What I learned from formalizing Category Theory in Agda

Jacques Carette

McMaster University

Introduction

What I learned formalizing category ${ }^{1}$ in Agda:

- To be proficient with, and idiomatic in, Agda,
- Category theory,
- Lots about the design space.

Visit https://github.com/agda/agda-categories and submit PRs!
${ }^{1}$ but were rarely new

Design Decisions

Design Decisions:

- Use dependent types "a lot"; stick to standard Agda.

Design Decisions

Design Decisions:

■ Use dependent types "a lot"; stick to standard Agda.
$■ \approx$ of Hom carries evidence and \circ respects it.

Design Decisions

Design Decisions:

■ Use dependent types "a lot"; stick to standard Agda.
■ \approx of Hom carries evidence and \circ respects it.

- Obj \neq Hom \neq evidence of \approx.

Design Decisions

Design Decisions:

■ Use dependent types "a lot"; stick to standard Agda.
■ \approx of Hom carries evidence and \circ respects it.

- Obj \neq Hom \neq evidence of \approx.
- Obj has no equality.

Design Decisions

Design Decisions:

- Use dependent types "a lot"; stick to standard Agda.
$■ \approx$ of Hom carries evidence and \circ respects it.
- Obj \neq Hom \neq evidence of \approx.
- Obj has no equality.

■ Hom is not necessarily a set.
i.e. Setoid-enriched aka E-categories plus universes plus proof-relevance.

Design Decisions

Design Decisions:

- Use dependent types "a lot"; stick to standard Agda.
$■ \approx$ of Hom carries evidence and \circ respects it.
- Obj \neq Hom \neq evidence of \approx.
- Obj has no equality.

■ Hom is not necessarily a set.
i.e. Setoid-enriched aka E-categories plus universes plus proof-relevance.

Fewer assumptions lets you see more.

What that looks like in Agda

```
record Category (o l e : Level) : Set (suc (o \sqcup l \sqcup e)) where
    field
        Obj : Set o
        ____ : (A B : Obj) > Set l
        id : }\forall{A}->(A=>A
        _o_: }\forall{ABC}->B=>C->A=>B->A=>
    _~__ : }\forall{\textrm{A B}}->(\textrm{f}g:\textrm{A}=>\textrm{B})->\mathrm{ Set e
    equiv : }\forall{ABB} IsEquivalence (_\approx_ {A} {B}
    o-resp-\approx : f \approx h f g \approx i f f o g | h o i
```

 -- plus laws

op involutive?

Want $\left(\mathcal{C}^{o p}\right)^{o p} "=" \mathcal{C} .($ Technically: definitionally).
$o p$ as a function from the presentation of a category to another presentation.

op involutive?

Want $\left(\mathcal{C}^{o p}\right)^{o p} "=" \mathcal{C} .($ Technically: definitionally).
$o p$ as a function from the presentation of a category to another presentation.

```
assoc:(h\circg) ○ f * h o (g of)
sym-assoc : h ○ (g ○ f) \approx (h ○ g) ○ f
```


op involutive?

Want $\left(\mathcal{C}^{o p}\right)^{o p} "=" \mathcal{C} .($ Technically: definitionally).
$o p$ as a function from the presentation of a category to another presentation.

```
assoc:(h\circg) ○ f * h o (g of)
sym-assoc : h ○ (g ○ f) \approx (h ○ g) ○ f
```

Some concepts, e.g. Monad and NaturalTransformation, require similar additional laws.

Duals of Constant Functor?

Want a single dual to Functor $F: T \Rightarrow C$.
Problem: using either left or right identity law to prove that F preserves composition is "wrong".

Duals of Constant Functor?

Want a single dual to Functor $F: T \Rightarrow C$.
Problem: using either left or right identity law to prove that F preserves composition is "wrong".

```
identity }\mp@subsup{}{}{2}:\forall{A}->\mathrm{ id ○ id {A} }\approx id {A
```


Duals of Constant Functor?

Want a single dual to Functor $F: T \Rightarrow C$.
Problem: using either left or right identity law to prove that F preserves composition is "wrong".

```
identity}\mp@subsup{}{}{2}:\forall{A}->\mathrm{ id }\circ id {A} \approx id {A
```

Probably exists a much better reason for this, but I don't know it!

