
Partial Evaluation of Maple

Jacques Carette
∗

Department of Computing and Software
McMaster University

1280 Main Street West
Hamilton, Ontario L8S 4K1

Canada
carette@mcmaster.ca

Michael Kucera
mikekucera@gmail.com

ABSTRACT
Having been convinced of the potential benefits of partial evalua-
tion, we wanted to conduct some experiments in our favourite Com-
puter Algebra System, Maple. Maple is a large language, with a
few non-standard features. When we tried to implement a partial
evaluator for it, we ran into a number of difficulties for which we
could find no solution in the literature. Undaunted, we persevered
and ultimately implemented a working partial evaluator with which
we were able to very successfully [10] conduct our experiments. In
this paper, we document the techniques we had to either invent or
adapt to achieve these results.

Categories and Subject Descriptors
F.3 [Theory of Computation]: Logics and Meaning of Programs;
F.3.2 [Logics and Meaning of Programs]: Partial Evaluation

General Terms
Languages,Design,Theory

Keywords
Maple, symbolic computation, partial evaluation, residual theorems

1. INTRODUCTION
While symbolic computation is a mainstay of partial evaluation,
partial evaluation is not a common technique in symbolic computa-
tion, even less so in computer algebra. The authors were convinced
that partial evaluation (and metaprogramming in general [4, 6]),
should be a very powerful tool when combined with a Computer
Algebra System. Eventually, our high hopes were proven correct,
as we were able to report at Calculemus 2006 [10]. But what that
paper does not really say is how difficult this turned out to be. The
basic theory and practice of partial evaluation is lucidly explained
in [9], and various papers [7, 16, 17, 18, 20] provided welcome
additional techniques. And yet, we needed to invent a number of
techniques to be able to handle interesting Maple programs. Here
our goal is mainly to explore those techniques that were needed to

∗Supported in part by NSERC grant RPG262084-03.

make an effective partial evaluator for Maple, our Computer Al-
gebra System (CAS) of choice. Note that since doing any kind of
static analysis of Maple programs seems outlandishly difficult [5],
we had no choice but to write online partial evaluator.

First, a few words on what motivated us to write this partial eval-
uator for Maple. This can be summed up by the slogans “efficient
genericity” and “residual theorems”.

Generic programming is not a new idea in computer algebra, where
it was used long before its current resurgence in the C++ and func-
tional programming communities, as reading Musser and Stepanov’s
classic paper [12] attests. But in a dynamically typed, interpreted
language (such as Maple), the interpretation overhead of such ab-
stractions is so prohibitive that otherwise successful projects in
generic programming [8] did not become standard practice. We
wanted to keep that programming style, but without the efficiency
cost. While [4] shows that typed metaprogramming (in MetaO-
Caml) can deal with this, we wanted to accomplish the same in
Maple. More importantly, we wanted to have a pleasant program-
ming experience while writing generic programs, which is (cur-
rently) not the case for C++ template programming nor, unfortu-
nately, for MetaOCaml programming. It is important to note that
we are not using partial evaluation as a method to get our programs
to run faster, but rather to be able to conveniently write generic
programs that run no slower than previous code. We believe this is
an important shift in perspective that should increase the areas of
applicability of partial evaluation and program transformation.

“Residual theorems” is the term we coined to refer to expressing
the result of symbolic computations on symbolic input as programs
with (potentially many) residual conditions on the validity of the
result. The underlying motivation is that there is a huge amount
of information embedded in Computer Algebra libraries, a lot of
which encodes special cases for the validity of computations in
analysis. However, these special cases are only triggered when the
coefficients of the problems at hand are exact constants, and not
when they are parametric. As we show in [10], it is not necessary
to invent parametric algorithms to deal with this, as the current al-
gorithms and partial evaluation are sufficient.

We assume that the average PEPM attendee is not very familiar
with CASes, and even if they have some knowledge of them, it
is probably restricted to their use as a glorified calculator rather
than as a full-fledged programming language. As such, we give a
programming language oriented introduction to Maple in the next
section. We focus on those areas of the language which are not
standard (i.e. for which clear similarities cannot be found as well-

known features in any of Scheme, Java, C, Ocaml or Haskell). One
particuliarity of CASes is that they are designed to deal with open
terms (which they simply call expressions) as a fundamental data
type. What this means is that in Maple, the over-used power ex-
ample is doubly irrelevant: First, because the powering operator is
built-in, and second because
s t a g e b i n := proc (n : : p o s i n t , f)

l o c a l r e s , g , x ;
g := proc (x , n) l o c a l y ;

i f n=0 then 1 e l i f n=1 then x
e l i f n mod 2 = 0 then

y := g (x , n / 2) ; f (y , y) ;
e l s e f (x , g (x , n−1)) ; end i f ;

end proc ;
unapp ly (g (n , z) , z) ;

end ;
is a routine which given a positive integer n and a binary asso-
ciative multiplication-like operator f will return a new procedure
that computes f applied n times via binary splitting. The “trick” is
to manipulate open terms directly and use unapply to get back a
procedure. And yet it is hard to fool Maple, as stagebin (5, ‘∗‘) will
simply return z −> zˆ5, as will stagebin (5, proc(a ,b) a ∗ b end).
To obtain the desired result it is necessary to resort to using an inert
multiplication; stagebin (5, ‘&∗‘) will then return the more familiar
proc (z) ‘&∗ ‘(z , ‘&∗ ‘ (‘&∗ ‘ (z , z) , ‘&∗ ‘ (z , z))) end proc ,

without doing any real metaprogramming or program transforma-
tion.

We are not aware of any previous work on trying to do partial eval-
uation of a Computer Algebra language. The closest work in this
area is on the purely numerical language Matlab, where [7] also
reports having to work rather hard to get their results. Of course all
the work on partial evaluation for (full) Scheme (like [19]) is quite
relevant, as Maple is also a higher-order functional/imperative lan-
guage with good reification and reflection capabilities.

The main contributions of this paper are: 1) several new techniques
in online partial evaluation and 2) the demonstration that partial
evaluation is an effective tool when applied to a Computer Alge-
bra language. We have named our partial evaluator MapleMIX.
The need to support a non-trivial language (62 AST types) led to
MapleMIX being divided into several distinct modules with well
defined boundaries. The techniques that we developed are the re-
sult of the modularization requirement and by the need to support
common Maple language features.

Our approach to modularizing the partial evaluator is to have cer-
tain modules communicate via a powerful abstract syntax that was
designed specifically with partial evaluation in mind. We have dis-
covered that adding new constructs to the language representation,
instead of just simplifying the input language, can actually make
the specialization module more compact. (Maple has one syntac-
tic form for assignment whereas our intermidate representation has
four.) We have even taken the idea of syntax-directed partial evalu-
ation to the next level by having the specializer perform on-the-fly
syntax transformations that further drive the specialization process.
These on-the-fly transformations are very effective for handling dy-
namic conditionals while performing static loop unrolling.

