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Abstract
We have implemented a partial evaluator for Maple. One of the applications of this partial
evaluator is to find, in Maple, what is the difference between generic or symbolic eval-
uation, and complete evaluation. More precisely, when asked degree(a*xˆ2+3,x),
Maple replies 2, which is generically true. However, we are interested in the residual for-
mula ¬(a = 0) which, as a guard, makes the answer 2 correct. While special algorithms
have been derived in the past for this particular situation, we show how we can derive many
of these algorithms as special cases of partially evaluating Maple code.
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1 Introduction

A frequently controversial aspect of computer algebra systems (CAS) is their use
of generic solutions to different problems. For example, all dynamically typed
CASes 3 will return 2 when asked what is the degree in x of the expression a ·
x2 + b · x + c. If one were to view that expression as a polynomial in the Domain
Z[a, b, c][x], then that is indeed correct. If instead one were to view it as a para-
metric polynomial in Z[x] with parameters a, b, c ∈ Z, this becomes a so-called
generic solution, in other words correct except on a set of co-dimension at least
1. This is frequently termed the specialization problem, and is encountered in any
parametric problem in which certain side-conditions on the parameters must hold
for the generic answer to be correct.

Our goal here is to show something which might be surprising to most CAS
system-builders: the knowledge necessary to return complete solutions instead of
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merely generic solutions is already present in a CAS written in an appropriately
high-level programming language 4 ! In other words, we can take an algorithm
written non-parametrically (but over a suitably general algebraic domain), and re-
use it over a parametric domain.

To obtain such a result, one must first be willing to change the representation
of “answers”. As has already been argued elsewhere[3], programs are frequently
much better representations than expressions for many tasks. This paper offers
yet another example of this. Once this shift has been accomplished, various pro-
gram transformation techniques become applicable. For our purposes, instead of
looking for an algorithm A to solve a problem P over a very general domain, (i.e.
A(P ) gives the answer we are looking for), we instead look for an algorithm B
which simultaneously solves problem P ′ over explicit domains (like Z) and gives
(correct) generic answers to parametric problems. Then we use a program trans-
formation technique called partial evaluation to give us what we are looking for.
More specifically, given a parametric problem Q, we use PE(dBe, Q). By dBe we
mean a representation of the algorithm B. A partial evaluator takes as input a pro-
gram representation (here dBe and the static (or unchanging) input to that program.
The result is a new program which takes as input the dynamic (or varying) inputs to
the original program B, and finally produces the desired output. This is essentially
the situation we are faced in when looking at parametric problems. Optimally, the
results we are looking for are always of the form

degree(a · x2 + b · x + c, x) =


2 a 6= 0

1 a = 0 ∧ b 6= 0

0 otherwise.

Instead of using an expression encoding (as in the above), we will use a program,
where if-then-else will be used to represent the cases. Finally, we will call
guarded equations (like a 6= 0 → 2) residual theorems. This perhaps should be
simply termed a “guarded result”, but in the context of partial evaluation it makes
sense to use the qualifier residual instead. In effect, what we call a residual theorem
is both a set of residual proof obligations, as well as a complete set of correct
answers to the original problem.

In the next section, we will outline our main tool, partial evaluation. In section
3, some details of our implementation of a partial evaluator for Maple can be found,
with more details available in [9]. For reasons of space, we cannot give a real intro-
duction to the specialization problem, and instead refer the reader to Ballarin and
Kauers’ excellent SIGSAM Bulletin article [2] (and the references therein). The
next section displays our results; we show how a general degree routine, a general
Gaussian Elimination routine, and a mini-integrator can be properly specialized.
We finish with some conclusions and outline where we want to take this work.

4 We define appropriate to mean that current partial evaluation techniques are applicable and suc-
cessful
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2 Partial Evaluation

Partial evaluation (PE) is a program transformation technique that fixes a subset
of a program’s inputs to specific values, then generates a specialized version of
the program based on those values. The resulting program is called the residual
program or specialized program. Essentially partial evaluation attempts to execute
a program with some of the inputs missing. Program statements and expressions
that cannot be fully evaluated due to missing information are reduced as much as
possible, and then residualized. The residual program will finish the computation
when the rest of the inputs become available. The fixed input and all information
known at partial evaluation time is described as static, and all program variables
that have unknown value are called dynamic. These classifications are known as
binding times.