Category of categories exists!


```
Cats o l e = record
    { Obj = Category o l e
    ; _ =_ Functor
    ; _\approx_ = NaturalIsomorphism
    ; id = id
    ; _O_ = _oF_
    ; assoc = \lambda {_ _ _ _ F G H} -> associator F G H
    ; sym-assoc = \lambda {_ _ _ _ F G H} -> sym (associator F G H)
    ; identity' = unitor'
    ; identity }\mp@subsup{}{}{r}=\mp@subsup{u}{}{\prime
    ; identity}\mp@subsup{}{}{2}=\mp@subsup{unitor}{}{2
    ; equiv = isEquivalence
    ; o-resp-\approx = _(1)h_
```


Underlying graph, is that a categorical notion?

Consider the following two categories:

- Are equivalent

■ Have different underlying graphs

Underlying graph, is that a categorical notion?

Consider the following two categories:

-P

- Are equivalent

■ Have different underlying graphs

```
Underlying : Functor (StrictCats o ( e) (Quivers o ( e)
PathsOf : Functor (Quivers o l e) (StrictCats o (o ப l) (o ப l ப e))
Free-Underlying : Adjoint (PathsOf {o} {o \sqcup l} {o \sqcup l \sqcup e}) Underlying
```


Adjoint Functors: Hom iso?

- Consider adjoint functors:
record Adjoint \{C : Category o $[\mathrm{e}\}\left\{\mathrm{D}:\right.$ Category $\left.\mathrm{o}^{\prime} l^{\prime} \mathrm{e}^{\prime}\right\}$
(L : Functor C D) (R : Functor D C) : Set _ where

Adjoint Functors: Hom iso?

- Consider adjoint functors:
record Adjoint \{C : Category o $l \mathrm{e}\}\left\{\mathrm{D}:\right.$ Category $\left.o^{\prime} l^{\prime} \mathrm{e}^{\prime}\right\}$
(L : Functor C D) (R : Functor D C) : Set _ where
■ $L \dashv R$ iff $\operatorname{Hom}_{D}(L-,=) \simeq \operatorname{Hom}_{C}(-, R=)$.

Adjoint Functors: Hom iso?

- Consider adjoint functors:
record Adjoint \{C : Category o $l \mathrm{e}\}\left\{\mathrm{D}:\right.$ Category $\left.o^{\prime} l^{\prime} \mathrm{e}^{\prime}\right\}$
(L : Functor C D) (R : Functor D C) : Set _ where
- $L \dashv R$ iff $\operatorname{Hom}_{D}(L-,=) \simeq \operatorname{Hom}_{C}(-, R=)$.

■ Universe levels of C and D are unrelated \Rightarrow Hom functors cannot be directly related.

Adjoint Functors: Hom iso?

- Consider adjoint functors:
record Adjoint \{C : Category \circ $l e\}\left\{D: C a t e g o r y ~ o^{\prime} l^{\prime} e^{\prime}\right\}$
(L : Functor C D) (R : Functor D C) : Set _ where
■ $L \dashv R$ iff $\operatorname{Hom}_{D}(L-,=) \simeq \operatorname{Hom}(-, R=)$.
■ Universe levels of C and D are unrelated \Rightarrow Hom functors cannot be directly related.
- (Ugly) use lifting functors:

$$
L i f t \circ \operatorname{Hom}_{D}(L-,-) \simeq \operatorname{Lift} \circ \operatorname{Hom}_{C}(-, R-)
$$

Adjoint Functors: Hom iso?

- Consider adjoint functors:
record Adjoint $\{C$: Category \circ $l e\}\left\{D: C a t e g o r y ~ o^{\prime} l^{\prime} e^{\prime}\right\}$
(L : Functor C D) (R : Functor D C) : Set _ where
$\square L \dashv R$ iff $\operatorname{Hom}_{D}(L-,=) \simeq \operatorname{Hom}_{C}(-, R=)$.
■ Universe levels of C and D are unrelated \Rightarrow Hom functors cannot be directly related.
- (Ugly) use lifting functors:

$$
L i f t \circ \operatorname{Hom}_{D}(L-,-) \simeq \operatorname{Lift} \circ \operatorname{Hom}_{C}(-, R-)
$$

- This form of lifting arises in many definitions / statements involving Homs.

