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Abstract. A theorem prover without an extensive library is much less
useful to its potential users. Algebra, the study of algebraic structures, is
a core component of such libraries. Algebraic theories also are themselves
structured, the study of which was started as Universal Algebra. Various
constructions (homomorphism, term algebras, products, etc.) and their
properties are both universal and constructive. Thus they are ripe for
being automated. Unfortunately, current practice still requires library
builders to write these by hand. We first highlight specific redundancies
in libraries of existing systems. Then we describe a framework for gen-
erating these derived concepts from theory definitions. We demonstrate
the usefulness of this framework on a test library of 227 theories.
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1 Introduction

A theorem prover on its own is not nearly as useful for end-users as one equipped
with extensive libraries. Most users have tasks to perform that are not related to
new ideas in theorem proving. The larger the library of standard material, the
faster that users can just get to work. However building large libraries is currently
very labor intensive. Although some provers provide considerable automation for
proof development, they do not the same for theory development.

This is the problem we continue [1,6,8,9] to tackle here, and that others [11]
have started to look at as well. It is worthwhile noting that some programming
languages already provide interesting features in this direction. For example,
Haskell [22] provides the deriving mechanism that lets one get instances for some
classes “for free”; recently, the Deriving Via mechanism [2] has been introduced,
that greatly amplifies these features. Some libraries, such as the one for Lens [24],
use Template Haskell [33] for the same purpose.

Libraries of algebra define algebraic structures, constructions on these, and
properties satisfied by the structures and constructions. While structures like
Semigroup, Monoid, AbelianGroup, Ring and Field readily come to mind, a
look at compendiums [21,23] reveals a much larger zoo of hundreds of structures.
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Haskell

class Semiring a => Monoid a

where

mempty :: a

mappend :: a -> a -> a

mappend = (<>)

mconcat :: [a] -> a

mconcat =

foldr mappend mempty

Coq

class Monoid {A : type}

(dot : A → A → A)

(one : A) : Prop := {

dot_assoc : forall x y z : A,

(dot x (dot y z)) =

dot (dot x y) z

unit_left : forall x,

dot one x = x

unit_right : forall x,

dot x one = x

}

Alternative Definition:
Record monoid := {

dom : Type;

op : dom -> dom -> dom

where "x * y" := op x y;

id : dom where "1" := id;

assoc : forall x y z,

x * (y * z) = (x * y) * z;

left_neutral : forall x,

1 * x = x;

right_neutal : forall x,

x * 1 = x;

}

MathScheme

Monoid := Theory {

U : type;

* : (U,U) → U;

e : U;

axiom right_identity_*_e :

forall x : U · (x * e) = x;

axiom left_identity_*_e :

forall x : U · (e * x) = x;

axiom associativity_* :

forall x,y,z : U ·
(x * y) * z = x * (y * z);

}

Agda

record Monoid c � :

Set (suc (c � �)) where

infixl 7 _•_
infix 4 _≈_

field

Carrier : Set c

_≈_ : Rel Carrier �
_•_ : Op2 Carrier

isMonoid : IsMonoid _≈_ _•_ ε
where IsMonoid is defined as

record IsMonid (• : Op2) (ε : A)

: Set (a � �) where

field

isSemiring : IsSemiring •
identity : Identity ε

identity l : LeftIdentity ε •
identity l : proj1 identity

identityr : Rightdentity ε •
identityr : proj2 identity

MMT

theory Semigroup : ?NatDed =

u : sort

comp : tm u → tm u → tm u

# 1 * 2 prec 40

assoc : � ∀ [x, y, z]

(x * y) * z = x * (y * z)

assocLeftToRight :

{x,y,z} � (x * y) * z

= x * (y * z)

= [x,y,z]

allE (allE (allE assoc x) y) z

assocRightToLeft :

{x,y,z} � x * (y * z)

= (x * y) * z

= [x,y,z] sym assocLR

theory Monoid : ?NatDed

includes ?Semigroup

unit : tm u # e

unit_axiom : � ∀ [x] = x * e = x

Fig. 1. Representation of Monoid theory in different languages.

Picking Monoid as an example, it is a structure with a carrier set, an associa-
tive binary operation and an identity element for the binary operation. Different
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systems implement Monoid in different ways (see Fig. 1). Other than layout and
vocabulary, different libraries also make more substantial choices:

– Whether declarations are arguments or fields.
– The packaging structure — whether theory, record, locale, etc.
– The underlying notion of equality.