Partial evaluation performs aggressive optimizations including constant propa-
gation, loop unrolling, function unfolding and so on. It can be very useful when
some particular inputs to a program change infrequently. As much computation
is performed at partial evaluation time as possible, and thus the specialized pro-
gram can be considerably optimized. The classical example is that of a powering
function pow which computes xn for n ≥ 0. Of course, in the context of a sym-
bolic computation system like Maple, this is rather pointless, since this can be done
symbolically. An example which cannot be done purely symbolically would be

c o n d e x p r := proc ( cond , x , y )
i f cond ( x , y ) then x + y
e l s e x − y
end i f

end proc

Original routine.

‘ c o n d e x p r <‘ := proc ( x , y )
i f x < y then x + y
e l s e x − y
end i f

end proc

Specialized code with cond = ‘<‘
Attempting to “run” cond_expr with cond set to ‘<‘ and other parameters

symbolic predictably leads to a run-time error as the boolean condition cannot (yet)
be evaluated. However the specialized code is more efficient as a parameter and a
function call have been removed.

Notice also that in the first example, all references to the static parameter n
have been removed and all of the conditionals, function calls, subtractions, and
parameter bindings have been performed at partial evaluation time. The only oper-
ations remaining are the multiplications that the partial evaluator could not perform
because the input variable x was dynamic.

There are two main flavors of partial evaluation, online and offline. An offline
partial evaluator does not use the concrete values of program variables when mak-
ing the decision to remove or residualize a program construct [8]. Offline partial
evaluators depend on one or more preliminary analysis phases to gather information
to be used by the specializer. The most common analysis is binding time analysis
(BTA), which is used to gather binding time information. Whether to each program
fragment can be removed (i.e. pre-computed) or needs to be residualized is decided
during this preprocessing step.
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A partial evaluator is said to be online if the concrete values of program vari-
ables computed during specialization can affect the choice of action taken. An
online PE makes the remove/residualize decision during specialization, and there-
fore has much more information available about variables, including possibly their
types and values. It is believed that online partial evaluation is usually more pre-
cise than offline, leading to better specialization [6]. Since all decisions are made
during specialization, an online partial evaluator is very reactionary in its compu-
tations, as it has no prior knowledge of program points it has yet to encounter. The
degree of specialization resulting from an online strategy is directly related to the
specializer’s ability to infer and maintain as much static information as possible
[10].

Online PE can be more precise than offline, however it is frequently less effi-
cient mainly due to the fact that there is more decision making and environment ma-
nipulation during specialization. In particular the binding times of variables must
be examined often. Hybrid online/offline approaches have been explored in order
to exploit the specialization benefits of online and the efficiency benefits of offline.
Sumii [13] showed how a type-based representation analysis could improve the per-
formance of an online PE by adding a limited amount of binding time information
that optimizes the specialization process by removing unnecessary computation.
Unfortunately, as Maple is fundamentally dynamically typed such an approach is
extremely difficult for Maple. A partial evaluator lies somewhere in between an
interpreter and a compiler. When it evaluates code, it is acting as an interpreter, and
when it is generating residual code, it is acting as a compiler [11]. If a PE is run on
a program with all inputs given, then the PE will completely evaluate the program
and produce a static result. This shows that a PE completely subsumes the func-
tionality of an interpreter. On the other hand, if a PE is run on a program without
any inputs given it may still be able to perform optimizations. This shows that a
PE is complementary to an optimizing compiler. A PE differs from an optimizing
compiler in that a PE will generate several specialized versions of a particular pro-
gram point based upon multiple usages with different static values; this is known
as polyvariance. Furthermore, a PE will have to deal with strict constructs such
as dynamic conditionals, so in general termination of the partial evaluator can be
an issue, and is not always guaranteed. Finally, it is up to the programmer to initi-
ate the PE process and to provide information to guide the process in the form of
static inputs. Compiler optimization techniques are usually completely automatic,
requiring no additional information to be provided by the programmer.