We have developed several techniques within the paradigm of on-
line partial evaluation that show the power and accuracy that the
online approach is capable of. In particular, our design for the
variable binding environment works well with a new algorithm for
handling if-statements. Furthermore the environment allows for a

completely online syntax-directed approach to handling partially
static data structures.

First we describe the context of our work by providing a description
of the Maple language in Section 2. An overview of MapleMIX is
given in Section 3, and Section 4 goes into detail about the vari-
ous designs and techniques used in the implementation. A short
demonstration of our results is given in Section 5.

2. MAPLE
Although Maple is principally used as a mathematical assistant, in
other words as an interactive calculator that allows one to do both
routine computations (albeit at a high level of mathematical sophis-
tication) and as an aid to mathematical exploration, at its heart still
lies a sophisticated programming language [11].

That programming language is a mixed imperative/functional dy-
namically typed, eager evaluation language, with higher order func-
tions, first-class modules, first-class (dynamic) types, proper clo-
sures and lexical scoping, error handling primitives, arbitrary pre-
cision arithmetic (integer, rational and floating point), and a full
IEEE-754 compliant implementation of hardware floating point arith-
metic. Its fundamental structured data types are the array, the set,
the “expression sequence” and the hash table; and since Maple
6, the so-called “rectangular table”. It also has extensive I/O li-
braries, a solid Foreign Function Interface (which includes not just
C but also Java, and Fortran), fancy parameter processing primi-
tives (somewhat akin to Python’s) and, naturally, a very extensive
library of mathematical types and operations.

In Figure 1 is a grammar describing Maple’s abstract syntax (not its
concrete syntax, but influenced by it). Most of it is quite straight-
forward, so we will outline only those non-standard features. We
denote by c the literal constants, e the expressions and s the state-
ments; n is an auxilliary production which denotes expression se-
quences of specific terms (identifiers or type-decorated identifiers
in this case). We use the +(e) to denote an n-ary operator (in
this case +, ∗, function application and the expression sequence
constructor ,). F denotes the floating point numbers, and string
denotes string literals delimited by ”. The single biggest difference
between Maple and other languages is that some of its fundamental
operations (like + and ∗) can return unevalated. In other words,
while 1 + 3 naturally evaluates to 4, x + 5 + y + 3 evaluates to
x+y+8 if x and y are symbols. In Maple, symbols are simply iden-
tifiers with no assigned value! The language even has a construct
for this, called uneval quotes; for example while sin(π/2) evalu-
ates to 1, ′sin′(π/2) evaluates to the expression sin(π/2) (which, if
further evaluated, will give 1). These first-class expressions really
are models of open terms, which few languages possess.

Figure 2 gives a few of the unusual rules for the operational seman-
tics for Maple. The first two rules say that unassigned identifiers are
fine in Maple, they stand for themselves. The next 3 rules are the
usual ones for +, but the last one on the first line says that adding
an identifier to anything will simply return an unevaluated +. We
then have a rule saying that the unevalation quotes do just that, they
prevent further evaluation. The next rule expresses that = is just a
data-constructor, so that when a boolean is needed (for example by
if), an implicit call to the built-in function evalb is performed,
and this function will either return a boolean or throw an exception.

On top of these unusual aspects to the semantics, many of the built-
in functions (there are 217 in Maple 10) have unusual semantics

c ::= Z | Q | F | string | identifier
e ::= c | +(e) | ∗(e) | −e | ee | e ∧ e | e ∨ e | ¬e | e xor e | e[e] | ′e′ | ‘e‘ | e :: e | e = e | e 6= e | e < e | e ≤ e | {e} | [e] |

e..e | e||e | e(e) | e:-e | args | nargs | hashtab(e) | , (e)
n ::= , (identifier) | , (identifier :: e)
s ::= e | s; s | e:=e | for e from e to e by e while e do s | for e in ee do s | try s (catch e: s)∗finally s | break |

next | error e | return e | if r else s (elif e then s)∗(else d)?
proc(n)local n global n description e option e returntype e ; s
module()local n global n export n description e ; s

Figure 1: Simplified Maple Abstract Grammar

x ∈ σ

σx

x /∈ σ

x

e1 ⇒ e3 e2 ⇒ e4

e1+e2 ⇒ e3+e4 i1+ i2 ⇒ i1+i2
i1, i2 ∈ Z

z1+ z2 ⇒ z1+z2
z1, z2 ∈ F e1 ⇒ e2

x+e1 ⇒ x+e2
x ∈ identifier

′e′ ⇒∗ e

e1 ⇒ e3 e2 ⇒ e4

e1 = e2 ⇒ e3 = e4

evalb(b) ⇒ true

if b then s1 else s2 ⇒ s1

Figure 2: Operational Semantics Fragment, expressions

as well. For example the built-in assigned is call-by-name even
though Maple is generally call-by-value (this function tests if an
identifier is assigned), the function op is a polymorphic decon-
structor which works over any value, map is polymorphic over
all values, unapply will take an expression and will abstract out
identifiers and return a procedure, subs will perform pure syntac-
tic substitution even if that implies name-capture, etc.

3. A PARTIAL EVALUATOR FOR MAPLE
This section presents an overview of MapleMIX. Abstract syntax
plays a major role in the design of our partial evaluator. The sys-
tem is structured as a specific sequence of program transformations,
with a special emphasis on special transformations occuring before
and after the specialization phase, inspired in part by the design
of some compilers [2]. We believe this approach leads to a highly
modular design for practical online partial evaluators of complex
languages. We often think of MapleMIX as an interpreter that has
the additional functionality of generating residual code for deferred
computations. MapleMIX contains an expression reducer that was
influenced by the cogen approach [18] to partial evaluation. Fur-
thermore we have implemented a novel online approach to handling
partially static data-structures such as lists and polynomials.

3.1 Characteristics
MapleMIX is a fully online1, syntax-directed, function-point poly-
variant partial evaluator, itself written in Maple. It was designed
with the goal to exploit as much static information as possible in or-
der to achieve good specialization. Maple has very good run-time
reification and reflection functions FromInert and ToInert.
We rely on access to the interpreter to ensure adherence to the op-
erational semantics. Maple’s automatic simplification feature, in-
stead of hindering us2, sometimes helps to slightly clean up residual
code.

As we are more concerned with with manipulating Maple code
than with producing generating extensions, MapleMIX is explicitly
not self-applicable. Thus we focus on offering the largest amount
of features and supporting the largest subset of Maple as possi-
ble. This is made much easier by not placing restrictions on what
language features may be used when writing the partial evaluator.

