
Advances in Engineering Software 100 (2016) 53–71

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

State of the practice for mesh generation and mesh processing

software

W. Spencer Smith

∗, D. Adam Lazzarato, Jacques Carette

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

a r t i c l e i n f o

Article history:

Received 24 October 2015

Revised 2 May 2016

Accepted 12 June 2016

Keywords:

Mesh generation

Scientific computing

Software engineering

Software quality

Analytic hierarchy process

a b s t r a c t

We analyze the state of development practices for Mesh Generation and Mesh Processing (MGMP) soft-

ware by comparing 27 MGMP projects. The analysis employs a reproducible method based on a grading

template of 56 questions covering 13 software qualities. The software is ranked using the Analytic Hier-

archy Process (AHP), a multicriteria decision making method appropriate for cases with a mix of qualita-

tive and quantitative factors. The results reveal concerns regarding the maintainability, usability, reusabil-

ity and performance of some MGMP software. Five recommendations are presented as feedback to the

MGMP community: (i) Use an issue tracker for bug management and support requests. (ii) Document per-

formance measures. (iii) Increase the use of libraries to promote software re-use to avoid “re-inventing

the wheel.” (iv) Improve reproducibility by recording the set up details for the development and testing

environments. (v) Improve confidence in correctness through requirements specification, formal specifi-

cation languages, and automated testing.

© 2016 Elsevier Ltd. All rights reserved.

1

G

t

s

t

p

g

s

f

c

T

w

t

t

p

m

g

h

p

t

w

d

e

t

n

w

a

s

g

i

t

a

u

t

n

a

t

g

n

h

0

. Introduction

This paper analyzes the state of development practice for Mesh

eneration and Mesh Processing (MGMP) software. MGMP is used

o discretize a given geometric domain into a mesh consisting of a

et of smaller simpler shapes, such as triangles, quadrilaterals, or

etrahedrals. Meshes are used in such areas as finite element com-

utations and computational graphics. The data structures and al-

orithms for MGMP can get complicated. The complexity of MGMP

oftware raises concerns regarding correctness, reliability and per-

ormance. Moreover, the utility and importance of MGMP justifies

oncerns about the maintainability and reusability of this software.

o address these concerns requires systematic and rigorous soft-

are development practices.

In the analysis that follows, we have aimed to be objective. Al-

hough two of the authors of this paper have some experience in

he domain of mesh generation and processing, MGMP is not their

rimary research area, and they are not part of the MGMP com-

unity. Instead, we consider ourselves as experts in Software En-

ineering (SE) applied to Scientific Computation (SC) software. We

ave no prior attachment to any of the software examined in this

aper. To keep the evaluations fair, the sole source of the informa-
∗ Corresponding author.

E-mail address: smiths@mcmaster.ca (W. Spencer Smith).

f

e

b

t

ttp://dx.doi.org/10.1016/j.advengsoft.2016.06.008

965-9978/© 2016 Elsevier Ltd. All rights reserved.
ion for each product is what is available in the product itself as

ell as what is obtainable from searching the Internet.

We evaluated 27 products using a grading template based on 13

ifferent criteria (called “qualities” in the software engineering lit-

rature). Given our role as outsiders to the MGMP community, and

o keep the focus on software engineering issues, the software is

ot graded based on functionality. (An older review of MGMP soft-

are based on functionality can be found in [37] .) We graded the

vailable software artifacts and the development processes against

tandard SE principles and practices. To select the software for

rading, we used a list produced by a domain expert, as discussed

n Section 3.1 . The grading consists of pairwise comparisons be-

ween each of the software products using a multicriteria decision

nalysis process. The rankings from the decision analysis were then

sed to find trends between the software products.

The methods we used are an expanded and refined version of

hose presented by Gewaltig and Cannon [19,20] for computational

euroscience. In their work, Gewaltig and Cannon frequently found

 gap between developers and users, with respect to their expec-

ations for software quality. We looked at what kind of quality

ap exists within the MGMP domain. The gap in computational

euroscience, where the majority of software is created by pro-

essional end user developers [51] , may be due to the developers

mphasis on their science, instead of on software development

est practices.

In general, software developers who write scientific computa-

ion software do not follow the practices advocated by software

http://dx.doi.org/10.1016/j.advengsoft.2016.06.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.06.008&domain=pdf
mailto:smiths@mcmaster.ca
http://dx.doi.org/10.1016/j.advengsoft.2016.06.008

54 W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71

c

c

d

c

f

a

2

s

c

s

w

t

A

t

S

c

s

w

(

i

m

e

e

t

v

t

e

o

t

1 [21] separates these two, but external evidence for these are the same, so we

have joined them here.
engineers [28,29,64] . As observed by Segal [52] , “there is no dis-

crete phase of requirements gathering or of software evaluation.

Testing is of the cursory nature which would enrage a software

engineer.” Segals description is reinforced by a survey of approxi-

mately 160 SC developers [61] , which showed that only 12% of de-

velopment time is devoted to requirements specification and that

only 10% of SC developers employ formal specification techniques.

Not only are SE methods not used in SC, they are often per-

ceived as not useful. For instance, for SC software, Roache [43 ,

p. 373] considers as counterproductive the writing of documenta-

tion at each stage of software development, although this is often

advocated in SE. As the field studies of Segal [52] show, interaction

between SE and SC can be problematic because each side fails to

meet the expectations of the other. For instance, communication

between SC developers and SE practitioners is challenging when it

comes to requirements. A communication barrier exists as the sci-

entists cannot precisely convey how the requirements will evolve.

Not correctly articulating requirements, or changing requirements

midway through a project, greatly impacts the productivity of the

development team [50] . When engineers create software, the re-

sulting development artifacts, such as user manuals and introduc-

tory examples, are not sufficient for the scientists to understand

the product [53] . When end users (scientists) develop the software

product, the situation is not better, since their training in science

has not prepared them to consider important software qualities. In

this paper we evaluate the current use of SE techniques and tools

in MGMP. Moreover, for any recommendations that are made, we

aim to make them useful by considering the needs of SC practi-

tioners.

This paper has been written as part of a larger project analyz-

ing the state of practice in multiple SC domains. Throughout this

paper, some results for MGMP software will be contrasted with the

results from the Remote Sensing (RS) domain [32] . RS and MGMP

software are not obviously related based on their purpose, but they

are similar in that each community produces SC software to solve

problems. Since these two scientific domains are subject to the

same gradings, contrasting the results gives a basic sense of the

differences in practices between domains. Other domains that have

been analyzed using the methods shown in this paper include psy-

chometrics software [58] and oceanography software [57] .

The remainder of this article is organized as follows:

Section 2 provides some background information and mentions

previous work. Our method is explained in Section 3 . A summary

of our results is presented in Section 4 and our recommenda-

tions are detailed in Section 5 . Concluding thoughts are found in

Section 6 .