While it is possible to bootstrap partial evaluation through self-application (lead-
ing to the Futamura projections [8]), this is usually very difficult. A more direct
approach is to treat a program as its own generating extension by extending the
semantics of the language with support for dynamic constructs. This is known as
the cogen approach [14,12] to partial evaluation.
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3 Maple Partial Evaluator

We have implemented a partial evaluator called MapleMIX for a subset of the
Maple programming language. This section is a very concise overview of the main
technical points, many more details are available from [9]. It has the following
characteristics:
• Online. No pre-analysis of the code is performed. The PE is written to exploit

as much static information as possible in order to achieve good specialization.
Furthermore we have implemented a novel online approach to handling partially
static data-structures such as lists and polynomials.

• Written in Maple. This allows direct access to the reification/reflection func-
tions of Maple (i.e. FromInert and ToInert) as well as access to the un-
derlying interpreter. This allows us to stay as close to the semantics of Maple as
possible. Furthermore scanning and parsing of Maple programs does not need to
be considered. Maple’s automatic simplification feature, instead of hindering us,
sometimes helps to slightly clean up residual code.

• Function-point polyvariant. Whenever necessary, the partial evaluator will
generate several specialized versions of a function.

• Syntax-directed. Maple allows easy access to the abstract syntax tree of a term
through its ToInert function. In this way the entire core library of Maple may
be easily retrieved. Furthermore we have used transformations on the abstract
syntax to facilitate the specialization process. We believe this approach leads to
a highly modular design for practical online partial evaluators.

MapleMIX has been designed as an interpreter that has the additional func-
tionality of generating residual code for deferred computations that cannot be per-
formed at partial evaluation time [15]. Through Maples reification function, MapleMIX
has access to the code of the entire Maple library. Only the bodies of built-in rou-
tines are unaccessible as they are implemented directly in the Maple kernel.

MapleMIX maintains a callstack of environments to store all statically known
values. If there is no static binding for a variable in the environment then it is
dynamic. The presence of side-effects and global state puts a restriction on the spe-
cialization strategy; the ordering of statement execution must be respected during
specialization and be preserved in the residual code [1]. The result is a depth-first
specialization strategy, where a function call is specialized as it is encountered.
Thus there may be several functions in the process of specialization at the same
time.

The partial evaluator must be able to handle dynamic conditionals correctly.
This presents two main challenges: firstly, each branch must be able to mutate
the environment independently, leading to the creation of two likely different envi-
ronments, and second, code that is below the if statement must be handled in the
correct environment.

For efficiency reasons we do not wish to create two environments by copying
(all or part of) the initial environment. Our solution is to implement the online
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environment as a stack of variable bindings. We shall call each element of this
stack a setting. The stack will to grow with each branch of a dynamic conditional.
Any modifications to the environment are recorded in the topmost setting. An en-
vironment lookup initiates a linear search for the binding starting with the topmost
setting and working downwards. Each setting maintains a dynamic mask to rep-
resent static variables that become dynamic. After the first branch of a dynamic
conditional has modified the environment it can be restored to the state before the
stack was grown by simply popping the stack.

Code coming after an if statement may have to be specialized with respect to
two different environments. This is achieved by representing the input program as a
DAG where each statement sequence ends with a pointer to the statement sequence
which could be executed next.

3.1 M-form

MapleMIX is a syntax-directed partial evaluator, proceeding through the special-
ization process by following the structure of the abstract syntax. However, as the
inert form given by Maple’s ToInert is not always the most convenient form to
manipulate, we introduce a new form, M-form, which better serves our purpose.