1No pre-analysis is performed
2The computer algebra literature is replete with examples of so-
called premature simplification which lead to incorrect results [15]

Also, since we are not trying to produce generating extensions, we
take the standard approach to partial evaluation (in other words mir-
roring an interpreter); we believe this has contributed to our PE be-
ing easier to refine and extend. Having said that, the expression
reducer was definitely inspired by an online cogen approach.

3.2 Input and Output
Traditionally the input to a partial evaluator is a complete program.
In contrast, MapleMIX has access to the source of the full Maple
library, as well as any other definitions in the current session. The
specialization process must therefore be initiated in a controlled
manner. Input to MapleMIX is a single function, called the goal
function, which will be treated as the starting point of specializa-
tion. The parameter list of the goal function will be the dynamic
inputs to the resulting specialized program. MapleMIX may gen-
erate several residual functions, which are packaged together with
the specialized goal function and returned as a Maple module. The
specialized goal function will become the main entry point of the
returned module. Other than preparing a goal function, there is
no need to perform any annotations, language transformations, etc,
MapleMIX works on normal Maple programs.

3.3 M-form
The Maple reification function ToInert will return the abstract
syntax tree of any Maple term, referred to as its inert form, which
essentially corresponds to the abstract grammar of Figure 1. As the
AST produced by ToInert was not designed with partial evalua-
tion in mind, we use syntactic transformations to M-form, designed
to be much more convenient for specialization. Traditionally many
existing partial evaluators first transform their input into a simpler
core language (for example C-mix to Core C [1]). This approach
reduces the syntactic forms that the specializer must support, at
the cost of losing certain invariants inherent with certain syntac-
tic forms. For example some languages (like Fortran 77) have for
loops that are guaranteed to terminate.

M-form both simplifies and adds to the inert form. Adding syntac-
tic forms does not make the specializer more complex (or longer)
but in fact makes it more compact. This seems to be because the re-
moval of certain redundant syntactic forms may actually add com-
plexity since the specializer will have to infer the information that
was removed by such a “simplifying” transformation. In the end,
while the inert form has 62 cases, M-form has 74.

Since MapleMIX is syntax-directed it is natural to use syntax trans-
formations and new syntactic forms to direct the specializer. Some
syntactic constructs in M-form are in fact only introduced by the
specializer, which performs on-the-fly insertion of these constructs
to proceed (see section 4.6). The design goals of the M-form is to
keep all static information available in the inert form intact, while
keeping the translation between these forms straightforward, and
to help with specialization. Below, we detail the main differences
between inert form and M-form.

3.3.1 Assignments
While Maple is an imperative language with global state and side-
effecting expressions, statements cannot occur in an expression con-
text, and thus the only expression which might create side-effects is
a function call. In order to separate the concerns of expression re-
duction and environment update, M-form adds the stipulation that
all expressions must be side-effect free.

The M-form translator maintains a list of known intrinsic functions.
An intrinsic function will never be specialized, instead any call to
an intrinsic function will be treated as an atomic operation that may
be performed at partial evaluation time. Most built-in functions
are considered intrinsic except side-effecting I/O functions. Some
library functions are also considered intrinsic in order to simplify
residual code. All non-intrinsic function calls are removed from
expressions by generating a new assignment statement for each call
and then replacing the original calls by the names generated3. We
call this a splitting transformation:

Original Code Transformed Code

a := f (g (x)) + h (x) ; m1 := ’ g (x) ;
m2 := ’ f (m1) ;
m3 := ’ h (x) ;
a := m2 + m3 ;

A new syntactic form of assignment is generated by this transfor-
mation, :=’, specifically to represent assignment of a function call
to a variable. This way the specializer can syntactically decide to
do a simple reduction, or perform specialization an entire function
body. The splitting transformation has the unfortunate effect of
possibly creating many new assignment statements. However, if
the specializer decides not to unfold a split function call, or if the
function unfolds into a single assignment statement, then we know
that the new variable is only assigned to once and only used once.
When translating back to Maple, such expressions will always be
inlined.

Maple allows expressions to be used in statement context, often
used in conjunction with Maple’s implicit return mechanism. How-
ever we do not want the statement specializer to have to account
for every expression form. The solution is to tag standalone ex-
pressions and standalone function calls (so that the tag implicitly
becomes a new statement form).

3.3.2 If Statements
If statements in Maple may have arbitrarily many elif blocks and
an optional else block. M-form has a simpler MIfThenElse con-
struct that always consists solely of a conditional expression and
two branches. Any Maple if statement with a list of elif blocks is
converted into nested MIfThenElse statements. Empty else blocks
are added as necessary. This transformation works hand-in-hand
with the splitting transformation in order to correctly maintain the
3this is essentially let insertion for an imperative language

ordering of function calls in conditional expressions:
Original Code Transformed Code

i f f (x) then
S1

e l i f g (x) then
S2

end i f

m1 := f (x) ;
i f m1 then

S1
e l s e

m2 := g (x) ;
i f m2 then

S2
e l s e
end i f

end i f

3.3.3 Loops
Inert form has two kinds of loop, both variations of for loops. There
is the common for loop for i from 1 to 10 do ... end do as well a
the for e in [1,2,3] do ... end do loop that accesses all elements
of a linear data structure such as a list or set, commonly called a
foreach loop. Both loops have an optional while clause, which is
checked on the start of each iteration, causing the loop to exit if the
expression is false. Most parts of a loop definition have defaults
and can be omited in concrete syntax, but are always present in the
AST. For example, a while loop is actually a for-from loop with all
default clauses except the while clause.

For loops and while loops contain different static information. Un-
like a while loop, a proper for loop where all write access to the
loop index variable is controlled by the loop statement itself will
not (by itself) be a source of non-termination. This is crucial if
the partial evaluator is to reliably unroll loops without risking non-
termination. While it is possible to have the specializer check this
dynamically, it is simpler to transfer the burden to the M-form
translator. Therefore in M-form we support three types of loops
instead of two4. These are the general while loop, a for-from loop
with an optional while condition, and the for-in loop with optional
while condition. Note that the for-from loop can be unrolled, but
the while condition (if present) must be checked on each iteration;
if it evaluates to false, unrolling is stopped. Any assignments
that are generated by splitting function calls out of a while condi-
tion expression are inserted both before the loop and in the body of
the loop at the bottom.