2. Background

Our grading template is based on 13 software qualities, which

are summarized below, followed by an overview of the Analytic

Hierarchy Process (AHP).

2.1. Software qualities

Our analysis is centered around a set of what software engi-

neers call software qualities . These qualities highlight the desirable

nonfunctional properties for software artifacts, which include both

documentation and code. Some qualities, such as visibility, apply

to the process used for developing the software. The following list

of qualities is based on Ghezzi et al. [21] , with the terms defined

in the same order as in the source document. Excluded from this

list are qualities that cannot be measured within the scope of the

current study, such as productivity and timeliness. To the list from

Ghezzi et al. [21] , we have added two qualities important for SC:

installability and reproducibility.
Installability A measure of the ease of installation.

Correctness and verifiability 1 Software is correct if the speci-

fication is perfectly adhered to. Software is not correct if it

deviates from the specification. Verifiability is the ease with

which properties of the software can be ascertained.

Reliability The probability that the software will meet its re-

quirements under a given usage profile.

Robustness A measure of whether the software behaves “grace-

fully” during unexpected situations, such as when invalid

data is input.

Performance A measure of the storage necessary and time re-

quired for the software to solve large problems.

Usability A measure of user-friendliness.

Maintainability The effort necessary to find and repair errors

and to add features to an operational program.

Reusability The ease with which one program can be used to

create another.

Portability The effort needed to run the software in a new en-

vironment.

Understandability The ease with which a programmer can un-

derstand the code.

Interoperability A measure of how smoothly a software prod-

uct can work with external products or systems.

Visibility The ease of determining the current status of a

project’s development.

Reproducibility The ease of recreating software results in the

future. SC code results should meet the scientific method re-

quirement of repeatability. Scientific code must be robust to

changing implementation details [12] .

The above software qualities come from SE; they apply to any

lass of software. Wilson et al. [63] instead focus on issues spe-

ific to SC software. They provide a list of eight best practices for

evelopers of SC software. Ideas from this list were used in the

reation of our grading template. For instance, part of our measure

or maintainability is looking for utilization of an issue tracker, as

dvocated by Wilson et al. [63] .

.2. Analytic hierarchy process

The objective of the Analytic Hierarchy Process (AHP) is deci-

ion making when comparing multiple options based on multiple

riteria [47] . In the current work, AHP is used for comparing

oftware products based on each of the identified qualities. AHP

orks well for this, since it focuses on relative comparisons, rather

han requiring an unattainable unified scale for measuring quality.

HP starts with sets of n options and m criteria . In our project

here are 27 software products (n = 27) and 13 criteria (m = 13).

election of a specific software product requires prioritizing the

riteria, but we do not emphasize this, since priorities are project

pecific. Instead, we focus on the next step in the AHP, which

ill give us a ranking of the software options for each criterion

quality). In this step, for each of the criterion, a pairwise analysis

s performed between each of the options, in the form of an n x n

atrix a . The value of a jk ranges from 1, when options j and k are

qually successful at achieving the criterion, to 9, when option j is

xtremely (maximally) more successful at achieving the criterion

han option k . Saaty [47] shows the interpretation of the other

alues, between 1 and 9.

In our work, a k j = 1 /a jk . Matrix a is then used to create ma-

rix b , where b jk = a jk /
∑

(a ·k) . The dot notation (·) stands for the

ntire row. The entries in b are then averaged to determine the

verall score for each option for the given criterion. This informa-

ion can be combined with the priorities to select an option, or the

W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71 55

fi

a

3

a

F

3

G

f

w

T

m

i

p

t

p

p

l

n

w

a

s

m

W

p

m

c

c

e

3

f

A

q

t

T

o

f

a

q

m

i

I

l

s

t

p

s

a

c

w

t

p

m

i

f

c

f

w

t

s

w

m

e

b

i

t

o

u

f

I

h

3

b

g

b

p

k

t

f

e

t

t

r

o

p

d

r

o

g

a

t

c

C

a

t

t

4

c

h

t
nal scores can be used to create a ranking for each of the options

gainst each of the criteria.

. Method

After an overview of the method used to select the software for

nalysis, we summarize the grading template used for the analysis.

inally we highlight of the process used to grade each product.

.1. Software product selection

We used Robert Schneiders’ list of “Mesh generation and Grid

eneration Software” [49] as a starting point. This list consists of

ree, open source and commercial software. Not all of the links

ere used: codes last updated in 2010, or earlier, were excluded.

his left 25 public domain software products on the list. We re-

oved OpenVolumeMesh [30] from the public domain list, since it

s a mesh data structure, and we added OpenFlipper [34] , which

rocesses geometric data, using the OpenVolumeMesh data struc-

ure. For budgetary reasons, commercial products without free trial

eriods were also excluded. Of the 59 commercial projects, only 2

rovided trial licenses. Therefore, 27 software products were se-

ected. The full list is given in Section 4 .

This selection process unfortunately means that our results are

ot necessarily representative of what all users of MGMP software

ill experience. First, because the list is not completely current,

nd secondly because of the under-representation of commercial

oftware.

Another aspect is that some MGMP software explicitly hides the

esh, as they really are about solving a larger problem (PDEs, etc.).

e have made sure that the products we have selected are ex-

licitly MGMP softwares that allow the user fine control over the

eshing process.

The sample size is large enough that some reliable conclusions

an still be drawn, at least for the non-commercial products. The

ommercial products were kept, to see if there was a large differ-

nce in the results.

.2. Grading template

Fig. 1 shows an excerpt from the grading template. The

ull template, consisting of 56 questions, can be found in

ppendix A and at https://github.com/adamlazz/DomainX . The

uestions in the template were designed to be unambiguous, quan-

ifiable and measurable with limited time and domain knowledge.

he measures are grouped under headings for each quality, and

ne for summary information. Following each measure, the type

or a valid result is given in brackets. Many of the types are given

s enumerated sets. For instance, the response for many of the

uestions is one of “yes,” “no,” or “unclear.” The type “number”

eans a natural number. The types for date and url are not explic-

tly defined, but they are what one would expect from their names.

n some cases the response for a given question is not necessarily

imited to one answer, such as the question on what platforms are

upported. Case like this are indicated by “set of” preceding the

ype of an individual answer. The type in these cases are then the

ower set of the individual response type. In some cases a super-

cript ∗ is used to indicate that a response of this type should be

ccompanied by explanatory text. For instance, if problems were

aused by uninstall, the reviewer should note what the problems

ere.

The first section of the template summarizes general informa-

ion, such as the software name, number of developers, etc. A

roject is defined as alive if it has been updated in the last 18

onths, and dead otherwise. This time frame was selected because

t coincides with the usual time for operating system updates. We
ollow the definitions given by Gewaltig and Cannon [19] for the

ategories of public , for software intended for public use, private ,

or software aimed only at a specific group, and concept , for soft-

are written simply to demonstrate algorithms or concepts. The

hree categories of development models are: open source , where

ource code is freely available under an open source license; free-

are , where a binary or executable is provided for free; and, com-

ercial , where the user must pay for the software product.