Traditionally many existing partial evaluators first transform their input into a
simpler language. For example the C partial evaluator C-mix first transforms its
input into a base language called Core C [1]; they remove all loops and replace
them with conditional jumps and GOTOs. This approach reduces the syntactic
forms that the specializer must support. The disadvantage is that invariants inherent
with certain syntactic forms are lost. Some languages (e.g. Fortran) have for
loops that are guaranteed to terminate. M-form is designed to meet the needs of the
specializer, and especially to keep the specializer as small and simple as possible.
As such, we found that having redundant syntactic forms (i.e. multiple kinds of
assignments) did not make things harder, and in fact made things more precise since
having to recover invariants from over-simplistic core language was much more
difficult. Translation from inert form to M-form is nevertheless straightforward.
• In order to separate the concerns of expression reduction and environment up-

date, M-form stipulates that all expressions must be side-effect free. This is
achieved by splitting non-intrinsic function calls out of expressions and generat-
ing new assignment statements.

• If statements in Maple may have arbitrarily many elif blocks and an optional else
block. In M-form, an if statement must consist of a conditional expression and
exactly two branches. This transformation is achieved by replacing elif blocks
by nested if-else statements.

• Inert form mixes for and while loops; M-form syntactically separates these
out. This way the specializer can safely unroll a for loop without risking non-
termination (assignment to the loop index variable is not allowed).

• There are several other transformations performed for the purpose of conve-
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nience in the sense that they reduce the complexity of the specializer.

3.2 Expression Reduction and Partially Static Terms

The expression reducer evaluates expressions as far as possible given the available
static information. The reducer supports operations on most Maple datatypes from
simple numbers and strings to lists, higher-order functions and tables. The imple-
mentation of the reducer is inspired by an online cogen approach to PE as outlined
by Sumii [12]. The idea is to replace the underlying operators of the language with
smarter ones which correctly handle dynamic arguments.

This scheme has been extended to provide a novel approach to handling par-
tially static data structures. For example a list may have dynamic elements, but
the size of the list may be statically known. Thus it may still be possible to it-
erate over a list even though some of its elements are dynamic. This is achieved
by taking the idea of “smart operators” a step further, by giving certain intrinsic
functions the additional ability to properly handle dynamic terms. For example
a dynamic list [a, b, 2] where a and b are dynamic local variables will be rep-
resented in M-form as MList(MExpSeq(MLocal("a"), MLocal("b"),
MStatic(2))). Clearly the size of the list is statically known, and we can ex-
ploit such static information present within the dynamic representation. For exam-
ple the built-in Maple nops function has been extended (in MapleMIX) to return
a static result in such cases. Several of Maple’s built-in functions (and also some
syntactic constructs) have been extended to add support for partially static lists and
polynomials.

In order to propagate dynamic terms through the program, they are stored in
the environment alongside static values. When the reducer encounters a variable
it retrieves its representation (if available) from the environment. If the variable is
bound to a dynamic expression then it is substituted for that expression. Special
care must be taken not to introduce duplicate computations. A special syntactic
form is used to track such substitutions, if the dynamic expression that was retrieved
from the environment is not consumed then it will not be residualized, instead the
variable for which it was substituted is residualized.

Support for partially static terms has been explored mostly within the context of
offline PE. One approach is to use a BTA to determine which elements of a partially
static data structure are static and which ones are dynamic. Another approach uses
abstract interpretation as a shape analysis to gather static shape information as a
pre-phase [7]. Our approach is completely online and exploits the full information
available during specialization.

In traditional PE, especially when a BTA is used, it is very common for values
to go from static to dynamic. Thus a snowball effect may be observed in which
more and more constructs become dynamic. With our approach it is possible for
reduction involving a dynamic term to still result in a static value. One side effect
of this approach is that the PE tends to generate residual code that becomes dead
code as dynamic information leads to static computations. Dead code is removed
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by a simple post-phase cleanup.

3.3 Parameterization and optimization

There are two approaches when attempting to write a program that solves a family
of computational problems; write a family of specific subprograms for each specific
problem, or write one generic program that solves all the problems. The generic
program is easier to write, maintain and extend. However it will not be as efficient
as the specialized programs.

Listing 1 presents an example of a parameterized in-place quicksort algorithm.
Two design decisions have been abstracted as functional parameters. First the
choice of pivot, which effects the complexity properties of the algorithm. Second
the choice of comparison function.