Currently MapleMIX does not support the use of next or break
inside a loop. If one is encountered during translation to M-form
an exception is thrown. There is however one case where a sim-
ple transformation can remove the use of next; we illustrate both
these ideas here:

Original Code Transformed Code

whi le f (x) do
i f C then

n e x t
end i f ;
S1 ;

end do ;

m1 := f (x) ;
whi le m1 do

i f not C then
S1 ;

end i f ;
m1 := f (x) ;

end do ;

3.3.4 Other Syntactic Forms
There are many other lesser transformations that are performed
when converting from inert form to M-form. For example, the ab-
stract syntax for function parameter lists can become quite convo-
luted in inert form. In M-form it has been cleaned up significantly
for the sole purpose of making it easier to deal with this construct in

4Assignment to the loop index variable is currently not supported.

the specializer. This is an example of a simplifying transformation.
Other transformations have to do with tables, which are a built-in
Maple datatype with language support. For example, Maple allows
the creation and initialization of a table at the same time using the
built-in table function. Dynamic uses of this particular function
are transformed into a series of table index assignment statements.
This relieves the specializer from having to deal with the table
function as a special case. Some of the resulting assignments may
be static and some may be dynamic at specialization time and will
be treated accordingly.

3.4 Further ideas.
The core module of the specializer has the task of deciding when
to share already specialized functions (via a simple hashing tech-
nique), as well as deciding when a specialized function should be
unfolded. It also remembers previously generated residual code for
later reuse. The expression reducer, given an M-form of an expres-
sion, will reduce it as far as possible using the static information
provided by the environment. It may return a static value or a dy-
namic M-form. Its implementation is inspired by the online cogen
approach. There is a module just for the implementation of the
function unfolding transformation, which can become complex in
certain contexts, for example when target function’s body contains
many return statements.

4. TECHNIQUES
In this section, we deal with the techniques we used in implement-
ing MapleMIX. If we used a standard technique, this is either men-
tioned quickly or sometimes that aspect is not covered at all. We
concentrate instead on what we perceive to be either novel tech-
niques or interesting variations on older techniques.

4.1 Expression Reduction
The expression reducer serves the role of evaluating expressions as
far as possible given the available information stored in the environ-
ment. The reducer supports operations on most Maple data types
from simple numbers and strings to lists, polynomials, higher-order
functions, arrays and tables. The implementation of the reducer is
inspired by an online cogen approach to PE as outlined by Sumii
and Kobayashi [16]. The idea is to replace the underlying operators
of the language with smarter ones that correctly handle dynamic
arguments. They first proposed this idea as a solution to the limi-
tations of type-directed partial evaluation, here we use the essence
of the idea in a syntax-directed online setting. A reduction function
is created for each pure Maple operator which works as follows: if
all arguments are static then apply the underlying Maple operator
on the arguments, essentially handing control over to the Maple in-
terpreter to perform the actual static operation; otherwise build a
dynamic expression and return it. Reduction of static expressions
is thus guaranteed to be identical to the already existing semantics
of Maple expressions.

4.2 Online Approach to Partially Static Data
In the context of Computer Algebra, it is very common to have par-
tially static data. For a program specializer to produce good results
it must use as much static information as possible. In many situa-
tions, while the exact value is not known, type information and/or
the “shape” of the value might still be statically known. For ex-
ample a list may have dynamic elements, however its length might
be static. Avoiding unnecessary approximations is key to preserv-
ing static information [14]. Our approach to supporting partially
static data is to take the idea of “smart operators” a step further, by

extending certain intrinsic functions with the additional ability to
properly handle dynamic terms. Take for example the list [a, b,
2] where a and b are dynamic; clearly the length of this list5 does
not depend on the values (or types) of a and b. We can determine
the length of the list at reduction time by examining the structure
of the M-form and counting the number of “holes” for data. In par-
ticular, the built-in Maple nops function can be used to return the
number of elements (operands) in a list. We have extended nops
with the ability to return a static result in the case where it is given
a partially static list as a dynamic input. This approach generalizes,
and we thus exploit the static information present within the dy-
namic representation. Several of Maple’s intrinsic functions have
been extended in this way to add support for partially static lists
and polynomials. Syntactic constructs such as indexing and list
concatenation have also been extended in a similar way. This is a
tedious task, and more research is needed to better understand what
is involved.

In order to propagate dynamic terms through the program they are
stored in the environment alongside static values. When the reducer
encounters a variable, it retrieves its representation from the envi-
ronment, which may store a static value, a dynamic representation
or not have a binding at all. If the variable is bound to a dynamic
representation then it is substituted. Special care must be taken not
to introduce duplicate computations in this way. A special syntactic
form MSubst is introduced by the reducer to track such substitu-
tions, consisting of the variable name and the dynamic representa-
tion retrieved from the environment, basically representing a let in-
sertion. If the dynamic expression is not consumed during further
reduction then the entire MSubst will be output by the reducer.
Later, when the M-form representation of the residual program is
being transformed back to inert form, the dynamic representation
part of the MSubst will be discarded and the name used instead.

Support for partially static terms has been explored mostly within
the context of offline PE. One approach is to use a binding time
analysis (BTA) to determine the binding times of individual ele-
ments of a partially static data structure [9]. Another approach uses
an abstract interpretation as a shape analysis to gather static shape
information as a pre-phase [7]. Our approach is completely online
and has the potential to exploit the full information available during
specialization. However it must be noted that quite a bit of custom
support for various dynamic representations must be added to the
reducer in order to achieve this.

All function calls within the expression must be to functions that
are considered intrinsic. These are pure functions that the special-
izer will treat as atomic in the sense that it will never try to spe-
cialize them. If a call to an intrinsic function has all arguments
static then the function will be applied at partial evaluation time.
Since any side-effects will go unnoticed it is essential that the func-
tion be side-effect free. Most built-in functions are pure except for
some I/O functions such as print and read. These will not be
considered intrinsic but will still be detected as built-in and so are
treated as a special case by the specializer. I/O functions will be
split out of expressions and always be residualized. Many non-
built-in functions can also be treated as intrinsic such as curry,
which performs partial application. Some library functions have
non-standard semantics such as seq (the function for sequence
comprehensions), which are also treated as special cases by the re-

5The similarity with parametric polymorphism is not accidental!

ducer6. The reducer contains a table of handlers for these “special”
functions. For example, all calls to the eval family of functions
(eval, evalb and evalf) are always residualized.

4.3 Closures
MapleMIX supports the use of static closures in the subject pro-
gram. The requirement for a closure is that its surrounding lexical
environment must contain a static value for any lexical local that
is encountered during the evaluation of the function body. Or put
more simply, when a lexical local is encountered its value must be
static. This means that the function’s closure can have dynamic
parts as long as they are never accessed. This may occur if a dy-
namic lexical local is in a branch of a static conditional that is never
evaluated. A lexical local may become dynamic at one point and
then acquire a static value again later; as long as it is not accessed
while dynamic, our restriction is not violated.