Virtual machines (VMs) are used to provide an optimal testing

nvironments for each MGMP software product. VMs were used

ecause it is easier to start with a fresh environment without hav-

ng to worry about existing libraries and conflicts. Moreover, when

he tests are complete the VM can be deleted, without any impact

n the host operating system. The most significant advantage of

sing VMs is to level the playing field. Every software install starts

rom a clean slate, which removes “works-on-my-computer” errors.

n the grading data the details for each VM are noted, including

ypervisor and operating system version.

.3. Grading process

As part of the grading process, each product is assigned a num-

er from 1 to 10 for each quality. This number represents the

rader’s overall impression on how well this quality was achieved

ased on the measurements, past experiences and the other MGMP

roducts. The following guidelines are used to help the reviewer

eep their grading uniform:

• The grader should spend from 1 to 3 h with each product.
• When no source code is available 1 is awarded for understand-

ability (of the code).
• For the qualities of performance, portability and reusability, a

grade of 5 is assessed if the developer has not explicitly men-

tioned means to deal with these qualities. With the time avail-

able for grading, these qualities cannot be fully assessed; there-

fore it would be unfair to dock marks for poor performance.

However, given no evidence to the contrary, we cannot award

marks either.

The overall impression grades for each quality are the basis for

he AHP results. The AHP ranking is calculated based on the dif-

erences between the overall impression grades. If the grades are

qual, then the AHP result is 1, to represent that the products have

he same performance for this quality. The use of AHP allows us

o smooth out differences between different graders, as long as the

elative trends between reviewers are the same. The absolute value

f the overall impression grade is not relevant, only how it com-

ares to the other grades.

To demonstrate that the grading process is reasonably repro-

ucible, grading of 5 products was done by a second reviewer. The

anking via this independent review was almost identical to the

riginal ranking. The main source of difference between the two

radings was the interpretation of the definition of correctness,

nd specifically what a requirements specification document en-

ails. As long as each grader uses consistent definitions, the relative

omparisons in the AHP results will be consistent between graders.

hanges in perceived visibility of the software product also played

 part in differences between grades. If information is hard to find

his can hurt a product’s grades, since not all reviewers will be able

o find it.

. Summary of results

A summary of the measurements for the 27 mesh generators

an be found in Appendix B , with the complete data available at

ttps://github.com/adamlazz/DomainX . General information about

he software is reproduced in Table 1 . Of the 27 software products,

https://github.com/adamlazz/DomainX
https://github.com/adamlazz/DomainX

56 W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71

Fig. 1. Excerpt from grading template

W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71 57

Table 1

General information regarding mesh generation software.

Name Mesh types Stat. Lic. Language Type

ADMesh [26] T, S
√

OS C T

CGAL [11] T, S, Te
√

OS C++ L

CGM [17] –
√

OS C++ L

Discretizer [7] 3
√

OS Ruby T

DistMesh [40] T, Te ✗ OS MATLAB T

enGrid [15] Te
√

OS C++ T

EZ4U [22] Q
√

F N/A T

Geompack++ [27] T, Q, S, Te, H

√

F Fortran, C++ T

GMSH [18] T, Te
√

OS C++ T

iso2mesh [16] S, Te ✗ OS MATLAB T

Mefisto [39] T, Te, 2, 3 ✗ OS Fortran, C T

MeshGenC++ [45] T, Te
√

OS C++ T

MeshLab [41] T
√

OS C++ T

MMesh3D [33] T, Q, H, 2, 3
√

OS C T

OpenFlipper [34] T, Q, H, 2, 3
√

OS C++ T

Overture [25] 2, 3
√

OS C++ L

Pamgen [62] Q, H

√

OS C L

Qhull [4] T ✗ OS C, IDL B

Seagrid [55] 2 ✗ OS MATLAB T

snappyHexMesh [36] Te
√

OS C++ T

TetGen [54] Te ✗ OS C++ T

TriGrid [13] T ✗ OS Fortran, C, C++ T

UGRID [24] T, 2 ✗ F C++ T

UNAMalla [48] 2
√

F T

ViennaGrid [46] –
√

OS C++ L

Algor [3] T, Q, S, Te, H

√

C N/A T

Argus ONE [2] T, Q, 2 ✗ C N/A T

1

a

fi

s

2

r

s

e

l

s

o

d

m

m

a

a

m

t

g

r

t

o

q

r

r

4

M

1

s

o

a

a

s

w

f

b

i

a

r

v

t

l

m

b

r

t

i

m

h

4

F

t

p

r

o

w

i

t

Q

o

a

r

G

i

f

s

S

a

i

p

o

m

u

s

p

(
5 are associated with an educational institution. These institutions

re the workplaces of the developers, or they are the source of the

nancial support for the software product. Twenty one (21) of the

oftware products are open source (OS), 4 are freeware (F), and

 are commercial (C). Unlike software in other domains, such as

emote sensing [32] , MGMP software cannot be split into distinct

ets of products with different scopes and purposes. All mesh gen-

ration software follow a similar pattern, in which the user uti-

izes a data structure or graphical user interface to create a repre-

entation of a mesh. The mesh can then be examined, or used in

ther applications, such as computational fluid dynamics. The main

ifferences between meshing software products is which types of

eshes the software supports. Schneiders [49] presents this infor-

ation on the source list, noting when a software supports tri-

ngular (T), quadrilateral (Q), tetrahedral (Te), unstructured hex-

hedral (H), 2D structured (2), 3D structured (3) and/or surface

eshes (S). The packages that do not show an entry for the mesh

ype are not mesh generators, but rather mesh generator related

eometry function libraries and generic data structures. For space

easons, in the table we use
√

to mean alive and ✗ to mean dead ;

he last column indicates whether this is a Tool (T), a Library (L)

r both (B).

In general, we have observed that

• Mesh generation software is often created in small teams. 18

of the 27 projects have 5 or fewer developers. 16 projects have

only one or two developers.
• The GNU GPL is the most popular license, in use by 12 open

source products. Three open source projects use the BSD li-

cense, and one uses the MIT license. Other projects, namely

Geompack++, Mefisto, Qhull, Seagrid, and UGRID provide their

own licenses as an End User License Agreement (EULA) or

terms of use.
• Windows is supported natively in 22 projects, with the other

projects (CGM, MMesh3D, Overture, Pamgen, snappyHexMesh)

supporting Linux or Unix environments only.
•
 6 are libraries, 22 are tools, with one (Qhull) being both. i
In what follows, we outline the main results for each software

uality. When the results could easily be improved, we make some

ecommendations, which will also be gathered at the end for easy

eference (and give us a chance to expand on what we mean).