Listing 1: In-place QuickSort
1 swap := proc (A, x , y ) l o c a l temp ;
2 temp := A[ x ] ; A[ x ] := A[ y ] ; A[ y ] := temp ;
3 end proc :
4

5 p a r t i t i o n := proc (A, m, n , p i v o t , compare )
6 l o c a l p i v o t I n d e x , p i v o t V a l u e , s t o r e I n d e x , i , temp ;
7 p i v o t I n d e x := p i v o t (A, m, n ) ;
8 p i v o t V a l u e := A[ p i v o t I n d e x ] ;
9 swap (A, p i v o t I n d e x , n ) ;

10 s t o r e I n d e x := m;
11 f o r i from m to n−1 do
12 i f compare (A[ i ] , p i v o t V a l u e ) then
13 swap (A, s t o r e I n d e x , i ) ;
14 s t o r e I n d e x := s t o r e I n d e x + 1 ;
15 end i f ;
16 end do ;
17 swap (A, n , s t o r e I n d e x ) ;
18 re turn s t o r e I n d e x ;
19 end proc :
20

21 q u i c k s o r t := proc (A, m, n , p i v o t , compare ) l o c a l p ;
22 i f m < n then
23 p := p a r t i t i o n (A, m, n , p i v o t , compare ) ;
24 q u i c k s o r t (A, m, p−1, p i v o t , compare ) ;
25 q u i c k s o r t (A, p +1 , n , p i v o t , compare ) ;
26 end i f ;
27 end proc :

Listing 2: Sorting ascending with pivot last element
1 qs1 := proc (A, m, n ) l o c a l p , c ;
2 p := (A, m, n ) −> n ;
3 c := ‘ <= ‘;
4 q u i c k s o r t (A, m, n , p , c )
5 end proc :
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Listing 3: Specialized QuickSort
1 q u i c k s o r t 1 := proc (A, m, n )
2 l o c a l p i v o t I n d e x 1 , p i v o t V a l u e 1 , temp1 , s t o r e I n d e x 1 , i1 , temp2 , temp3 , p ;
3 i f m < n then
4 p i v o t I n d e x 1 := n ;
5 p i v o t V a l u e 1 := A[ p i v o t I n d e x 1 ] ;
6 temp1 := A[ p i v o t I n d e x 1 ] ;
7 A[ p i v o t I n d e x 1 ] := A[ n ] ;
8 A[ n ] := temp1 ;
9 s t o r e I n d e x 1 := m;

10 f o r i 1 from m to n − 1 do
11 i f A[ i 1 ] <= p i v o t V a l u e 1 then
12 temp2 := A[ s t o r e I n d e x 1 ] ;
13 A[ s t o r e I n d e x 1 ] := A[ i 1 ] ;
14 A[ i 1 ] := temp2 ;
15 s t o r e I n d e x 1 := s t o r e I n d e x 1 + 1
16 end i f
17 end do ;
18 temp3 := A[ n ] ;
19 A[ n ] := A[ s t o r e I n d e x 1 ] ;
20 A[ s t o r e I n d e x 1 ] := temp3 ;
21 p := s t o r e I n d e x 1 ;
22 q u i c k s o r t 1 (A, m, p − 1 ) ;
23 q u i c k s o r t 1 (A, p + 1 , n )
24 end i f
25 end proc

Using MapleMIX produces a highly specialized result. All non-recursive func-
tion calls have been in-lined and the higher order functional parameters have been
integrated into the residual program at their points of use. The optimizations lead to
a 500 percent performance increase. See also [5,4] for a purely generative approach
to solving the same problem.

4 Residual Theorems

We now put such a partial evaluator to work. First, one really needs to start with
a straightforward example, just to ensure that simple things work absolutely per-
fectly. For simplicity, we will again use the degree example. To further simplify,
we will assume that our polynomials are expanded polynomials in a monomial ba-
sis. In the first listing, we see some Maple code to convert from an expression
representation into a list representation, and then compute the degree. It is safe to
use Maple’s built in function degree, as this will always return a conservative es-
timate of the actual degree (i.e. an upper bound). If we test this on a generic second
degree polynomial, the residual code is shown in listing 5, and is as expected.