Maple is a dynamically typed language and as a result existing
Maple code contains a great deal of dynamic type tests (usually
as part of error checking code). Therefore, to be semantically cor-
rect, it is necessary that the reducer not change the type of any static
term. This poses a challenge for handling function closures, as they
must be represented as an active Maple function in order to be con-
sistent in our treatment of static values. However the values of the
function’s lexical locals are stored in the partial evaluator’s envi-
ronment. We solve this problem by performing a simple transfor-
mation on the body of the function. Each lexical local is replaced
by an application of an inline function. These “thunks” will call
back into the partial evaluator to retrieve the variable’s value, and
will throw an exception if there is no static value available. The
M-form of the closure is then converted into active Maple code.
This way a static function closure can be applied when needed, a
feature essential for supporting higher-order built-in functions such
as map and fold. If applied to some dynamic arguments it will
be converted back into M-form and specialized. This converting of
code to and from active Maple is inefficient but unavoidable with
this scheme.

4.4 Side Effects and Termination
Pure functional languages are characterized by referential trans-
parency, meaning that multiple calls to a function with the same
arguments will always produce the same result. This property al-
lows a specialization strategy where the partial evaluator does not
have to be concerned with the order of specialization of function
points [9]. The presence of side-effects and global state puts a re-
striction on the specialization strategy. The ordering of statement
execution must be respected during specialization and be preserved
in the residual code [1]. The result is a depth-first specialization
strategy where every time a function call is encountered it must be
specialized immediately. Because of nesting, there may be several
functions in the process of specialization at the same time.

MapleMIX uses a simple function sharing scheme for two pur-
poses: to reuse specialized functions in cases where multiple calls
to the same function with the same static arguments are encoun-
tered, and to avoid termination problems inherent with recursive
procedures. When a function call is encountered its call signa-
ture is computed. It will consist of values of static arguments and
placeholders for dynamic ones. If the call signature has not been

6Maple is a language that has “evolved” over 25 years, mostly by
non-programming-language experts and, unsurprisingly, has many
constructs which are “special”.

encountered before then the function is specialized. The call signa-
ture is then saved along with the specialized code. The next time
the same call signature is encountered the specialized code is sim-
ply retrieved and reused.

This strategy also improves termination properties of the partial
evaluator as call signatures are used to help detect static recursion.
The depth-first online specialization strategy makes it possible for
several functions to be in the process of deferred specialization. If
one of those functions is recursive (or mutually recursive) then the
problem of infinite specialization arises. The partial evaluator can
tell when a call signature refers to a function that is currently in
the process of being specialized. When such static recursion is de-
tected a call to the recursive function is simply residualized. This
strategy relies on detection of identical call signatures, thus if some
static value is changing under dynamic control, infinite specializa-
tion is still likely [9].

4.5 If Statements and the Online Environment
Partial evaluation of an if statement is done by fist reducing the
conditional expression. If it statically reduces to a boolean value
then the appropriate branch is simply fed to the statement sequence
specializer. The much more interesting case is when the conditional
reduces to a dynamic expression. The partial evaluator does not
know which branch to follow, so it must follow both.

Handling of if statements is very different than handling if expres-
sions in partial evaluation of expression oriented languages. There
are two main challenges: First, each branch must be able to mutate
the environment independently leading to the creation of two likely
different environments, and second, code that is below the if state-
ment must be handled correctly. The first problem can be handled
by copying the environment [1, 7]. However, for efficiency reasons
we do not wish to create two environments by copying (all or part
of) the initial environment. We also wish to have a solution that
scales to handling nested if statements in a straightforward man-
ner. Furthermore, code that comes after an if statement may have
to be specialized with respect to two different environments. We
have implemented the online environment specifically with these
two challenges in mind.

Our online environment is a stack of variable bindings. We shall
call each element of this stack a setting. The stack will grow with
each branch of a dynamic conditional. Any modifications to the
environment are recorded in the topmost setting. An environment
lookup initiates a linear search for the binding starting with the top-
most setting and working downwards. Thus a binding in a setting
will override any bindings of the same name in settings below it.
Each setting maintains a dynamic mask to represent static variables
that become dynamic. After the first branch of a dynamic condi-
tional has modified the environment it can be trivially restored to
its previous state via a simple pop.

Specialization of a dynamic if statement requires that all the code
that could execute after the if statement be specialized with re-
spect to each branch. In order to facilitate this, M-form is fur-
ther translated before specialization into a DAG (Directed Acyclic
Graph) representation. This is especially easy in Maple as the in-
ternal representation for expressions is as DAGs [11]. A pointer
is added to the bottom of each branch that will point to the code
that comes below the if statement. The code that comes below is
then removed from its original location. This transformation is then
performed recursively on each branch. The result is a DAG repre-

sentation in which all code that can be executed after a branch of
an if statement can be easily visited by simply following pointers,
schematically represented in Figure 3.

if B1 then
 if B2 then
 x := 1;

 else
 x := 2;

 end if;

else
 x := 3;

end if

 x := x * 10;

print(x);

if B1 then
 if B2 then
 x := 1;
 else
 x := 2;
 end if;
 x := x * 10;
else
 x := 3;
end if
print(x);

Figure 3: DAGform

4.5.1 Specialization Algorithm
The specialization algorithm for if statements, using the online
environment, proceeds as follows: Specialization of the first branch
begins by pushing a new empty setting onto the environment. All
effects of the statements in the first branch are recorded in this new
setting. Simply popping the stack restores the environment to the
state it was in before specializing the first branch. A new empty
setting is then pushed, and the second branch is specialized with
respect to the initial environment. If we keep a copy of each of
these newly popped settings, we can now easily compare the effects
of each branch on the current state. In pseudo-Maple, if the input
was if B then C1 else C2 end if ; S, the algorithm is

Listing 1: Pseudo code for dynamic if
Br := r e d u c e (B) ;
i f t y p e (Br , ’ dynamic ’) then

C1 ’ := g r o w a n d s p e c i a l i z e (C1) ;
i f b o t t o m r e a c h a b l e (C1 ’) then

S1 := g r o w a n d s p e c i a l i z e (S) ;
pop () ;

end i f ;
s e t 1 := t o p () ; pop () ;
C2 ’ := g r o w a n d s p e c i a l i z e (C2) ;
s e t 2 := t o p () ;
i f s e t 1 = s e t 2 or not b o t t o m r e a c h a b l e (C2 ’) then

pop () ; c a s e 1
e l s e

S1 := s p e c i a l i z e (S) ;
pop () ; c a s e 2

end i f ;
e l s e

Br i s s t a t i c , r e d u c e p r o p e r b r a nc h
end i f ;