.1. Installability

The installability of MGMP software varies. 24 of the 27 graded

GMP software products contained installation instructions, with

8 of the 24 presenting the instructions in a linear sequence of

teps, a frequency much higher than for remote sensing [32] . Some

f the software, such as Discretizer, MeshLab and TriGrid had a rel-

tively simple automated installation process. Makefiles, packages

nd other build scripts automated the installation process for 20

oftware products. Alternatively, when pre-packaged executables

ere shipped, little installation was necessary. Such was the case

or UGRID and DistMesh, which contain no installation instructions

ecause the steps are relatively few and simple.

After installation, there are just 3 software products that spec-

fy ways to ensure the installation is valid: MeshGenC++, Overture,

nd Pamgen. For each of these three cases, this validation involves

unning a trivial example. Uninstallation automation is not pro-

ided in 21 of the 27 graded products. In some cases this automa-

ion was not necessary, since executables or folders fully encapsu-

ate the project and can be deleted to uninstall the product.

Unamalla is an example of poor installability. Like TetGen, Una-

alla requires the user to fill in a form with personal information

efore the product was downloaded. This is within the developer’s

ights, but it also forms a hurdle for users to jump before installa-

ion. The user is also required to fill in a captcha to ensure the user

s human and to stop automated abuse in the submission form. Too

any hurdles, and the potential addition of the human element,

as a negative impact on installability.

.2. Correctness and verifiability

The AHP results for correctness and verifiability are given in

ig. 2 . One measure for correctness and verifiability is whether

here is a requirements specification. 11 of the 27 graded software

roducts specified the behavior of the software product through a

equirements specification. This number is much higher than was

bserved in the domain of remote sensing [32] . These documents

ere almost never referred to explicitly as “requirements spec-

fication documents,” but in all cases, the authors were looking

o adhere to a specific algorithm (e.g. the Quickhull algorithm in

hull), file format (e.g. GMSH), or to fully explain the functionality

f the software and underlying mathematical principles written in

n academic fashion (e.g. DistMesh, snappyHexMesh, and TetGen).

Other evidence of correctness comes in the form of referenced

esearch in user documentation, as seen in Overture and Mesh-

enC++. Citing peer-reviewed academic work increases confidence

n correctness because, while the software is not guaranteed to

ully adhere to the research, at the very least the output of the

oftware that appears in the publications has been peer reviewed.

C methods of increasing reliability (accuracy) exist as well, such

s in Qhull, which handles floating point roundoff errors dur-

ng calculations. Or in CGAL, which uses the “exact computation

aradigm” to compute numbers to arbitrary precision. These meth-

ds build confidence. The use of standard libraries, which the com-

unity has confidence in, are in use by 13 of the 27 software prod-

cts. However, these libraries are often not MGMP domain-specific,

ince their purpose is to help with the UI, portability or graphics

rocessing.

Whenever there was a getting started tutorial for the user

10/27 cases), our testing results always matched the developer’s

ntended results. This fact increases confidence in correctness, but

58 W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71

Fig. 2. AHP results for correctness

M

a

p

e

g

d

c

o

w

t

c

s

e

t

4

a

p

w

u

a

g

G

l

t

C

r

u

t

a

h
real confidence in correctness requires a comprehensive analysis of

the product, not simply the results of one test case.

We thus recommend that more developers of MGMP software

follow this trend and explicitly document their requirements. Fur-

thermore, we also recommend that simple examples (such as those

found in tutorials) should actually be made into an automated test

suite, to verify that the software works properly on the current

machine.

4.3. Reliability

Reliability is strong on the surface, during our short interaction

with the graded MGMP software products. As mentioned above,

there were several software products that “broke” during instal-

lation. Specifically, EZ4U, iso2mesh, Overture, TriGrid, UGRID and

Unamalla. The other software products installed without any un-

expected behavior. Once the software products were installed, they

performed as expected, except for EZ4U, which crashed during ini-

tial testing.

4.4. Robustness

Surface robustness was achieved in all 27 of the software prod-

ucts graded. Purposely making typos and using broken input, we

were able to cause error conditions in all 27 products. All of the

errors were handled appropriately. MGMP software seems to do a

good job of preparing for unexpected inputs and adverse condi-

tions.

4.5. Performance

As seen in Fig. 3 , performance is a quality that mesh generation

software products rarely explicitly address. Out of the 27 graded

software products, 18 did not contain any evidence that perfor-

mance was considered during development. In some cases, like
eshGenC++, TetGen, UGRID, and Algor, the product is advertised

s fast, but there is no explicit supporting quantitative evidence

resented by the developers. Also, “fast” calculations are not nec-

ssarily indicative of good performance, if accuracy suffers. Pam-

en and snappyHexMesh contain parallel implementations, which

oes increase performance. When parallelized appropriately, con-

urrent calculations increase speed (although we did not test this

urselves).

Since the developers of MGMP software often do extensive

ork regarding performance, they should document this, and make

his available. Such quantitative information would be much more

onvincing that performance was a serious concern than simply

tating that the product is “fast”. Even better would be to embed

xplicit test cases, with accompanying measurements, as part of

he complete product.

.6. Usability

The results of surface usability are mixed. Only 23 projects have

 user manual, which provides a detailed look at the function and

urpose of the software product. This frequency is worse than

hat was observed in the domain of remote sensing [32] . EZ4U’s

ser manual was written in Spanish. This cannot fairly be held

gainst the developers, although the manual is of no use to En-

lish speakers. The 4 projects without a user manual are: Mesh-

enC++, Seagrid, Unamalla, Algor (commercial, the user manual

ikely comes with the purchased version). Even fewer (14/27) con-

ained a simple getting started tutorial aimed at first-time users.

ombined with the fact that there is almost never any information

egarding expected user characteristics, it could be hard for some

sers to begin using some MGMP software.

Usability of complex software is significantly impact by how

echnical support is performed; a product is definitely more us-

ble when the user can have questions answered. Every product

as a support method, of varying degrees of usefulness. 8 soft-

W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71 59

Fig. 3. AHP results for performance.

w

E

E

t

u

f

r

i

s

t

T

w

c

f

b

d

l

p

s

F

h

4

t

m

t

a

p

t

s

(

(

t

o

t

p

s

a

t

t

m

t

p

I

l

H

i

e

m

t

4

i

A

s

a

a
are products use only email as a method of support (DistMesh,

Z4U, GeomPack++, Mefisto, MMesh3D, TriGrid, UGRID, UNAMalla).

mail does not provide a public record of the conversations that

ake place. This hurts both usability and maintainability because

sers cannot see the questions asked by other users, and there-

ore developers may be tasked with replying to similar support

equests multiple times. Other methods of support include mail-

ng lists and FAQ pages, and even paid support and/or courses for

nappyHexMesh, TetGen and Algor (commercial).