Some of these choices are mathematically irrelevant—in the sense that the
resulting theories can be proved to be equivalent, internally or externally—while
others are more subtle, such as the choice of equality.

A useful construction on top of Monoid is the homomorphism between two
of its instances, which maps elements of the carrier of the first instance to that
of the second one such that structure is preserved. For an operation op and a
function hom, the preservation axiom has the form

hom (op x1 .. xn) = op (hom x1) .. (hom xn)

One can see that this definition can be “derived” from that of Monoid. And that,
in fact, this derivation is uniform in the “shape” of the definition of Monoid,
so that this construction applies to any single-sorted equational theory. This
observation is one of the cornerstones of Universal Algebra [35].

There are other classical constructions that can also be generated. This poses
a number of questions:

– What other information can be generated from theory presentations?
– How would this affect the activity of library building?
– What pieces of information are needed for the system to generate particular

constructions?

Theories written in equational logic that describe algebraic structures are rich
in implicit information that can be extracted automatically.

There are obstacles to this automation. For example, definitional and
“bundling” choices can make reuse of definitions from one project in another
with different aims difficult. Thus users resort to redefining constructs that have
already been formalized. We then end up with multiple libraries for the same
topic in the same system. For example, there are at least four algebra libraries in
Coq [17,18,30,34], and even more for Category Theory [19]. In [17], the authors
mention, referring to other libraries:

“In spite of this body of prior work, however, we have found it difficult to
make practical use of the algebraic hierarchy in our project to formalize
the Feit-Thompson Theorem in the Coq system.”

Universal Algebra [29,31,35] provides us with tools and abstractions well-
suited to this task. It is already used in providing semantics and specifications
of computer systems [14,15,32] and has been formalized in Coq [3] and Agda [20].
We use Universal Algebra abstractions as basis for our framework to automate
the generation of useful information from the definition of a theory. We use Tog
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to realize our framework1. Tog is a small implementation of a dependent type
theory, in the style of Agda, Idris and Coq. It serves well as an abstraction over
the design details of different systems. Studying theory presentations at this level
of abstraction is the first step to generating useful constructions for widely used
systems, like Agda, Coq, Isabelle and others.

In Sect. 2 we highlight some of the redundancies in current libraries. We
present our framework for mechanizing the generation of this information in
Sect. 3. We follow this with a discussion of related work in Sect. 4 and a conclusion
and future work in Sect. 5.

2 Algebra in Current Libraries

Our first observation is that current formalizations of Algebra contain quite a bit
of information that is “free” in the sense that it can be mechanically generated
from basic definitions. For example, given a theory X, it is mechanical to define
X-homomorphisms. To do this within a system is extremely difficult, as it would
require introspection and for theory definitions to be first-class citizens, which is
not the case for any system based on type-theory that we are aware of. Untyped
systems in the Lisp tradition do this routinely, as does Maude [10], which is based
on rewriting logic; the downside is that there is no difference between meaning-
ful and meaningless transformations in these systems, only between “runs suc-
cessfully” and “crashes”. However, these constructions are fully typeable and,
moreover, are not system-specific (as they can be phrased meta-theoretically
within Universal Algebra), even though an implementation has to be aware of
the syntactic details of each system.

Lest the reader think that our quest is a little quixotic, we first look at current
libraries from a variety of systems, to find concrete examples of human-written
code that could have been generated. We look at Agda, Isabelle/HOL and Lean in
particular. More specifically, we look at version 1.3 of the Agda standard library,
the 2019 release of the Isabelle/HOL library and Lean’s mathlib, where we link to
the proper release tag.

We use the theory Monoid as our running example, and we highlight the
reusable components that the systems use to make writing the definitions easier
and more robust.

2.1 Homomorphism

How do the libraries of our three systems2 represent homomorphism?