In the above code, case1 indicates that the residual code
if B’ then C1’ else C2’ end if ; S1
is produced, while case2 corresponds to
if B’ then C1’; S1 else C2’; S2 end if ; .
The routine bottom reachable ensures that there is no escap-
ing control flow (like a return or an error), so that S is never
unnecessarily specialized. Duplication of S is avoided in situations
where execution of either branch would effect the environment in
the same way. This is common with error checking code where the
body of the if simply has an error statement. In the situation
where each branch produces a different state we get two special-
ized versions of S, which results in a high level of polyvariance.
The DAG form ensures that no code is specialized in an invalid
environment. An example of the results of this algorithm (where
<dynamic> stands for an arbitrary dynamic boolean expression)
can be seen in Figure 4

Original Code Specialized Code

i f <dynamic> then
i f <dynamic> then

x := 1 ;
p r i n t (x) ;

e l s e
x := 2 ;

end i f ;
p r i n t (x ∗1 0) ;

e l s e
x := 3 ;

end i f ;
p r i n t (x ∗1 0 0) ;

i f <dynamic> then
i f <dynamic> then

p r i n t (1) ;
p r i n t (1 0) ;
p r i n t (1 0 0)

e l s e
p r i n t (2 0) ;
p r i n t (2 0 0)

end i f
e l s e

p r i n t (3 0 0)
end i f

Figure 4: Example of if statement specialization
4.5.2 Comparison with other methods

A natural approach to specializing if statements is by merging en-
vironments [7]. The initial environment is duplicated by copying
it, then each branch of the dynamic conditional is specialized. The
two environments are then merged at the end in such a way that only
commonalities between the two environments are preserved. For
code like if <dynamic> then x := 1; else x := 2; end if , the two spe-
cialization environments will record different values for x. The
merged environment would then store as much static data as pos-
sible such as type, shape or a set of values. We could store that x
is a positive integer or that it may have a value from the set {1, 2}.
This way certain expressions involving x may still be static such as
type(x, integer) or x < 5, while others will be dynamic
such as x > 1. This approach discards static data by making ap-
proximations, which may lead to an unsatisfactory level of special-
ization. Furthermore the merging process may be very complex, it
requires copies of environments, and the reducer is more complex.
Our approach does not make approximations and it never copies
environments. However our approach may result in overspecial-
ization in that the differences between the code specialized in each
branch may be minimal.

Offline methods perform a Binding Time Analysis, which is essen-
tially a worst case analysis. Since it is safe to approximate every-
thing as dynamic and very difficult to guarantee that a result will be
static, any dynamic value tends to propagate through the program
creating a snowball effect. The same is mostly true for online meth-
ods in a functional setting. However in an online imperative setting
it is possible for a variable to change binding time! For example
it is possible for a static variable to become dynamic due to as-
signment to a dynamic expression or assignment within a dynamic
context. However with our online partial evaluator, it is possible
for a dynamic variable to become static (however unlikely it may
be to find code that does this). For example in
x := <dynamic>; ...; x := 5; the last assignment causes x to be bound
to the static value 5 in the online environment, regardless of the fact
that x was previously dynamic.

4.6 Static Loops
When all the control clauses of a for loop definition are static, the
loop may be unrolled, since in Maple for loops are guaranteed to
terminate whenever the body of the loop does not contain an as-
signment to the loop index variable. In that latter case, the entire
loop would effectively become dynamic. As MapleMIX is online
and we do not want to perform useless computation and then back-
track, this information needs to be detected syntactically, which is
why assignments to the loop index is not supported by MapleMIX.

An interesting challenge arises when we consider the case of dy-

namic conditionals within a static loop. Our if statement spe-
cialization algorithm relies on the ability of the specializer to have
access to the entire execution path that could occur after a dynamic
if statement, so that this path may be specialized with respect to
both branches. When a conditional is inside a loop then the ex-
ecution path includes all of the subsequent iterations of the loop!
A dynamic conditional will essentially cause the path of computa-
tions to split. The implementation of the online environment makes
it easy and efficient for the specializer to explore every possible
computation path.

Our solution to allow the computation path of a loop to split is
to use a novel on-the-fly syntax transformation technique. When
a static for loop is encountered it is removed and replaced with a
set of loop drivers; in effect, we are replacing our loops by smart
gotos! The loop drivers are placed at the end of each DAG path
in the body of the loop. The loop index variable is then set to its
initial value in the environment and the newly transformed loop
body is given to the statement sequence specializer. For example,
the Original Code in Figure 5, gets rewritten (in DAG M-form) as:

if d then
 x := x + 1;
 MForFromDriver(, , i, 1, 2, true)
else
 x := x + 2;
 MForFromDriver(, , i, 1, 2, true)
end if;

print(x);

There are two forms of loop drivers, one for for-from loops and
one for for-in loops; as they both work similarly, we will concen-
trate on the former. The MForFromDriver consists of 6 pieces
of information, namely: a pointer to the top of the loop body, a
pointer to the code that comes after the loop, the name of the loop
index variable, the by value of the loop, the to value of the loop (i.e.
the termination value), and the while condition. The operational
semantics of this construct are straightforward. Note that the value
of the loop variable is retained in the environment after the loop has
been fully unrolled, as it is legal to refer to this variable in Maple
after the loop has ended. If the loop bounds are such that the loop
will never iterate, then the entire loop is eliminated. If a while con-
dition exists, it is checked on each iteration; if it evaluates to false
at any point then the unrolling is stopped.

The result is that the context of the loop is propagated into each
computation path in the body of the loop. The computation path
may continue to split as long as there are dynamic conditionals.
The advantages to this approach are a high level of specialization
and the lack of any need to merge environments. The main disad-
vantage is a possible exponential blowup in the size of the residual
code. In our experiments we have not found this to be a problem, in
fact we have found that this scheme works well in situations where
a conditional is dynamic on some iterations and static on others.
An example is iterating over a partially static list when the loop
contains a conditional that depends on the binding time of the list
elements. However, the code in Figure 5 would be of size O(2n) if
the loop were from 1 to a static positive integer n.

4.7 Dynamic Loops
Dynamic loops pose a significant challenge to specialization. Since
it is unknown how many times a dynamic loop will iterate, it must

Original Code Specialized Code

x := 1 ;
f o r i from 1 to 2 do

i f <dynamic> then
x := x + 1 ;

e l s e
x := x + 2 ;

end i f ;
end do ;
p r i n t (x) ;

i f <dynamic> then
i f <dynamic> then

p r i n t (3)
e l s e

p r i n t (4)
end i f

e l s e
i f d then

p r i n t (4)
e l s e

p r i n t (5)
end i f

end i f ;

Figure 5: Example of dynamic conditional in a static loop
always be residualized. It would be unsound to partially evaluate
the body of the loop with respect to the current environment. The
problem is that the loop may contain a static assignment, however
that assignment may be performed an unknown number of times,
making the assignment dynamic.