With a few minor exceptions, the graded MGMP software stuck

o the “look and feel” of the platform that was being tested on.

his goes for both GUI applications, like Mefisto or Unamalla, as

ell as for the programming libraries and/or command line appli-

ations, like ADMesh, or CGAL. There were a few minor issues with

eature visibility, as defined by Norman [35] . The result is sensi-

le, decently designed software. Products that suffer on usability

o not suffer because of the design, rather the grades suffer for the

ack of support methods and documentation material, as discussed

reviously.

When providing software for others to use, even for free, such

oftware is not really usable if it does not have a user manual.

urthermore, especially for software as complex as that considered

ere, some kind of technical support mechanism is also needed.

.7. Maintainability

Fig. 4 clearly shows that maintainability is very uneven amongst

he products we measured. For example, of those products with

ultiple versions, 12 do not make the previous versions available

o the public. This fact hurts reproducibility as well as maintain-

bility because users cannot easily test the current version of the

roduct against past releases. This can have a negative effect on

he quality of bug reports.
Issue trackers are used by 11 of the 27 products. Some industry-

tandard issue trackers are in use, specifically GitHub issues

ADMesh, enGrid, Viennagrid), Trac (CGM, GMSH), and BitBucket

MeshGenC++). The issue trackers are most often used for correc-

ive and perfective maintenance. Generally, externally visible signs

f use of issue trackers correlate well with maintainability.

Sixteen (16) projects did not use issue trackers. In some cases,

his information was completely absent, though QHull and TriGrid

resented all known issues on self-made, static web pages. These

ystems involve more initial setup than using, say, GitHub issues,

nd users or other developers cannot add to this list without con-

acting the developer. Therefore, these systems are not as interac-

ive as full-fledged issue trackers, to the detriment of the project’s

aintainability.

The ability to review and revert changes is made simple by

he use of a version control system. Git and SVN are in use by 8

rojects each; eleven projects do not use a version control system.

t is possible that these systems are in use privately, and the re-

eased software is simply a snapshot of a revision in the system.

owever, there is no explicit evidence of this from the developers.

As the use of both issue trackers and version control systems

s so easy, it is really inexcusable to not use them. Anyone consid-

ring using some software product for more than a simple experi-

ent should eschew products which show no sign of having used

hese basic tools during development.

.8. Reusability

Reusability is considered in a few packages. Plugin functionality

s available in MeshLab, as well as the two commercial products:

lgor and Argus ONE. Users may reuse existing portions of the

oftware product to create their own custom functionality. There

lso exist frameworks, such as CGAL, CGM, Overture framework

nd Pamgen (a part of Trilinos) that allow users to create their

60 W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71

Fig. 4. AHP results for maintainability.

i

p

4

t

g

t

s

w

i

p

e

t

F

F

m

w

4

o

t

s

v

u

n

i

t

u

a

i

d

application-specific software. The scope of these frameworks ex-

tends beyond mesh generation, to physical simulation, geometry,

linear and nonlinear solvers, differentiation and differential equa-

tions solvers. By their nature, these frameworks are extensible by

users, to create meaningful working applications. Reverse depen-

dencies exist in software products, such as Qhull, snappyHexMesh

and TetGen, so at least portions of these products are being reused.

However, there is no convincing evidence that reusability was ex-

plicitly considered for these projects.

Given the complexity of MGMP software, it is surprising how

few reusable components exist – and how little evidence there

was that large packages were built from pre-existing components.

This is unlike other domains, like linear algebra say, where consid-

erably more standardization has happened. We definitely recom-

mend that MGMP developers pay more attention to reusability.

4.9. Portability

Out of the 27 products, 22 have achieved some sort of porta-

bility. Most often, Windows and Linux are supported. 20 of the

projects support Windows, and the remaining 7 support a combi-

nation of Linux, OS X, and other Unix variations. 4 projects support

only Windows, (EZ4U, UGRID, and the two commercial projects, Al-

gor and Argus ONE). An Interesting case in portability is Mefisto,

which supports Windows by using cygwin, which provides a way

to use the Linux filesystem to build and run some Linux tools on

Windows. Mefisto therefore does not support Windows natively.

Another is MeshLab, which has ported its model viewing capabil-

ities to both Android and iOS, the only MGMP software product

to support these platforms. Cross platform build systems such as

cmake have been employed to facilitate building on different plat-

forms. Also, since the programming languages in use are highly

portable (C++, C, MATLAB, Fortran, Ruby), the barrier to portabil-
ty is low. In the cases of C++ and C, in use by at least 19 products,

ortability is handled with the use of a Makefile.

.10. Understandability

After examining the source code of 21 products, we found

hat understandability of MGMP software is strong. We did not

rade understandability for freeware or commercial projects, as

heir source was not accessible. The developers of all of the open

ource MGMP software products have released consistent code

ith respect to formatting, identifier and file naming, comment-

ng and modularization. In some cases (CGAL, MeshLab, and snap-

yHexMesh), coding conventions and tips are provided for refer-

nce by the developers of the product. Comments are present in

he code for all of the products. In Mefisto, the comments are in

rench; the corresponding website is written in English (with a

rench version). Only 3 products contained a software design docu-

ent (CGAL, CGM, MeshLab), outlining the architecture of the soft-

are product.

.11. Interoperability

Interoperability varies among the MGMP software products. 15

f the graded software show no evidence of using any libraries

hat the community has confidence in. Other software products

uch as CGAL, CGM, Discretizer, enGrid and snappyHexMesh pro-

ide lists of external software that is used to achieve their prod-

ct’s purpose. The external systems in use are varied, and not

ecessarily domain-specific. Helper libraries for graphics process-

ng (OpenGL), UI frameworks (Qt) are used, as well as some of

he graded software products; Tetgen is used in GMSH, CGAL is

sed in iso2mesh, GMSH is used in TetGen. As seen above, there

re few products that support reusability, though when reusability

s supported, these APIs are well documented in user manuals or

eveloper-specific documentation.

W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71 61

4

v

I

n

b

h

a

e

d

t

l

s

v

u

m

t

i

h

t

i

g

t

u

h

m

a

a

m

u

f

s

l

4

F

C

c

f

b

g

o

s

d

m

w

4

s

r

m

p

e

4

t

i

A

a

5

t

v

t

t

.12. Visibility

The visibility of the development process of MGMP software

aries. In most cases, the development process is not defined.

nformation regarding the development process and contributing

ew code is given in CGAL and snappyHexMesh developer’s guides,

ut this information is not available for the other products. Projects

osted on GitHub, like ADMesh or enGrid, follow the contribution

nd code review processes of GitHub. However, this process is not

xplicitly defined or referenced by the developers. Not having any

evelopment process-specific documentation hurts the visibility of

he product because new developers will be unsure of the software

ife cycle, and how to go about contributing new code.