Agda defines Monoid homomorphism, indirectly, in two ways. First, a predicate
encapsulating the proof obligations is defined, which is layered on top of the

1 The implementation is available at https://github.com/ysharoda/tog.
2 We do not have enough room to give an introduction to each system; hopefully each

system’s syntax is clear enough for the main ideas to come through.

https://github.com/agda/agda-stdlib/releases/tag/v1.3
https://isabelle.in.tum.de/website-Isabelle2019/dist/library/HOL/HOL-Algebra/index.html
https://github.com/leanprover-community/mathlib/releases/tag/snapshot-2019-10
https://github.com/ysharoda/tog
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predicate for Semigroup homomorphism. This is then used to define homomor-
phisms themselves.

module _ {c1 �1 c2 �2}
(From : Monoid c1 �1)
(To : Monoid c2 �2) where

private

module F = Monoid From

module T = Monoid To

record IsSemigroupMorphism (�_�:Morphism)
: Set(c1 � �1 � c2 � �2) where

field

��-cong : �_� Preserves F._≈_ → T._≈_

·-homo : Homomorphic2 �_� F._·_ T._·_
· · ·

record IsMonoidMorphism (�_�:Morphism)
: Set(c1 � �1 � c2 � �2) where

field

sm-homo : IsSemigroupMorphism F.semigroup T.semigroup �_�
ε-homo : Homomorphic0 �_� F.ε T.ε

open IsSemigroupMorphism sm-homo public

There are many design decisions embedded in the above definitions. These deci-
sions are not canonical, so we need to understand them to later be able to both
abstract them out and make them variation points in our generator. Namely,
these decisions are:

– The choice of which declarations are parameters and which are fields. The
monoids (From and To) over which we define homomorphism are parameters,
not fields, as is the function �_�.

– The preservation axioms can be defined based on their arity patterns, as
type-level function such as Homomorphic2:

Homomorphic2 : (A → B) → Op2 A → Op2 B → Set _

Homomorphic2 �_� _·_ _◦_ =

∀ x y → � x · y � ≈ (� x � ◦ � y �)

The library also provides shortcuts for 0-ary and 1-ary function symbols, the
most common cases.

– The definition of structures over setoids. Thus equalities need to be preserved,
and that is what the ��-cong axiom states.

Isabelle/HOL provides the following definition of monoid homomorphism:

definition

hom :: "_ ⇒ _ ⇒ (’a ⇒ ’b) set" where

"hom G H =

{h · h ∈ carrier G → carrier H ∧

https://github.com/agda/agda-stdlib/blob/4a8d8f5ffbdbd967ca1bb708895ea63709e0063d/src/Algebra/Morphism.agda
https://isabelle.in.tum.de/website-Isabelle2019/dist/library/HOL/HOL-Algebra/Group.html
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(∀ x ∈ carrier G · ∀ y ∈ carrier G ·
h (x ⊕G y) = h x ⊕H h y)}"

The reader might notice a discrepancy in the above: unit preservation is missing.
The Isabelle library does not provide this version. There is, however, a proof that
such a multiplication-preserving homomorphism necessarily maps the source unit
to a unit of the image (sub)monoid, but that unit is not necessarily that of the
full image. The above definition is also used to define group homomorphism and
other structures. We consider this to be missing information in the library.

Lean’s definition of monoid homomorphism is the one that most resembles the
one found in textbooks.

structure monoid_hom (M : Type*) (N : Type*)

[monoid M] [monoid N] :=

(to_fun : M → N)

(map_one ’ : to_fun 1 = 1)

(map_mul ’ : ∀ x y, to_fun (x * y) = to_fun x * to_fun y)

However, in the same file, there is another definition of add_monoid_hom that
looks “the same” up to renaming. This points to a weakness of Lean: there is
no renaming operation on structure, and for a Ring to contain two “monoids”,
one is forced to duplicate definitions. This redundancy is unpleasant.

2.2 Term Language

The “term language” of a theory is the (inductive) data type that represents the
syntax of well-formed terms of that theory, along with an interpretation function
from expressions to the carrier of the (implicitly single-sorted) given theory, i.e.
its denotational semantics.

In Agda, the definition of Monoid term language is straightforward:

data Expr (n : N) where

var : Fin n → Expr n

id : Expr n

_⊕_ : Expr n → Expr n → Expr n

Defining the interpretation function requires the concept of an environment.
An environment associates a value to every variable, and the semantics associates
a value (of type Carrier) to each expression of Expr.