Partial evaluators for other imperative languages take novel and
complex approaches to analyzing dynamic loop bodies. For exam-
ple the MATLAB partial evaluator performs an iterative data-flow
analysis involving abstract interpretation [7]. MapleMIX takes a
very conservative approach to specialization of dynamic loops. A
simple syntactic analysis is done on the body of the loop in order
to detect unsupported cases. However our approach is simple to
implement and still works for many real-world situations. We will
not describe this approach here, we leave it as future work to add
sophisticated support for dynamic loops to MapleMIX.

4.8 Static Data and Lifting
Sometimes a static value must be embedded within a dynamic con-
text, this process is known as lifting. Traditionally this is done by
inserting a textual representation of the value within the residual
program. This is easily achieved for simple types such as integers
and strings but for more complex types lifting may be difficult or
even not possible [7]. Structured types may be difficult to rebuild,
and may not have a representation that can occur on one line.

Fortunately it is possible for MapleMIX to sidestep the problem of
lifting static data in most situations. MapleMIX does not gener-
ate residual code as text, instead it generates an inert form repre-
sentation that is converted by Maple itself directly into an active
(executable) internal representation. Inert form provides a very
handy construct Inert VERBATIM for embedding any Maple
value within an inert representation.

All static data is represented in M-form by wrapping it in an MStatic
constructor. The FromM translator will translate MStatic directly to
Inert VERBATIM, making the embedding of static data in the

residual program an extremely simple operation. Complex types
such as static tables are simply embedded directly into the residual
program. Allowing a certain flexibility in the output language can
often be a convenient way to solve challenging problems in partial
evaluation.

5. RESULTS
There are two approaches when attempting to write a program that
solves a family of computational problems; write a family of spe-
cific subprograms for each problem, or write one generic program
that solves all the problems. The generic program is often easier

to write, maintain and extend. However it will not be as efficient
as the specialized programs. Listing 2 presents an example of a
parameterized in-place quicksort algorithm. Two design decisions
have been abstracted as functional parameters: the choice of pivot,
which effects the complexity properties of the algorithm, and the
choice of comparison function.

Listing 2: In-place QuickSort
swap := proc (A, x , y) l o c a l temp ;

temp := A[x] ; A[x] := A[y] ; A[y] := temp ;
end proc :
q u i c k s o r t := proc (A, m, n , piv , comp) l o c a l p ;

i f m < n then
p := p a r t i t i o n (A, m, n , piv , comp) ;
q u i c k s o r t (A, m, p−1, piv , comp) ;
q u i c k s o r t (A, p +1 , n , piv , comp) ;

end i f ;
end proc :
p a r t i t i o n := proc (A, m, n , p i v o t , compare)

l o c a l p i v o t I n d e x , p i v o t V a l u e ,
s t o r e I n d e x , i , temp ;

p i v o t I n d e x := p i v o t (A, m, n) ;
p i v o t V a l u e := A[p i v o t I n d e x] ;
swap (A, p i v o t I n d e x , n) ;
s t o r e I n d e x := m;
f o r i from m to n−1 do

i f compare (A[i] , p i v o t V a l u e) then
swap (A, s t o r e I n d e x , i) ;
s t o r e I n d e x := s t o r e I n d e x + 1 ;

end i f ;
end do ;
swap (A, n , s t o r e I n d e x) ;
re turn s t o r e I n d e x ;

end proc :

Function qs1 which calls the quicksort function with static
parameters for the pivot and compare functions. The given pivot
function will return the index of the last element of the section of
the array that is being sorted. Maple’s own built-in <= function is
used as the compare function.
qs1 := proc (A, m, n) l o c a l p , c ;

p := (A, m, n) −> n ; c := ‘ <= ‘;
q u i c k s o r t (A, m, n , p , c)

end proc :

Running MapleMIX on qs1 produces a highly specialized result
as can be seen in Listing 4. All non-recursive function calls have
been in-lined and the higher order functional parameters have been
integrated into the residual program at their points of use. The op-
timizations lead to a 500% performance increase.

Listing 3: Specialized QuickSort
q u i c k s o r t 1 := proc (A, m, n)

l o c a l p i v o t I n d e x 1 , p i v o t V a l u e 1 , temp1 ,
s t o r e I n d e x 1 , i1 , temp2 , temp3 , p ;

i f m < n then
p i v o t I n d e x 1 := n ;
p i v o t V a l u e 1 := A[p i v o t I n d e x 1] ;
temp1 := A[p i v o t I n d e x 1] ;
A[p i v o t I n d e x 1] := A[n] ;
A[n] := temp1 ;
s t o r e I n d e x 1 := m;
f o r i 1 from m to n − 1 do

i f A[i 1] <= p i v o t V a l u e 1 then
temp2 := A[s t o r e I n d e x 1] ;
A[s t o r e I n d e x 1] := A[i 1] ;
A[i 1] := temp2 ;
s t o r e I n d e x 1 := s t o r e I n d e x 1 + 1

end i f

end do ;
temp3 := A[n] ;
A[n] := A[s t o r e I n d e x 1] ;
A[s t o r e I n d e x 1] := temp3 ;
p := s t o r e I n d e x 1 ;
q u i c k s o r t 1 (A, m, p − 1) ;
q u i c k s o r t 1 (A, p + 1 , n)

end i f
end proc

All CASes use generic solutions in their approach to certain prob-
lems. For example, when asked for the degree of a polynomial,
degree(a∗xˆ2 + b∗x + c), Maple will respond with 2 as an answer.
However this answer ignores the case when a = 0. If that ex-
pression is viewed as a polynomial in the domain Z[a, b, c][x], then
Maple’s answer is indeed correct. If instead one were to view it
as a parametric polynomial in Z[x] with parameters a, b, c ∈ C,
this becomes a so-called generic solution, in other words, correct
except on a set of co-dimension at least 1. Interestingly enough this
is termed the specialization problem [3], and is encountered in any
parametric problem in which certain side-conditions on the param-
eters must hold so that the answer to the global problem is correct.
In particular we are looking for precise answers of the following
form:

degree(a · x2 + b · x + c, x) =

8><>:
2 a 6= 0

1 a = 0 ∧ b 6= 0

0 otherwise.