Unit-Counit Definition of Adjoint Functors

Definition

Functors $L: \mathcal{C} \Rightarrow \mathcal{D}$ and $R: \mathcal{D} \Rightarrow \mathcal{C}$ are adjoint, $L \dashv R$, if there exist two natural transformations, unit $\eta: 1_{\mathcal{C}} \Rightarrow R L$ and counit $\epsilon: L R \Rightarrow 1_{\mathcal{D}}$, so that the triangle identities hold:
$1 \epsilon L \circ L \eta D . \approx 1_{L}$ (zig)
$2 R \epsilon \circ \eta R C . \approx 1_{R}$ (zag)

Unit-Counit Definition of Adjoint Functors

Definition

Functors $L: \mathcal{C} \Rightarrow \mathcal{D}$ and $R: \mathcal{D} \Rightarrow \mathcal{C}$ are adjoint, $L \dashv R$, if there exist two natural transformations, unit $\eta: 1_{\mathcal{C}} \Rightarrow R L$ and counit $\epsilon: L R \Rightarrow 1_{\mathcal{D}}$, so that the triangle identities hold:
$1 \epsilon L \circ L \eta D . \approx 1_{L}$ (zig)
$2 R \epsilon \circ \eta R C . \approx 1_{R}$ (zag)

■ Advantage: does not (explicitly) involve any Hom-sets, or universe levels.

Unit-Counit Definition of Adjoint Functors

Definition

Functors $L: \mathcal{C} \Rightarrow \mathcal{D}$ and $R: \mathcal{D} \Rightarrow \mathcal{C}$ are adjoint, $L \dashv R$, if there exist two natural transformations, unit $\eta: 1_{\mathcal{C}} \Rightarrow R L$ and counit $\epsilon: L R \Rightarrow 1_{\mathcal{D}}$, so that the triangle identities hold:
$1 \epsilon L \circ L \eta D . \approx 1_{L}$ (zig)
$2 R \epsilon \circ \eta R C . \approx 1_{R}$ (zag)

■ Advantage: does not (explicitly) involve any Hom-sets, or universe levels.
■ Lesson: unlearn set-theoretic constructs when formalizing categories in type theory!

Fibration?

```
record Fibration {o l e o' l' e'} {C : Category o l e} {D : Category o' l' e'}
    (F : Functor C D) : Set _ where
    field
        universalo : (f : A D. }=>\mp@subsup{\textrm{F}}{0}{}\textrm{B})->\mathrm{ C.Obj
        universal 1 : (f : A D. }=>\mp@subsup{F}{0}{}B\mathrm{ B) }->\mp@subsup{\mathrm{ universal }}{0}{\prime}f C. => B
        iso : (f : A D. }=>\mp@subsup{F}{0}{\prime}B)->\mp@subsup{F}{0}{\prime}(universal (f) \cong A
```

 module iso \(\left\{\mathrm{AB}\right.\) B (f : \(\mathrm{AD} . \Rightarrow \mathrm{F}_{0} \mathrm{~B}\)) \(=\) _ \(_{\text {_ (iso }}\) f)
 field
 commute : (f : A D. \(\left.\Rightarrow \mathrm{F}_{0} \mathrm{~B}\right) \rightarrow\) f D.o iso.from f D. \(\approx \mathrm{F}_{1}\) (universal \({ }_{1}\) f)
 cartesian : (f : A D. \(\left.\Rightarrow \mathrm{F}_{0} \mathrm{~B}\right) \rightarrow\) Cartesian F (universal \({ }_{1} \mathrm{f}\))

Usability / Engineering lessons: Explicit duals

```
record IsEqualizer {E} (arr : E = A) (f g : A # B) : Set _ where
    field
        equality : f o arr \approx g o arr
equalize : }\forall{\textrm{h}:\textrm{X}=>\textrm{A}}->\textrm{f}\circ\textrm{h}\approx\textrm{g}\circ\textrm{h}->\textrm{X}=>\textrm{E
universal : }\forall\mathrm{ {eq : f ० h }\approx\textrm{g}\circ\textrm{h}}->\textrm{h}\approx arr ○ equalize eq
unique : }\forall{\mp@code{eq: f \circ h }\approx\textrm{g}\circ\textrm{h}}->\textrm{h}\approx\textrm{arr}\circ\textrm{i
        | i \approx equalize eq
record IsCoequalizer {E} (f g : A # B) (arr : B = E) : Set _ where
    field
        equality : arr ○ f \approx arr ○ g
        coequalize : {h : B # C} -> h ○ f \approx h o g }->\textrm{E}=>\textrm{C
        universal : {h : B => C} {eq : h o f \approx h o g} -> h % coequalize eq ○ arr
```



```
            i }\approx coequalize eq
```