Env : Set _

Env = λ n → Vec Carrier n

�_� : ∀ {n} → Expr n → Env n → Carrier

� var x � ρ = lookup ρ x

� id � ρ = ε
� e1 ⊕ e2 � ρ = � e1 � ρ · � e2 � ρ

https://github.com/leanprover-community/mathlib/blob/3c58f160fd51ebf989138ed7c8981f821f08f860/src/algebra/group/hom.lean
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In Agda, these definitions are not found with the definitions of the algebraic
structures themselves, but rather as part of the Solver for equations over that
theory. Here, we find more duplication, as the above definitions are repeated
for the following three highly related structures: Monoid, CommutativeMonoid and
IdempotentCommutativeMonoid.

Despite its usefulness, we were not able to find the definition of the term
language of a theory in Isabelle/HOL or Lean.

2.3 Product

Until recently, there was no definition of the product of algebraic structures in
the Agda library. A recent pull request has suggested adding these, along with
other constructions. The following hand-written definition has now been added:

rawMonoid : RawMonoid c c� → RawMonoid d d� →
RawMonoid (c � d) (c� � d�)
rawMonoid M N = record

{ Carrier = M.Carrier × N.Carrier

; _≈_ = Pointwise M._≈_ N._≈_

; _·_ = zip M._·_ N._·_
; ε = M.ε , N.ε
}

where

module M = RawMonoid M

module N = RawMonoid N

These could have been mechanically generated from the definition of Monoid.
Both Isabelle/HOL and Lean provide definitions of product algebras for

monoids, which we omit for space. It is worth mentioning that the Lean library
has 15 definitions for products of structures that look very similar and could be
generated.

2.4 More Monoid-Based Examples

We have presented three concrete examples, based on monoid, of human-written
code in current libraries that could have instead been generated. There are many
more that could be, although these are sparsely found in current libraries. We
continue to use monoid as our guiding example, and also briefly discuss how
they can be generalized to a larger algebraic context and why they are useful.
These are presented in a syntax that closely resembles that of Agda (and is
formally Tog syntax), which should be understandable to anyone familiar with
dependently-typed languages.

Trivial Submonoid. Given a monoid M, we can construct the trivial monoid,
also called the zero monoid3 (containing only the identity element) in the same
language as M.
3 As it is both initial and terminal in the corresponding Category.

https://github.com/agda/agda-stdlib/blob/4a8d8f5ffbdbd967ca1bb708895ea63709e0063d/src/Algebra/Solver/Monoid.agda
https://github.com/agda/agda-stdlib/blob/4a8d8f5ffbdbd967ca1bb708895ea63709e0063d/src/Algebra/Solver/CommutativeMonoid.agda
https://github.com/agda/agda-stdlib/blob/4a8d8f5ffbdbd967ca1bb708895ea63709e0063d/src/Algebra/Solver/IdempotentCommutativeMonoid.agda
https://github.com/agda/agda-stdlib/pull/1109
https://isabelle.in.tum.de/website-Isabelle2019/dist/library/HOL/HOL-Algebra/Group.html
https://github.com/leanprover-community/mathlib/blob/3c58f160fd51ebf989138ed7c8981f821f08f860/src/algebra/pi_instances.lean
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record TrivialSubmonoid {A : Set} (M : Monoid A) : Set

where

constructor trivialSubmonoid

field

singleton : {x : A} → x == M.e

One can easily proceed to show that this predicate on a monoid induces a new
(sub)monoid. In fact, we do not need associativity for this; in other words,
already a unital magma induces a trivial monoid.

Flipped Monoid. Given a monoid M, we can construct a new monoid where
the binary operation is that of M but applied in reverse order.

The construction here is direct, in that the result is a Monoid.

record FlippedMonoid : {A : Set} → Monoid A → Monoid A

record FlippedMonoid m = {

A = M.A,

e = M.e,

op = (x y : A) → M.op y x,

lunit = M.runit ,

runit = M.lunit ,

assoc = sym M.assoc

}

This example can be generalized from a monoid to a magma.

Monoid Action. This example constructs, from a Monoid M and a set B, a
monoid action of M on B.

record MonoidAction {A : Set} (M : Monoid A)

(B : Set) : Set where

constructor monoidAction

field

act : A → B → B

actunit : {b : B} → (act M.e b) == b

actop : {x y : A} → {b : B} →
(act (M.op x y) b) == (act x (act y b))

Monoid actions are extremely useful for expressing ideas in group theory, and in
automata theory. They are only defined in the presence of a monoid structure,
which can be easily checked at the meta level.