In order to use partial evaluation toward this goal, one must first
be willing to change the representation of answers. In our case we
will use a residual program to represent the answer to a paramet-
ric problem, as programs can be a better representation of answers
than expressions for many tasks. In our encoding of answers the
if-then-else statement will be used to represent the cases.
The next listing shows a program that computes the degree of a
polynomial. It is safe to use Maple’s built-in degree function
because it will always return a conservative answer as explained
above.
c o e f f l i s t := proc (p) l o c a l d , i ;

d := d e g r e e (p , x) ;
re turn [seq (c o e f f (p , x , d−i) , i = 0 . . d)] ;

end proc :
mydegree := proc (p , v) l o c a l l s t , i , s ;

l s t := c o e f f l i s t (p , v) ; s := nops (l s t) ;
f o r i from 1 to s do

i f l s t [i] <> 0 then return s−i end i f ;
end do ;
re turn − i n f i n i t y ;

end proc :

In order to use PE to extract the cases we must treat the polyno-
mial coefficients as dynamic variables. Here most of the structure
of the polynomial is static so a large amount of specialization is
possible. Our treatment of partially static data structures is crucial
toward getting a suitable result. In particular the coeff function
has been extended in the reducer to be able to return the dynamic
coefficients of the partially static polynomial. The function
goal :=(a ,b,c)−>mydegree(a∗xˆ5+b∗x+c, x) when called directly (with
symbols for a, b, c) will return 5, but residualizes to
proc (a , b , c)

i f a <> 0 then 5
e l i f b <> 0 then 1
e l i f c <> 0 then 0
e l s e − i n f i n i t y end i f

end proc

Our Calculemus paper [10] shows larger examples involving sym-
bolic integration (of particular interest to people in computer al-
gebra) and another involving Gaussian Elimination, with similar
results. The Gaussian elimination example in particular requires
all of the techniques we have outlined in this paper to successfully
work. It involves 2 static loops over a partially static data-structure,
where the inner loop contains a dynamic if statement. However,
using a completely vanilla Gaussian Elimination routine and our
partial evaluator, we were able to reproduce the results of [3] with-
out having to invent a specialized algorithm!

Further to [10], as a more classical test of our partial evaluator,
we also wrote an interpreter (in Maple) for a small imperative lan-
guage. Our partial evaluator was able to remove almost all of the
interpreter overhead (only environment manipulation remained); in
particular, it was able to specialize a recursive (purely functional)
binary powering function into an equivalent straight-line imperative
program when given a static n. A simple static single-use post-
processor could be written to eliminate all remaining overhead.

6. CONCLUSION
MapleMIX is a syntax-directed online partial evaluator which pro-
cesses a form of abstract syntax we call M-form. This M-form
is designed to translate Maple’s program representation into one
more suited to the needs of a specializer. Contrary to most other
approaches, our intermediate form contains more primitives than
the language itself, which we believe has greatly contributed to the
modularity and extensibility of our online partial evaluator.

MapleMIX uses highly online strategies when specializing state-
ments. The online environment has been designed with the depth-
first strategy and dynamic conditionals in mind. Transformation to
DAG form and a novel approach to treating static loops by perform-
ing on-the-fly syntax transformations allows precise specialization
without the need to discard static information or merge environ-
ments.

We believe that we have achieved our goals of writing an effective
online partial evaluator for a large, dynamic language like Maple.
It allows us to write more generic yet still efficient code, as well as
being able to extract more information out of specific algorithms in
the form of what we call “residual theorems”.

We plan to continue exploring the applications of partial evaluation
to computer algebra. We want to try to apply our PE to larger pieces
of Maple’s own library — but to do so, we need to take care of some
Maple-specific oddities (like the so-called last-name-eval rules for
tables and procedures, weird parameter passing exceptions, etc), as
well as implemented many more “smart” builtins (we need roughly
100 of the 217 builtins to be made smart to get good results on the
larger Maple routines). However, it does appear that this should
result in some efficiency gains (because of generic code being spe-
cialized) as well as “information extraction” from non-parametric
routines. All the code and a substantial test suite is available by
emailing either authors; we will make the code publicly available
in the coming year.

7. REFERENCES
[1] L. O. Andersen. C program specialization. Technical report,

DIKU, University of Copenhagen, May 1992.

[2] A. W. Appel. Modern Compiler Implementation: In ML.
Cambridge University Press, New York, NY, USA, 1998.

[3] C. Ballarin and M. Kauers. Solving parametric linear
systems: an experiment with constraint algebraic
programming. SIGSAM Bull., 38(2):33–46, 2004.

[4] J. Carette. Gaussian elimination: a case study in efficient
genericity with metaocaml. Science of Computer
Programming, 62(1):3–24, September 2006. Special Issue on
the First MetaOCaml Workshop 2004.

[5] J. Carette and S. Forrest. Mining Maple code for contracts. In
Ranise and Bigatti [13].

[6] J. Carette and O. Kiselyov. Multi-stage programming with
functors and monads: Eliminating abstraction overhead from
generic code. In GPCE, pages 256–274, 2005.

[7] D. Elphick, M. Leuschel, and S. Cox. Partial evaluation of
MATLAB. In Proceedings of the second international
conference on Generative Programming and Component
Engineering, pages 344–363. Springer-Verlag New York,
Inc., 2003.

[8] D. Gruntz and M. Monagan. Introduction to Gauss.
SIGSAM BULLETIN: Communications on Computer
Algebra, 28(2):3–19, Aug. 1994.

[9] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation. Prentice
Hall International(UK) Limited, 1993.

[10] M. Kucera and J. Carette. Partial evaluation and residual
theorems in computer algebra. In Ranise and Bigatti [13].

[11] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn,
S. M. Vorkoetter, J. McCarron, and P. DeMarco. Maple 10
Advanced Programming Guide. Waterloo Maple Inc., 2005.

[12] D. R. Musser and A. A. Stepanov. Generic programming. In
ISSAC 1988: Proceedings of the International Symposium on
Symbolic and Algebraic Computation, volume 358 of
Lecture Notes in Computer Science, pages 13–25.
Springer-Verlag, 1989.

[13] S. Ranise and A. Bigatti, editors. Proceedings of Calculemus
2006, Electronic Notes in Theoretical Computer Science.
Elsevier, 2006.

[14] E. Ruf and D. Weise. Preserving information during online
partial evaluation. Technical Report CSL-TR-92-517,
Stanford University, April 1992.

[15] D. Stoutemeyer. Crimes and misdemeanors in the computer
algbebra trade. Notices of the AMS, pages 701–785, 1991.

[16] E. Sumii and N. Kobayashi. Online type-directed partial
evaluation for dynamically-typed languages. Computer
Software, Iwanami Shoten, Japan, 17(3):38–62, May 2000.

[17] E. Sumii and N. Kobayashi. A hybrid approach to online and
offline partial evaluation. Higher-Order and Symbolic
Computation, 14(2/3):101–142, 2001.

[18] P. Thiemann. Cogen in six lines. In Proc. ACM SIGPLAN
International Conference on Functional Programming 1996,
pages 180–189, May 1996.

[19] P. Thiemann. The PGG System - User Manual, March 2000.

[20] P. Thiemann and D. Dussart. Partial evaluation for
higher-order languages with state. available from first
author’s web page, July 1999.

