..n, j = 1..n,
for the original Matrix A. After this initial evaluation of all the entries of A, we
only need at most four operations in Z/pZ for computing the other entries’
signatures at step k. These operations can all be done in O((log p)2) for naive
arithmetic.

We will compute all the signatures for the entries at each step, to greatly
simplify zero-testing. So the total cost for computing signatures all along the
LU factoring is (n2 × T +

∑n−1
k=1(n− k)2 × 4)×O((log p)2) = (n3 + (T − 3

2 )n2 +
O(n))×O((log p)2) = O((log p)2n3) �



Theorem 5 For matrix A = [ai,j ]n×n, where n is the size of matrix A, and
ai,j ∈ Z[x1, ..., xm]. The time complexity of LU factoring with veiling and signa-
tures is O(n3(log p)2).

Proof: Immediate from the above two lemmas. �
From Theorem 4 and Theorem 5, we can see the more the variables and

the bigger the size of the matrix, the bigger the difference between the algo-
rithms which are with and without veiling and signatures. These results agree
completely with our empirical results.

7 Empirical results

We present some timing results. For the benchmarks described below, we use
strategies based on Maple’s length command. As these strategies are heuristics,
any reasonable measure of the complexity of an entry is sufficient. The pivoting
strategy searches for the element with the largest length. The veiling strategy
depends on the type of matrix. For integer matrices, we veil all integers whose
length is greater than 1000, while for polynomial matrices, the treshold is length
30. These constants reflect the underlying constants involved in the arithmetic
for such objects.

For all benchmarks, three variations are compared: our own LU factoring al-
gorithm with veiling and signatures, Maple’s default LinearAlgebra:-LUDeco-
mposition, and a version of LinearAlgebra:-LUDecomposition where Normal-
izer has been set to be the identity function and Testzero has been set to a ver-
sion of testeq. We first had to “patch” Maple’s implementation of LUDecompos-
ition to use Testzero instead of an explicit call to Normalizer(foo) <> 0, and
then had to further “patch” testeq to avoid a silly coding mistake that made
the code extremely inefficient for large expressions3. All tests were first run with
a time limit of 300 seconds. Then the first test that timed out at 300 seconds was
re-run with a time limit of 1000 seconds, to see if that was sufficient for com-
pletion. Further tests in that column were attempted. Furthermore, the sizes
of matrices used varies according to the results, to try and focus attention to
the sizes where we could gather some meaningful results in (parts of) the three
columns. All results are obtained using the TTY version of Maple10, running
on an 1.8Ghz Intel P4 with 512Megs of memory running Windows XP SP2, and
with garbage collection “frequency” set to 20 million bytes used, all results are
for dense matrices. In each table, we report the times in seconds, and for the
LEM column, the number in parentheses indicates how many4 distinct labels
(ie total number of veiled expressions) were needed by the computation, as an
indication of memory requirements.

The reason for including the MapleFix column is to really separate out the
effect of arithmetic and signature-based zero-testing from the effects of Large
3 Both of these deficiencies were reported to Maplesoft and will hopefully be fixed

in later versions of Maple
4 and we use a postfix K or M to mean 103 and 106 as appropriate



Size 10 20 30 40 50 60 70 80 90 100 110

LEM .03 .2 .8 2.3 6.1 12.5 17.8 27.6 42.4 56.4 75.4
(0) (0) (0) (0) (148) (902) (2788) (5948) (12779) (22396) (36739)

Maplefix .07 .2 .7 2.2 5.2 10.7 19.4 33.8 54.0 83.8 124.7
Maple .04 .2 .7 2.2 5.2 10.5 19.2 32.6 52.8 85.8 123

Table 1. Timings for LU factoring of random integer matrices generated by
RandomMatrix(n,n,generator=−1012..1012). The entries are explained in the text.

Size 5 10 15 20 25 30 35 40 45 50

LEM .12 .06 .18 .44 .87 1.9 3.0 4.5 7.8 9.1
(26) (237) (872) (2182) (4417) (7827) (12K) (19K) (28K) (39K)

MapleFix .06 .07 .16 .30 .56 1.87 332 >1000 – –
Maple .53 1.5 9.3 39.2 110.4 269.8 431 845 >1000 –

Table 2. Timings for LU factoring of random matrices with univariate entries of de-
gree 5, generated by RandomMatrix(n,n,generator=(() -> randpoly(x))). The en-
tries are explained in the text.

Size 5 10 15 20 25 30 35 40 45 50

LEM .05 .09 .23 .49 .99 1.7 2.8 4.2 6.0 8.8
(26) (237) (872) (2182) (4417) (7827) (12K) (19K) (28K) (39K)

MapleFix .06 .09 .20 .39 .75 3.2 949 >1000 – –
Maple 35.3 >1000 – – – – – – – –

Table 3. Timings for LU factoring of random matrices with trivariate entries, low
degree, 8 terms RandomMatrix(n,n,generator=(() -> randpoly([x,y,z], terms =

8))). The entries are explained in the text.