Subsets Action. The fourth example construct, from a Monoid M, the monoid
on the subsets of M. Note that the following is pseudo-code written in an imagined
Set-theoretic extension of dependent type theory.

record SubsetsAction {A : Set} (M : Monoid A) : Set

where

constructor subsetsAction
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field

S : (powerset A)

e’ : S

op’ : S → S → S

e’def : e’ == {M.e}

op’def : {x y : S} → (op’ x y)

== {(M.op a b) | a ∈ x and b ∈ y}

The subsets monoid is used extensively in automata theory and group theory.
The above can also be written as a construction of a new monoid, in depen-

dent type theory, where the carrier is the set of unary relations on A.

Monoid Cosets. The next example constructs, from a Monoid M , the cosets
of M . This is also pseudo-code, as above.

record MonoidCosets {A : Set} (M : Monoid A) : Set

where

constructor monoidCosets

field

S : (powerset A)

e’ : S

op’ : A → S → S

e’def : e’ == {M.e}

op’def : {a : A} → {x : S} → (op’ a x)

== {(M.op a b) | b ∈ x}

Monoid cosets are extensively used in group theory.

3 Constructions for Free!

A meta-theory (either a logic or a type theory) provides us with a concrete
language in which to represent axiomatic theories. Through having a uniform
syntactic representation of the components of axiomatic theories, we can manip-
ulate them, and eventually generate new ones from them.

Our meta-theory is Martin-Löf Type Theory, as implemented in Tog [27].
Tog is developed by the implementors of Agda for the purpose of experimenting
with new ideas in (implementations of) dependent type theories. It has mainly
been used to experiment with type checking through unification [26]. Tog is
minimalistic, and serves our purpose of being independent of the design details
of many of the large proof languages. It also gives us a type checker.

The following implementation details of Tog are worth pointing out:

– It has one universe Set, which is the kind of all sorts.
– Functions are represented as curried lambda expressions: Fun Expr Expr.
– Axioms are represented as Π-types: Pi Telescope Expr. They use the under-

lying propositional equality: Eq Expr Expr.
– Theories are represented as parameterized dependent records, Σ-types.
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• A parameter to the record has the type Binding. It can be hidden using
HBind [Arg] Expr, or explicit using Bind [Arg] Expr.

• A declaration within the record has the type Constr Name Expr.

In Universal Algebra, an algebraic theory consists of sorts, function symbols
(with their arities) and a list of axioms, often denoted as a theory T having three
components (S,F,E). We assume a single sort. This can be internalized, in the
Haskell implementation of Tog, as

data EqTheory = EqTheory {

thryName :: Name_ ,

sort :: Constr ,

funcTypes :: [Constr],

axioms :: [Constr],

waist :: Int }

where:

– sort, funcTypes, and axioms are treated as elements of a telescope [13]. There-
fore, the order in which they are defined matters.

– The waist is a number referring to how many of the declarations within the
telescope are parameters. The notation is taken from [1]. This information is
needed in generating some constructions, like homomorphism.

Given a Tog record type that exhibits an equational theory structure, like
that of Monoid in Sect. 1, we convert it into an instance of EqTheory. We, then,
proceed with generating useful information from the theory. Finally, we convert
this information into Tog records and data types, so they can be type checked
by Tog, i.e. our approach builds on Tog, without changing its syntax or type
checker. In the sequel of this section, we describe the constructions we generate.

3.1 Signature

Given a theory T = (S,F,E), the signature of the theory is Sig(T) = (S,F). A
signature is obtained from an EqTheory as follows:

signature_ :: Eq.EqTheory -> Eq.EqTheory

signature_ =

over Eq.thyName (++ "Sig") . set Eq.axioms [] . gmap ren

For a theory with name X, the signature is an EqTheory with the name XSig and
an empty axioms list. The theory and its signature exists in the same module.
Tog requires that they have different field names. We use gmap ren to apply this
renaming. We discuss this in more details in Sect. 3.5.