Listing 4: Simple degree function
c o e f f l i s t := proc ( p ) l o c a l d ;

d := d e g r e e ( p , x ) ;
re turn [ seq ( c o e f f ( p , x , d−i ) , i = 0 . . d ) ] ;

9



Kucera and Carette

end proc :

mydegree := proc ( p , v ) l o c a l l s t , i , s ;
l s t := c o e f f l i s t ( p , v ) ;
s := nops ( l s t ) ;
f o r i from 1 to s do

i f l s t [ i ] <> 0 then return s−i end i f ;
end do ;
re turn − i n f i n i t y ;

end proc :

Listing 5: PE result
g o a l := proc ( a , b , c ) l o c a l p ;

p := a∗x ˆ2+ b∗x+c ;
mydegree ( p , x )

end proc ;

r e s u l t := proc ( a , b , c )
i f a <> 0 then 2
e l i f b <> 0 then 1
e l i f c <> 0 then 0
e l s e − i n f i n i t y
end i f

end proc

Of course, we are more interested in larger examples. We have one from Linear
Algebra (the ever-popular Gaussian Elimination), as well as one taken from Cal-
culus (indefinite integration). Both of these cases share some aspects in common:
the input code is quite straightforward 5 , and the results show how useful it is to
consider a code representation for the output.

Listing 6 presents a simple Maple implementation of fraction-free Gaussian
Elimination for augmented matrices represented as Maple tables.

Listing 6: Fraction-free Gaussian Elimination
GE := proc (AA, n , m) l o c a l B , i , j , k , r , d , s , t , rmar , p i v o t , i i ;

B := t a b l e ( ) ; # make a copy
f o r i i to n do f o r j to m do B[ i i , j ] := AA[ i i , j ] end do end do ;
rmar := min ( n ,m) ; s := 1 ; d := 1 ; r := 1 ;
f o r k to min (m, rmar ) whi le r <= n do

# Se a r ch f o r a p i v o t e l e m e n t . Choose t h e f i r s t
p i v o t := −1;
f o r i from r to n do

i f ( p i v o t = −1) then
i f (B[ i , k ] <> 0) then

p i v o t := i ;
end i f ;

end i f ;
end do ;

5 Although we admit that it has been adapted to the current feature set of our implementation
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i f p i v o t >−1 then # i n t e r c h a n g e row i wi th row r i s n e c e s s a r y
i f p i v o t <> r then

s := −s ;
f o r j from k to m do

t := B[ p i v o t , j ] ;
B[ p i v o t , j ] := B[ r , j ] ;
B[ r , j ] := t

end do ;
end i f ;
f o r i from r +1 to n do

f o r j from k+1 to m do
B[ i , j ] := (B[ i , j ]∗B[ r , k]− B[ r , j ]∗B[ i , k ] ) / d ;

end do ;
B[ i , k ] := 0 ;

end do ;
d := B[ r , k ] ;
r := r + 1 # go to n e x t row

end i f ;
end do ; # go to n e x t column
e v a l (B ) ;

end proc :

Listing 7 shows the result we get on the Matrix from [2]. The code has been
hand-formatted to display the Matrix entries as clearly as possible. Admittedly, this
code could be simplified further through more inlining since for example we know
that B1[2,2] = 2 so that the first condition could read x + 4 <> 0 or even
x <> -4. However, as we expect from [2], we clearly see the 3 cases to consider:
x = −4, x = 0 and the generic (“symbolic”) case.

It is quite gratifying to see that from a simple implementation of Gaussian Elim-
ination, given a particular Matrix with parametric entries, the cases to consider nat-
urally “drop out” of the computation. Unlike [2], new ideas or algorithms are not
necessary to achieve this result, just a powerful-enough partial evaluator. Of course
if one is worried about efficiency, our method is very far from competitive, and will
likely never be competitive with a specialized algorithm.