Size 5 10 15 20 25 30 35

LEM .047 .078 .20 .51 .88 1.7 2.95
(22) (218) (858) (2163) (4393) (7798) (12K)

MapleFix .03 .08 .14 .30 .58 3.8 >1000
Maple 1.56 >1000 – – – – –

Table 4. Timings for LU factoring of fully symbolic matrix: Matrix(n,n,symbol=m).
The entries are explained in the text.

Size 5 10 15 20 25 30 35

LEM .031 .094 .22 .50 .99 1.7 2.8
(26) (237) (872) (2182) (4417) (7827) (12K)

MapleFix xx xx xx xx xx xx xx
Maple 0.99 117 >1000 – – – –

Table 5. Timings for LU factoring of random matrix with entries over Z[x, 3x]:
RandomMatrix(n,n,generator=(()->eval(randpoly([x,y],terms=8),y=3x))). The
entries are explained in the text.



Expression Management; MapleFix measures the effect of not doing polynomial
arithmetic and using signatures for zero-recognition, and is thus expected to be
a middle ground between the other two extremes.

Table 1 shows the result for random matrices over the integers. Only for
fairly large matrices (between 90x90 and 100x100) does the cost of arithmetic,
due to coefficient growth, become so large that the overhead of veiling becomes
worthwhile, as the LEM column shows. Since integer arithmetic is automatic in
Maple, it is not surprising that the MapleFix column shows times that are the
same as the Maple column. Here the veiling strategy really matters: for integers
of length 500, veiling introduces so much overhead that for 110x110 matrices,
this overhead is still larger than pure arithmetic. For length 2000, no veiling at
all occurs.

Table 2 shows the result for random univariate matrices, where the initial
polynomials have degree 5 and small integer coefficients. The effect of LEM here
is immediately apparent. What is not shown is that MapleFix uses very little
memory (both allocated and “used”), while the Maple column involves a huge
amount of memory “used”, at all sizes, so that computation time was swamped
by garbage collection time. Another item to notice is that while the times in
the Maple column grow steadily, the ones in the MapleFix column are at first
consistent with the LEM column, and then experience a massive explosion. Very
careful profiling5 was necessary to unearth the reason for this, and it seems to be
somewhat subtle: for both LEM and MapleFix, very small DAGs are created, but
for LEM we have full control of these, while for MapleFix, the DAGs are small but
the underlying expression tree is enormous. All of Maple’s operations on matrix
elements first involve the element being normalized by the kernel (via the user-
inaccessible simpl function), and then evaluated. While normalization follows
the DAG, evaluation in a side-effecting language must folllow the expression
tree, and thus is extremely expensive. Along with the fact that no information
is kept between calls to testeq, causes the time to explode for MapleFix for
35x35 (and larger) matrices. Since the veiling strategy used for the last 4 tables
is the same, it is not very suprising that the number of veilings is essentially the
same. The reason that the all-symbolic is a little lower is because we start with
entries of degree 1 and coefficient size 1, and thus these entries do not get veiled
immediately. However, one can observe a clear cubic growth in the number of
veilings, as expected.

Table 3 shows the result for random trivariate matrices, where the initial
polynomials have 8 terms and small integer coefficients. The results here clearly
show the effect that multi-variate polynomial arithmetic has on the results. Table
4 shows the results for a matrix with all entries symbolic, further accentuating
the results in the trivariate case. Again, MapleFix takes moderate amounts of
memory (but a lot of CPU time at larger sizes), while Maple takes huge amounts,
causing a lot of swapping and trashing already for 10x10 matrices.

5 Here we used a combination of procedure-level profiling via CodeTools[Profiling]

and global profiling via kernelopts(profile=true)



Table 5 shows results for matrices with entries over Z[x, 3x]. Overall the be-
haviour is quite similar to bivariate polynomials, however the xx in the MapleFix
entry indicate a weakness in Maple’s testeq routine, where valid inputs (ac-
cording to the theory in [3]) return FAIL instead. Our signature implementation
can handle such an input domain without difficulty.

While we would have liked to present memory results as well, this was much
more problematic, as Mapledoes not really provide adequate facilities to achieve
this. One could look at bytes used, but this merely reflects the memory asked
of the system, the vast majority of which is garbage and immediately reclaimed.
This does measure the amount of overall memory churn, but does not give an
indication of final memory use nor of the true live set. bytes alloc on the other
hand measure the actual amount of system memory allocated. Unfortunately,
this number very quickly settles to something a little larger than gcfreq, in
other words the amount of memory required to trigger another round of garbage
collection, for all the tests reported here. This reflects the huge amount of mem-
ory used in these computations, but does not reflect the final amount of memory
necessary to store the end result. Neither can we rely on Maple’s length com-
mand to give an accurate representation of the memory needed for a result be-
cause, for some unfathomable reason, length returns the expression tree length
rather than the DAG length! Thus, for matrices whose results are un-normalized
polynomials, we have no easy way to measure their actual size. As a proxy, we
can find out the total number of variables introduced by the veiling process.
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