Strong design for an MGMP product web site is best demon-

trated by CGAL, Gmsh, MeshLab, and Tetgen. These web sites pro-

ide a single destination for information on all aspects of the prod-

ct. The design of these web sites vary, but there is always infor-

ation regarding the product itself, download and installation op-

ions, tutorials, support, and other important documentation. Hav-

ng a single website with logical sections to separate information

elps the product’s visibility because users or developers can find

heir information all in one place. An example that scored lower

s OpenFlipper, since it has multiple web-sites, a Facebook page, a

itHub repository, and the occasional reference in the documenta-

ion to a past svn repository.

In 9 of the MGMP software products, multiple web sites are

sed, which decreases visibility. Though, as long as there is a

ighly visible link to and from each site, multiple sites can be

anageable. The purpose of these sites are often separate; for ex-

mple, a code hosting site to host the source code repository and

 wiki for information about the project. Examples that use this

odel are ADMesh, Seagrid, and Pamgen. When multiple prod-

ct web sites duplicate information (for example: Discretizer’s old,

ully populated website, and the new, sparse web site), the result

everely hurts visibility because users and developers may be mis-

ed regarding which information is more accurate and up to date.

.13. Reproducibility

MGMP software does not always address reproducibility – see

ig. 5 . Automated tests exist in only 5 software products (CGAL,

GM, Pamgen, Qhull, ViennaGrid), which build confidence in the

orrectness of the software.

Sample data exists in 7 products, which is normally available

rom the getting started tutorial, or to demonstrate valid input data

efore the user creates their own. When used in the context of a

etting started tutorial, sample data can demonstrate some level

f reproducibility. However, this sample data does not comprehen-

ively test every function of the software, so ensuring full repro-

ucibility is not possible using only this data.

Only MMesh3D provides development and testing setup infor-

ation. The developer indicates that MMesh3D has been installed

ithout problems on Mac 10.5.4 and Ubuntu 8.10 with gcc version

.3.2. The other software products do not provide this information,

o other developers or potential users cannot be certain that their

esults are reproductions of the creator’s original results. Further-

ore, there is no evidence of automated tools to capture the ex-

erimental context so “works-on-my-computer” issues cannot be

asily diagnosed.

.14. Overall quality ranking

Once the grading has been finished, the overall impression of

he product’s performance on all software qualities is evaluated us-

ng AHP with equal weights between qualities, as shown in Fig. 6 .
s mentioned previously, the weights between qualities will actu-

lly vary depending on the needs of a specific project.

. Recommendations

The full grading template in Appendix A provides a set of cri-

eria for developers of SC software to consider to ensure best de-

elopment practices and product quality. Based on the results from

he previous sections, we have the following specific recommenda-

ions for MGMP software:

1. Use an issue tracker for bug management and support re-

quests. To improve maintainability (and usability), the project

should have an issue tracker. 16 of the graded products are not

using an issue tracker, which seriously impacts their maintain-

ability grades. By their nature, issue trackers are not normally

used for support requests. However, using an issue tracker for

support requests, as well as a bug tracking system, can help

both maintainability and usability. Bugs can be reported and

support questions can be asked in a unified, public manner.

There are a number of free, open source issue tracking systems

that are simple to set up, such as GitHub issues, SourceForge,

Trac, and BugZilla.

If the developer has the means, a discussion/mailing list can

be set up to separate their support and bug tracking concerns.

Visibility of these pages would have to be considered appropri-

ately; the new services will need to be visible from the main

product page, and vice versa. Since the maintainability and us-

ability of MGMP software are generally the weakest qualities,

using an issue tracker to track bugs and support requests may

be the easiest way to help both of these qualities at once.

2. Document performance measures. Convincing evidence of

performance measures in the graded software products was

rare. The implication is not necessarily that MGMP software

does not perform well. However, if the software has undergone

performance optimizations, the developers should note these

measures prominently in the user or developer documentation.

As problem size grows, speed and efficiency of computations

come into question, so any documentation or quantitative evi-

dence (such as speedup limits as determined by Amdahl’s Law)

of the software’s performance is of interest to prospective users.

This is especially true for software products with parallel im-

plementations (Pamgen, snappyHexMesh), as documenting par-

allelization schemes can show performance benefits over serial

implementations. For instance, the section on parallel compu-

tation in Pamgen describes what the user can do to distribute

data amongst different disks and running decomposed cases of

problems. This creates a “domain decomposition” paralleliza-

tion scheme, and performs better than a serial implementation.

3. Use (and create) libraries to promote software re-use and

avoid “re-inventing the wheel.” More than half of the soft-

ware products do not seem to be using any external libraries.

To reduce the amount of original code, which the developer is

tasked with maintaining, the use of libraries can improve confi-

dence in correctness, interoperability and reliability. If these li-

braries are in use by multiple products (and therefore by more

developers and end users), bugs and reliability issues can be

more easily found (and fixed). Responsiveness and speed in is-

sue tracking can build a community’s trust in a library. If the

library’s developers are not responsive or fast in issue tracking

procedures, perhaps a contribution could be made, or a forked

project could be developed, for the benefit of the entire com-

munity.

These trusted libraries are not necessarily created by exter-

nal sources. Any software products that can facilitate reuse,

should do so, in the hope that developers of other projects

62 W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71

Fig. 5. AHP results for reproducibility

Fig. 6. Final AHP results.

W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71 63

6

t

i

A

w

s

i

s

t

p

m

p
will reuse their functionality. Although functionality is outside

of the scope of this paper, we observed that manual reimple-

menting of meshing types seems to be a common practice.

For instance, of the 27 graded software products, there are 12

products that generate triangular meshes. This trend is evident

from larger samples of MGMP software. The survey by Owen

[37] identifies 81 products, 52 of which generate triangular

meshes, with 37 of these using some form of Delaunay trian-

gulation. If a given triangular mesh generator became popular

and trusted by the community, it could become a de-facto stan-

dard.

An object-oriented approach to design has been used in the

past to improve the reusability of mesh generation tools. For

instance, Bastarrica and Hitschfeld-Kahler [5] promote reuse by

encapsultating processes as objects. Berti [8] considers the use

of generic programming for improving the reusability of mesh

data structures and algorithms. The Algorithm Oriented Mesh

Database (AOMD) [42] in a sense combines the ideas men-

tioned in the previous two papers. AOMD uses object oriented

programming for building the hierarchy of classes for the mesh

entities and it uses generic programming by employing Stan-

dard Template Library (STL) algorithms and iterators.

The opportunity for reuse makes MGMP software a good candi-

date for development using the program family, or product line,

approach. “Program families are defined ... as sets of programs

whose common properties are so extensive that it is advanta-

geous to study the common properties of the programs before

analyzing individual members” [38] . An example of a specifica-

tion for the requirements for a family of mesh generators, in

the form of a commonality analysis, can be found in [59] . Bas-

tarrica and Hischfeld-Kahler [6] provide a design for a family

of meshing tools and Rossel et al. [44] apply domain modeling

to the MGMP domain. A program family approach is facilitated

by code generation, which is applied to a generative geometric

kernel for MGMP in [9] .