Listing 7: Result on parametric Matrix
g o a l := proc ( x ) l o c a l A;

A := t a b l e ( [ ( 1 , 1 ) = 1 , (1 ,2)=−2 , ( 1 , 3 ) = 3 , ( 1 , 4 ) = 1 ,
( 2 , 1 ) = 2 , ( 2 . 2 ) = x , ( 2 , 3 ) = 6 , ( 2 , 4 ) = 6 ,
( 3 , 1 ) =−1, ( 3 . 2 ) = 3 , ( 3 , 3 ) = x−3, ( 3 , 4 ) = 0 ] ) ;

GE(A, 3 , 4 ) ;
end proc :

r e s u l t := proc ( x ) l o c a l B1 ;
B1 [ 2 , 2 ] := x ;
B1 [ 3 , 3 ] := x − 3 ;
B1 [ 2 , 2 ] := B1 [ 2 , 2 ] + 4 ;
B1 [ 3 , 3 ] := B1 [ 3 , 3 ] + 3 ;
i f B1 [ 2 , 2 ] <> 0 then

B1 [ 3 , 3 ] := B1 [ 3 , 3 ] ∗ B1 [ 2 , 2 ] ;
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B1 [ 3 , 4 ] := B1 [ 2 , 2 ] − 4 ;
i f B1 [ 3 , 3 ] <> 0 then

B1 [ 1 , 1 ] := 1 ; B1 [ 1 , 2 ] := −2; B1 [ 1 , 3 ] := 3 ; B1 [ 1 , 4 ] := 1 ;
B1 [ 2 , 1 ] := 0 ; B1 [ 2 , 3 ] := 0 ; B1 [ 2 , 4 ] := 4 ;
B1 [ 3 , 1 ] := 0 ; B1 [ 3 , 2 ] := 0 ;
e v a l ( B1 )

e l s e
B1 [ 1 , 1 ] := 1 ; B1 [ 1 , 2 ] := −2; B1 [ 1 , 3 ] := 3 ; B1 [ 1 , 4 ] := 1 ;
B1 [ 2 , 1 ] := 0 ; B1 [ 2 , 3 ] := 0 ; B1 [ 2 , 4 ] := 4 ;
B1 [ 3 , 1 ] := 0 ; B1 [ 3 , 2 ] := 0 ; B1 [ 3 , 3 ] := 0 ;
e v a l ( B1 )

end i f
e l s e

B1 [ 2 , 3 ] := B1 [ 3 , 3 ] ;
B1 [ 1 , 1 ] := 1 ; B1 [ 1 , 2 ] := −2; B1 [ 1 , 3 ] := 3 ; B1 [ 1 , 4 ] := 1 ;
B1 [ 2 , 1 ] := 0 ; B1 [ 2 , 2 ] := 1 ; B1 [ 2 , 4 ] := 1 ;
B1 [ 3 , 1 ] := 0 ; B1 [ 3 , 2 ] := 0 ; B1 [ 3 , 3 ] := 0 ; B1 [ 3 , 4 ] := 4 ;
e v a l ( B1 )

end i f
end proc

Listing 8 shows a bit of code that we may expect to find somewhere in a sym-
bolic integrator. While actual integration code tends to be more complex, we hope
that the code below is representative enough to illustrate our point. This code takes
in a polynomial represented as a list of monomials, each of which are represented
as a coefficient and a pure power. We then use a sub-function to integrate pure
powers of a variable. Note that this sub-function contains calls to two large pieces
of Maple code: ln and int itself. In the first case, we have to tell the partial
evaluator to always residualize code for ln (i.e. the partial evaluator does not look
at the code, although this could result in calls to ln(1) being residualized). In
the second case, there is nothing to do as this branch is never taken, and thus never
examined.