Usability / Engineering lessons: Explicit duals

```
record IsEqualizer {E} (arr : E # A) (f g : A # B) : Set _ where
    field
equality : f o arr }\approx\textrm{g}\circ\textrm{o
```



```
universal : }\forall\mathrm{ {eq : f o h }\approx\textrm{g}\circ\textrm{h}}->\textrm{h}\approx\mathrm{ arr o equalize eq
unique : }\forall\mathrm{ {eq : f ○ h }\approx\textrm{g}\circ\textrm{h}}->\textrm{h}\approx\operatorname{arr}\circ\textrm{i
i \approx equalize eq
```

But it really is more deck chair shuffling:
Coequalizer \Leftrightarrow coEqualizer : \forall (coequalizer : Coequalizer f g) \rightarrow coEqualizer \Rightarrow Coequalizer (Coequalizer \Rightarrow coEqualizer coequalizer) \equiv coequalizer

Coequalizer \Leftrightarrow coEqualizer _ = refl

Usability / Engineering lessons: Predicates vs Structures

```
record IsEqualizer {E} (arr : E = A) (f g : A = B) : Set _ where
    field
        equality : f o arr \approx g o arr
```



```
        universal : }\forall\mathrm{ {eq : f ० h }\approx\textrm{g}\circ\textrm{h}}->\textrm{h}\approx\mathrm{ arr ○ equalize eq
        unique : }\forall{\mp@code{eq: f \circ h }\approx\textrm{g}\circ\textrm{h}}->\textrm{h}\approx\textrm{arr}\circ\textrm{i
            -> i \approx equalize eq
record Equalizer (f g : A # B) : Set (o \sqcup l \sqcup e) where
    field
        {obj} : Obj
        arr : obj => A
        isEqualizer : IsEqualizer arr f g
    open IsEqualizer isEqualizer public
```


Usability / Engineering lessons: Conservative (Definitional) Extensions

```
record IsEqualizer {E} (arr : E # A) (f g : A # B) : Set _ where
    field
        equality : f o arr \approx g o arr
```



```
        universal : }\forall\mathrm{ {eq : f o h }\approx\textrm{g}\circ\textrm{h}}->\textrm{h}\approx\mathrm{ arr o equalize eq
        unique : }\forall\mathrm{ {eq : f ○ h }\approx\textrm{g}\circ\textrm{h}}->\textrm{h}\approx\operatorname{arr}\circ\textrm{i
            i < equalize eq
```

 unique \({ }^{\prime}:\left(e q e q^{\prime}: f \circ h \approx g \circ h\right) \rightarrow\) equalize eq \(\approx\) equalize \(e q^{\prime}\)
 unique' eq eq' \(=\) unique universal
 id-equalize : id \(\approx\) equalize equality
 id-equalize \(=\) unique (sym identity \({ }^{r}\))

Usability / Engineering lessons: Equational Proofs!

```
record IsEqualizer {E} (arr : E = A) (f g : A # B) : Set _ where
    field
equality : f o arr }\approx\textrm{g}\circ\textrm{arr
equalize : }\forall{h:\textrm{X}=>\textrm{A}}->\textrm{f}\circ\textrm{h}\approx\textrm{g}\circ\textrm{h}->\textrm{X}=>\textrm{E
universal : }\forall\mathrm{ {eq : f ० h }\approx\textrm{g}\circ\textrm{h}}->\textrm{h}\approx arr ○ equalize eq
unique : }\forall{\mp@code{eq: f \circ h }\approx\textrm{g}\circ\textrm{h}}->\textrm{h}\approx\textrm{arr}\circ\textrm{i
-> i \approx equalize eq
```

 equalize-resp- \(\approx: \forall\) \{eq \(: ~ f \circ h \approx g \circ h\}\{e q ': f \circ i \approx g \circ i\} \rightarrow\)
 \(\mathrm{h} \approx \mathrm{i} \rightarrow\) equalize eq \(\approx\) equalize \(\mathrm{eq}^{\prime}\)
 equalize-resp- \(\approx\{h=h\}\{i=i\}\{e q=e q\}\left\{e q^{\prime}=e q^{\prime}\right\} h \approx i=\)
 unique \(\$\) begin
 i
 \(\approx-\langle h \approx i\rangle\)
 \(\approx\langle\) universal \(\rangle\)
 arr ○ equalize eq