4. Improve reproducibility through testing and set-up docu-

mentation. It is very hard to ascertain if a local installation

of a piece of software works properly. The first step would be

to supply a test suite (with known results) that users can run

post-installation to verify this.

Another aspect would be for developpers to document their

testing environments, i.e. where they can guarantee that their

software worked properly. Knowing which configurations are

known to work can help eliminate “works-on-my-computer” er-

rors, and ensure that the software results are correct and re-

produced as the developer intended, a key property of SC soft-

ware. When external dependencies and complex setup become

difficult or unmanageable, developers may use a virtual devel-

opment environment to isolate these concerns on a VM for the

purposes of development and testing. Software products such

as Vagrant [23] exist to automatically configure and create VMs.

5. Improve confidence in correctness through requirements

specification, formal specification languages, and/or auto-

mated testing. While requirements specifications appear more

frequently in MGMP software (11/27) than in other scientific

domains, specifically Remote Sensing (RS) (3/30) [32] , auto-

mated testing occurs less frequently (MGMP: 6/27 RS: 17/30).

To build confidence in correctness (specification and adherence

to the specification), both should be present. Writing a proper

requirements specification is difficult, but necessary to judge

correctness. The specified behavior can be verified through test-

ing. Templates exist to assist in the creation of SC requirements

[56] . Smith and Yu [60] provide a sample specification for a par-

allel mesh generation toolbox and ElSheikh et al. [14] provide

an example of a formal specification for MGMP design.
t
An alternative way to specify and test code at the same time

is by using formal specification languages such as ACSL for C

in Frama-C [10] . These languages are written as code in the

source files, and verified by testing the written specification

against the behavior of the actual source code. Another method

of building confidence is writing test cases for every function

of the software product. Writing test cases has the benefit of

implicitly providing a simple specification, since correct soft-

ware needs to pass the tests. Although not as complete as a

full requirements specification, test cases can be a good start-

ing point, since the typically have the lowest barrier to entry

for practitioners. Several popular unit testing frameworks exist,

such as CUnit [31] or Check [1] .

6. Always provide a User Manual. We were surprised that four

products did not.

. Conclusions

To provide feedback to the MGMP software community, we sys-

ematically graded 27 software products within the domain, start-

ng from a list of software products from a domain expert. Using

HP, a multicriteria decision making method, we preformed pair-

ise comparisons between each of the software products. The re-

ults were summarized and interpreted for trends. Due to budget-

ng constraints, non-commercial products form the majority of our

ample, so our conclusions mainly apply to them.

For the state of practice in mesh generation software, we found

he following positive trends:

• Products seem to have good backing in academia and/or gov-

ernment funding. More than half of the products are associ-

ated with an educational institution. There also exists govern-

ment funding among the graded products. This is positive be-

cause development of the product is easier to justify if there is

a group or employer that is willing to assist.
• Less than half of the products use a specification, but the

requirements specifications documents that do exist are well

written, based on mathematics and comprehensively cover the

product’s functionality.
• Installation and reliability of products during setup and initial

testing were strong.
• Surface robustness was strong when testing products with bad

input. The products all have error-handling capabilities.
• Most products support multiple platforms. Automation is gen-

erally used to elegantly handle portability.
• For open source projects, code understandability is high, and

while there often is not an explicit coding standard, formatting,

identifiers, and comments are generally consistent and easy to

follow when examining the source code.

Our survey also found some negative trends. With the goal of

roviding useful feedback to the community, we presented recom-

endations to help fix these problems:

• Use an issue tracker for bug management and support requests.
• Improve confidence in correctness through requirements speci-

fication, formal specification languages, or automated testing.
• Document performance measures.
• Use (and create) libraries to promote software re-use and avoid

“re- inventing the wheel.”
• Improve reproducibility by providing post-installation test

suites, and recording the set up details for the development and

testing environments.
• Provide a User Manual.

Regarding commercial products, our sample size is too low to

rovide meaningful conclusions. However, one could imagine that

hese would score higher, because of marketplace pressure for

64 W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71

Table A.3 (continued)

Summary information

Category ({concept, public, private})

Development model ({open source, freeware, commercial})

Publications using the software (set of url)

Publications about the software (set of url)

Is source code available? ({yes, no})

Programming language(s) (set of {FORTRAN, Matlab, C, C++, Java, R, Ruby,

Python, Cython, BASIC, Pascal, IDL, unclear})

Installability (Measured via installation on a virtual machine.)

Are there installation instructions? ({yes, no})

Are the installation instructions linear? ({yes, no, n/a})

Is there something in place to automate the installation? ({yes ∗ , no})

Is there a specified way to validate the installation, such as a test suite? ({yes ∗ ,

no})

How many steps were involved in the installation? (number)

How many software packages need to be installed before or during

installation? (number)

(I) Run uninstall, if available. Were any obvious problems caused? ({unavail,

yes ∗ , no})

Overall impression? ({1 .. 10})

Correctness and Verifiability

Are external libraries used? ({yes ∗ , no, unclear})

Does the community have confidence in this library? ({yes, no, unclear})

Any reference to the requirements specifications of the program? ({yes ∗ , no,

unclear})

What tools or techniques are used to build confidence of correctness? (string)

(I) If there is a getting started tutorial, is the output as expected? ({yes, no ∗ ,

n/a})

Overall impression? ({1 .. 10})

Surface Reliability

Did the software “break” during installation? ({yes ∗ , no})

(I) Did the software “break” during the initial tutorial testing? ({yes ∗ , no, n/a})

Overall impression? ({1 .. 10})

Surface Robustness

(I) Does the software handle garbage input reasonably? ({yes, no ∗})

(I) For any plain text input files, if all new lines are replaced with new lines

and carriage returns, will the software handle this gracefully? ({yes, no ∗ ,

n/a})

Overall impression? ({1 .. 10})

Surface Performance

Is there evidence that performance was considered? ({yes ∗ , no})

Overall impression? ({1 .. 10})

Surface Usability

Is there a getting started tutorial? ({yes, no})

Is there a standard example that is explained? ({yes, no})

Is there a user manual? ({yes, no})

(I) Does the application have the usual “look and feel” for the platform it is

on? ({yes, no ∗})

(I) Are there any features that show a lack of visibility? ({yes, no ∗})

Are expected user characteristics documented? ({yes, no})

What is the user support model? (string)

Overall impression? ({1 .. 10})

Maintainability
high quality. This does not appear to be the case, but perhaps

for non-obvious reasons: commercial software development cor-

relates highly with secretive development practices, which means

that there are few externally visible signs of these. Thus while the

products may be very good, it is actually harder to tell that this is

so.

Future work relating to the methods developed, or the mea-

surements made, may include a re-grading of Schneiders’s [49] list

to determine changes in software quality over time. The methods

outlined in Section 3 can be used with an alternate or expanded

grading template. Using a different template could enable grading

based on other aspects of the software, like functionality. AHP will

be a key part in this analysis, since, as always, software qualities

are difficult to quantify, but easier to compare relatively. Addition-

ally, statistical tests, such as the Chi-squared test, could be used

with our data to determine statistical dependence between multi-

ple aspects or qualities of the software.