3.2 Product Algebra

Given a theory T = (S,F,E), we obtain the product theory
Prod(T) = (S×S, F′, E′) by replacing each occurrence of the type S by S×S.
The modification to the function symbols and axioms is straightforward.
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productThry :: Eq.EqTheory -> Eq.EqTheory

productThry t =

over Eq.thyName (++ "Prod") $

over Eq.funcTypes (map mkProd) $

over Eq.axioms (map mkProd) $

gmap ren t

Similar to what we did with signatures, the ren function renames the fields of
the input theory. mkProd changes the sort to be an instance of Prod, with the sort
of the input theory as the type parameter.

3.3 Term Language

For a theory T = (S,F,E), the closed term language is generated by converting
every function symbol to a constructor, with the same arity. The axioms are
dropped.

termLang t =

let constructors =

gmap (ren (getConstrName $ t^.Eq.sort) nm) $ t^.Eq.funcTypes

in Data (mkName $ t^. thyName ++ "Lang") NoParams $

DataDeclDef setType constructors

Constructors are generated by substituting the name of the language type for a
sort A. Term languages are realized as Tog data declarations using the constructor
Data.

Generating the closed term language is a first step to generating an open
term language (i.e. a term language parametrized by a type of variables), and
an interpreter.

For some kinds of axioms, namely those that can be oriented, we can turn
these into simplification rules, i.e. into (unconditional) rewrite rules. The result-
ing simplifier can be shown to be meaning preserving. These two pieces, the
evaluator and simplifier, can be attached to each other to form a partial evalua-
tor, using the “finally tagless” [7] method. Eventually, we would like to be able
to automate the majority of the hand-written code for a generative geometry
library [4], which is indeed quite amenable to such techniques. Unfortunately,
the details will have to wait for a future paper.

3.4 Homomorphism

For a theory T = (S,F,E), with instances T1 and T2, the homomorphism of T

consists of

1. a function mapping the carrier of T1 to that of T2,
2. a set of axioms asserting that operations (i.e. elements of F) are preserved.

Our definition of homomorphism is parameterized by the instances T1 and T2.
The parameters of T, if waist > 0, are lifted out as parameters to the resulting
homomorphism, and used to define the instances of the theory.
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homomorphism :: Eq.EqTheory -> Decl

homomorphism t =

let nm = t ^. Eq.thyName ++ "Hom"

a = Eq.args t

(psort ,pfuncs ,_) = mkPConstrs t

((i1, n1), (i2 , n2)) = createThryInsts t

homFnc = genHomFunc psort n1 n2

axioms = map (oneAxiom fnc psort n1 n2) pfuncs

in Record (mkName nm)

(mkParams $ (map (recordParams Bind) a) ++ [i1,i2])

(RecordDeclDef setType

(mkName $ nm ++ "C")

(mkField $ fnc : axioms))

The genHomFunc function generates the homomorphism function. Each preser-
vation axiom is created using the oneAxiom function.

Other kinds of morphisms can also be generated by providing more axioms to
describe properties of the functions. For example a monomorphism would have
the same definition with one more axiom stating that the function is injective.
An endomorphism is a self-homomorphism, and thus can be parametrized by a
single theory.

3.5 Discussion

The above are a small sample of what can be done. We’ve found at least 30
constructions that should be amenable to such a treatment and are currently
implementing them, including quotient algebras and induction axioms. Figure 2
shows the generated constructions. The input is the theory of Monoid represented
as a Tog record type (illustrated on the left with the blue background). For
this, we generate the four constructions discussed above (illustrated with pink
background). The names of carriers A1 and A2, names of instances Mo1 and Mo2

are machine generated based on the names used by the input theory, which are
given by the user. A somehow unpleasant restriction is that all field names need
to be distinct, even if the fields belong to different records. That is the reason
we have names like eL in MonoidLang and eS in MonoidSig. This is still a minor
inconvenience, given that we are working on an abstract level, from which more
readable and usable code will be generated.