Usability / Engineering lessons: (Un)Bundling

```
open import Categories.Category.Unbundled using (Category)
record IdentityOnObjects {Obj : Set o}
    (C : Category Obj l e) (D : Category Obj l' e') : Set _ where
    field
    F
    -- laws elided
IOO }=>\mathrm{ Functor : {Ob : Set o} {C : Category Ob l e} {D : Category Ob l' e'} >
    (F : IdentityOnObjects C D) -> Functor (pack' C) (pack' D)
IOO }=>\mathrm{ Functor F = record { FO = id }->\mathrm{ ; IOO }
    where module IOO = IdentityOnObjects F
```


Levels as Signals: Comma Category (and thus (co)Slice too)


```
    record CommaObj (T : Functor A C) (S : Functor B C) : Set (o1 \sqcup o or \sqcup ( ) where
    field
        {\alpha} : Obj A
        {\beta} : Obj B
        f : C [ T T \alpha , So \beta ]
    record Comma }=>\mathrm{ {T : Functor A C} {S : Functor B C} (X X X X : CommaObj T S)
        : Set ( }\mp@subsup{\mathscr{1}}{1}{}\sqcup\mp@subsup{\ell}{2}{}\sqcup\mp@subsup{e}{3}{})\mathrm{ where
        field
        g : A [ }\mp@subsup{\alpha}{1}{},\mp@subsup{\alpha}{2}{}
        h : B [ }\mp@subsup{\beta}{1}{\prime},\mp@subsup{\beta}{2}{}
        commute : CommutativeSquare f}\mp@subsup{f}{1}{}(\mp@subsup{T}{1}{}\textrm{g})(\mp@subsup{S}{1}{}\textrm{h})\mp@subsup{\textrm{f}}{2}{
    Comma : Functor A C }->\mathrm{ Functor B C
```


Levels as Signals: Enriched Functors

```
record Functor (C : Category o l e) (D : Category o' l' e')
    : Set (o \sqcupl \sqcup e \sqcupo o' \sqcup l' \sqcup e')
```

```
module _
```

module _
{o l e} {V : Setoid-Category o l e} (M : Monoidal V) where
{o l e} {V : Setoid-Category o l e} (M : Monoidal V) where
record Category (v : Level) : Set (o \sqcup ¢ \sqcup e \sqcup suc v)
record Category (v : Level) : Set (o \sqcup ¢ \sqcup e \sqcup suc v)
record Functor {c d} (C : Category c) (D : Category d)
record Functor {c d} (C : Category c) (D : Category d)
: Set ([\sqcup e \sqcup c ப d)

```
        : Set ([ \sqcup e \sqcup c ப d)
```

Maybe "enriched functor" should also do change of base?

Additional bits

More Observations:

- Definitional extensions of Monoidal Category so large that they needed to be split out into own module.
- The category of Setoids (at a particular level) cannot be a Topos for size/predicatity reasons: the setoid classifier (classifying map) is "too large". (ПW-Pretopos is ok)
- Multicategory easier to do with generalized arities and relative equations (implicit combinatorics of \mathbb{N} awful).

Additional bits

More Observations:

- Definitional extensions of Monoidal Category so large that they needed to be split out into own module.
- The category of Setoids (at a particular level) cannot be a Topos for size/predicatity reasons: the setoid classifier (classifying map) is "too large". (ПW-Pretopos is ok)
- Multicategory easier to do with generalized arities and relative equations (implicit combinatorics of \mathbb{N} awful).

Conjecture 1: The Category of -1-Categories, seen as the collection of Enriched categories over the Monoidal -2-Category, is equivalent to the Category 2, is equivalent to Excluded Middle.

Additional bits

More Observations:

- Definitional extensions of Monoidal Category so large that they needed to be split out into own module.
- The category of Setoids (at a particular level) cannot be a Topos for size/predicatity reasons: the setoid classifier (classifying map) is "too large". (ПW-Pretopos is ok)
- Multicategory easier to do with generalized arities and relative equations (implicit combinatorics of \mathbb{N} awful).

Conjecture 1: The Category of -1-Categories, seen as the collection of Enriched categories over the Monoidal -2-Category, is equivalent to the Category 2, is equivalent to Excluded Middle.

Conjecture 2: Discr is not left adjoint of the forgetful Functor from Cats to Setoids.

Conclusion

■ CT in Agda, Lean, cubical Agda, Coq, Coq/HoTT, Isabelle, ... \Rightarrow Category Theory is robust wrt foundations
■ Setoid-enriched weak Category Theory is akin "1.5" Category Theory

- Tremendous fun!