Listing 8: Mock integrator
i n t p o w := proc ( i , v a r )

i f op ( 1 , i )= v a r then
i f op ( 2 , i )=−1 then

l n ( v a r )
e l s e

v a r ˆ ( op ( 2 , i ) + 1 ) / ( op ( 2 , i ) + 1 )
end i f

e l s e
i n t ( i , v a r )

end i f ;
end proc :

i n t s u m := proc ( l , v a r ) l o c a l r e s , x , i ;
r e s := 0 ;
f o r i from 1 to nops ( l ) do

x := op ( i , l ) ;
r e s := r e s + x [ 1 ]∗ i n t p o w ( x [ 2 ] , v a r ) ;

12
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end do ;
r e s ;

end proc :

And, as expected, the result shows the cases we expect, depending on whether
n = −1 or not. As far as mathematical correctness goes, this result is frankly better
than the output of any CASes we know; Derive’s “correct in the limit” answer of
xn+1/(n + 1) − 1/(n + 1) is nice, but difficult to deal with since it is an inten-
sional rather than extensional result (i.e. one cannot just “plug in” values of n, the
expressions always have to be interpreted via limits).

Listing 9: Integrator result
g o a l := proc ( n ) l o c a l x ;

i n t s u m ( [ [ 5 , x ˆ 2 ] , [−7 , x ˆ n ] , [ 2 , x ˆ ( −1 ) ] ] , x )
end proc :

r e s u l t := proc ( n ) l o c a l m1 , r e s 1 ;
i f n = −1 then

m1 := l n ( x )
e l s e

m1 := x ˆ ( n + 1 ) / ( n + 1)
end i f ;
r e s 1 := 5 ∗ x ˆ 3 / 3 − 7 ∗ m1 ;
r e s 1 + 2 ∗ l n ( x ) ;

end proc

It is also worthwhile noting that automatic expression arithmetic will take care
of the cases where n = 2 or n = −1, and the resulting expression will have the
correct terms, so that no additional cases need to be treated.

5 Conclusion

Through a variety of pertinent examples, we have shown that current computer al-
gebra code already contains the information necessary to produce correct results for
all cases of parametric problems. In other words, it would appear that the special-
ization problem is not quite as thorny as it was originally thought to be, and could
turn out to be tractable. To obtain these results, we have had to switch from an
expression perspective to a code transformation perspective, and more specifically
to partial evaluation. This switch has been quite effective, and we feel that this is
just the beginning.

It is worthwhile pointing out that certain partial evaluation techniques were cru-
cial in obtaining these results. First, being able to treat partially static structures
was essential. While in traditional partial evaluation this seems to be uncommon,
this is completely natural in a symbolic computation setting, as a “symbolic ex-
pression” is really isomorphic to a partially static expression. Second, to properly
propagate conditional information through computations instead of just through
syntactic code, we have employed a state-passing technique (related but different
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from Continuation Passing Style) inspired in part by Sumii’s work [13]. Third, the
use of M-form, a richer language instead of the more usual sub-language approach,
allows the partial evaluator to be more precise. And lastly, the use of an (aggres-
sively) online approach has also helped. We hope to report on these techniques in
a forthcoming publication.

Obviously, there are some Maple features that MapleMIX does not currently
support (most notably arrays) that we would like to implement. We would then
like to apply our work to pieces of the Maple library; one obvious area is to enable
generic programming (as in part embodied by Maple’s Domains package) to be
efficient. In this direction, our results with Quicksort parametrized via higher-order
functions are quite promising.

During this work, it has become quite clear that some level of type inference
could really improve the precision of MapleMIX for larger examples. Being able
to tell if a function is pure (i.e. has no side-effects), if a variable can never be an
expression sequence, and so on would allow MapleMIX to be even more precise.
Also, figuring out how some optimizations (like dead code elimination, single-
use variable folding, etc) could be integrated directly into the specialization phase
would be interesting.

In conclusion, we have shown a novel use of partial evaluation: it can be used to
“mine” code for residual algorithms that work properly and correctly on parametric
problems. We have used the moniker “Residual Theorem” for the results we obtain
from residualizing a “generic” algorithm with respect to a parametric problem, as
the results we thus obtain really encodes the complete answer (i.e. a theorem) to
the original parametric problem.
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