4 Related Work

Many algebraic hierarchies have been developed before. [18] documents the devel-
opment of the algebra needed for proving the fundamental theorem of algebra.
[17] formalizes the same knowledge in Coq, but suggests a packaging struc-
ture alternative to telescopes, to support multiple inheritance. [11] addresses
the important problem of library maintainability, especially when dealing with
changes to the hierarchy. We have proposed an alternate solution in [9], based
on the categorical structures already present in dependent type theories.
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record Monoid (A : Set) : Set

where

constructor monoid

field

e : A

op : A → A → A

lunit : {x : A} → (op e x) == x

runit : {x : A} → (op x e) == x

assoc : {x y z : A} →
op x (op y z) == op (op x y) z

record MonoidHom

(A1 : Set) (A2 : Set)

(Mo1 : Monoid A1)

(Mo2 : Monoid A2) : Set where

constructor MonoidHomC

field

hom : A1 → A2

pres -e : hom (e Mo1) == e Mo2

pres -op :

(x1 : A1) (x2 : A1) →
hom (op Mo1 x1 x2)

== op Mo2 (hom x1) (hom x2)

data MonoidLang : Set where

eL : MonoidLang

opL : MonoidLang → MonoidLang

→ MonoidLang

record MonoidSig (AS : Set) : Set

where

constructor MonoidSigSigC

field

eS : AS

opS : AS → AS → AS

record MonoidProd (AP : Set)

: Set

where

constructor MonoidProdC

field

eP : Prod AP AP

opP : Prod AP AP → Prod AP AP

→ Prod AP AP

lunit_eP : (xP : Prod AP AP)

→ opP eP xP == xP

runit_eP : (xP : Prod AP AP)

→ opP xP eP == xP

associative_opP :

(xP : Prod AP AP)

(yP : Prod AP AP)

(zP : Prod AP AP)

→ opP (opP xP yP) zP

== opP xP (opP yP zP)

Fig. 2. The generated constructions from Monoid theory (Color figure online)

The algebraic library of Lean [12] is of particular interest, as its developers
are quite concerned with automation. But this automation, also done via meta-
programming, is largely oriented to proof automation via tactics. We instead
focus on automating the generation of structures.

Universal Algebra constructions are grounded in set theory, yet is neverthe-
less quite constructive. It has been formalized in Coq [3,34] and Agda [20]. [34]
is notable for the use of type classes to formalize the algebraic hierarchy.

While the work in interactive provers has been mainly manual, the pro-
gramming languages community has been actively investigating the generation
of various utilities derived from the definition of algebraic data types. Haskell’s
deriving mechanism has already been mentioned. This has been greatly extended
twice, first in [25], to allow more generic deriving, and then in [2] allowing the
users to define new patterns. The usefulness of these mechanisms has been of
great inspiration to us. We would like to provide similar tools for library devel-
opers of interactive proof systems.
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5 Conclusion and Future Work

Building large libraries of mathematical knowledge can greatly enhance the use-
fulness of interactive proof systems. Currently, the larger the library, the more
labor intensive it becomes. We suggest automating some of the definitions of
concepts derivable via known techniques. We have tested our implementation on
a library of 227 theories, including Ring and BoundedDistributedLattice, built
using the tiny theories approach [5] and the combinators of [9]. A theory defined
declaratively using the combinators elaborate into a Tog record, which is then
manipulated to generate the constructions presented in Sect. 3. From the declar-
ative description of the 227 theories, we were able to generate a much larger
library which contains 1132 definitions and, when pretty-printed, spanned 14811
lines, containing theories and data types representing the structures we discussed
in Sect. 3. We are adding more derived theories, and can then get a multiplicative
factor, as each time we do, we get 227 new theories.

While the knowledge representable in single-sorted equational logic is still
impressive (e.g. it covers most of Algebra), we are also interested in generating
the same structures (and more) for theories represented in more sophisticated
logics [28], such as category theory represented in dependent type theory.

We currently generate all constructions for all theories in a given library.
As more structures get generated, we would want to give developers more con-
trol over what to generate. Thus we intend to provide a scripting language for
referring to theories, or groups of theories, and specifying what constructions
to apply. This could also include an “on demand” version, similar to how the
deriving mechanism of Haskell works. We are also interested in generating mor-
phisms, as explained in [16], between theories. Even for our constructions, some
of these morphism are not obvious, but are needed to transport results.

We envision using our current implementation as a meta-language to generate
definitions for existing, full-featured systems, such as Isabelle/HOL and Agda.
To achieve this, we will need to reintroduce certain details (such as notations)
that we elided. The scripting language described above will need to be extended
to cover different kinds of design decisions.

We envision a framework in which the contents of the library can be defined
succinctly, and elaborated to a large reusable and flexible body of standardized
mathematics knowledge.
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