Acknowledgments

The authors acknowledge the time and effort of fellow team

members Vasudha Kapil, Sun Yue and Zheng Zeng for their as-

sistance in the project. In particular, Sun Yue is acknowledged for

developing a Java program to automate pairwise comparisons for

AHP using the overall impression grading scores. The feedback of

the anonymous referees is also gratefully acknowledged.

Appendix A. Full grading template

The table below lists the full set of measures that are assessed

for each software product. The measures are grouped under head-

ings for each quality, and one for summary information. Following

each measure, the type for a valid result is given in brackets. Many

of the types are given as enumerated sets. For instance, the re-

sponse on many of the questions is one of “yes,” “no,” or “unclear.”

The type “number” means natural number, a positive integer. The

types for date and url are not explicitly defined, but they are what

one would expect from their names. In some cases the response

for a given question is not necessarily limited to one answer, such

as the question on what platforms are supported by the software

product. Case like this are indicated by “set of” preceding the type

of an individual answer. The type in these cases are then the power

set of the individual response type. In some cases a superscript ∗

is used to indicate that a response of this type should be accom-

panied by explanatory text. For instance, if problems were caused

by uninstall, the reviewer should note what problems were caused.

An (I) precedes the question description when its measurement re-

quires a successful installation.
Table A.3

Grading template

Summary information

Software name? (string)

URL? (url)

Educational institution (string)

Software purpose (string)

Number of developers (number)

How is the project funded (string)

Number of downloads for current version (number)

Release date (date)

Last updated (date)

Status ({alive, dead, unclear})

License ({GNU GPL, BSD, MIT, terms of use, trial, none, unclear})

Platforms (set of {Windows, Linux, OS X, Android, Other OS})

Is there a history of multiple versions of the software? ({yes, no, unclear})

Is there any information on how code is reviewed, or how to contribute?

({yes ∗ , no})

Is there a changelog? ({yes, no})

What is the maintenance type? (set of {corrective, adaptive, perfective,

unclear})

What issue tracking tool is employed? (set of {Trac, JIRA, Redmine, e-mail,

discussion board, sourceforge, google code, git, none, unclear})

Are the majority of identified bugs fixed? ({yes, no ∗ , unclear})

Which version control system is in use? ({svn, cvs, git, github, unclear})

Is there evidence that maintainability was considered in the design? ({yes ∗ ,

no})

Are there code clones? ({yes ∗ , no, unclear})

Overall impression? ({1 .. 10})

Reusability

Are any portions of the software used by another package? ({yes ∗ , no})

(continued on next page)

W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71 65

Table A.3 (continued)

Summary information

Is there evidence that reusability was considered in the design? (API

documented, web service, command line tools, ...) ({yes ∗ , no, unclear})

Overall impression? ({1 .. 10})

Portability

What platforms is the software advertised to work on? (set of {Windows,

Linux, OS X, Android, Other OS})

Are special steps taken in the source code to handle portability? ({yes ∗ , no,

n/a})

Is portability explicitly identified as NOT being important? ({yes, no})

Convincing evidence that portability has been achieved? ({yes ∗ , no})

Overall impression? ({1 .. 10})

Surface Understandability (Based on 10 random source files)

Consistent indentation and formatting style? ({yes, no, n/a})

Explicit identification of a coding standard? ({yes ∗ , no, n/a})

Are the code identifiers consistent, distinctive, and meaningful? ({yes, no ∗ ,

n/a})

Are constants (other than 0 and 1) hard coded into the program? ({yes ∗ , no,

n/a})

Comments are clear, indicate what is being done, not how? ({yes, no ∗ , n/a})

Is the name/URL of any algorithms used mentioned? ({yes, no ∗ , n/a})

Parameters are in the same order for all functions? ({yes, no ∗ , n/a})

Is code modularized? ({yes, no ∗ , n/a})

Descriptive names of source code files? ({yes, no ∗ , n/a})

Is a design document provided? ({yes ∗ , no, n/a})

Overall impression? ({1 .. 10})

Interoperability

Does the software interoperate with external systems? ({yes ∗ , no})

Is there a workflow that uses other softwares? ({yes ∗ , no})

If there are external interactions, is the API clearly defined? ({yes ∗ , no, n/a})

Overall impression? ({1 .. 10})

Visibility/Transparency

Is the development process defined? If yes, what process is used. ({yes ∗ , no,

n/a})

Ease of external examination relative to other products considered? ({1 .. 10})

Overall impression? ({1 .. 10})

Reproducibility

Is there a record of the environment used for their development and testing?

({yes ∗ , no})

Is test data available for verification? ({yes, no})

Are automated tools used to capture experimental context? ({yes ∗ , no})

Overall impression? ({1 .. 10})

A

u

/

w

T

I

Table B.4 (continued)

Name Ins Lin Auto Val Steps Pkgs Uninstall

Geompack++ No N/A No No 1 0 not avail

GMSH Yes Yes Makefile,

packages

No 4 0 not avail

iso2mesh Yes Yes No No 2 0 not avail

Mefisto Yes Yes Script No 2 0 not avail

MeshGenC++ Yes Yes Script Yes 4 6 not avail

MeshLab Yes No Makefile,

packages

No 2 7 Yes

MMesh3D Yes Yes Makefile No 7 0 not avail

OpenFlipper Yes No Cmake No 20 15 not avail

Overture Yes Yes Yes Yes 70+ 6 not avail

Pamgen Yes Yes Cmake Yes 6 0 not avail

Qhull Yes Yes Makefile, .exe No 3 0 Yes

Seagrid Yes No No No 3 0 not avail

snappyHexMesh Yes Yes apt-get package No 4 12 not avail

TetGen Yes Yes make cmake No 5 1 not avail

TriGrid Yes No Makefile No 4 0 not avail

UGRID No No just run .exe No 1 0 Yes

UNAMalla Yes Yes Packages dmg No 3 0 not avail

ViennaGrid Yes Yes cmake No 6 0 Yes

Algor Yes Yes installer No 3 0 Yes

Argus ONE Yes Yes installer No 3 0 not avail

Table B.5

Correctness grading results.

Name Std Lib Req Doc Evidence Std Ex

ADMesh No Yes None Yes

CGAL Yes Yes Exact

computation

paradigm

Yes

CGM Yes No None Yes

Discretizer Yes No Rdoc Yes

DistMesh No Yes None Yes

enGrid Yes No Doxygen N/A

EZ4U No No None N/A

Geompack++ No Yes Research N/A

GMSH Yes Yes Research Yes

iso2mesh No No Research Yes

Mefisto No Yes None Yes

MeshGenC++ Yes No Research Yes

MeshLab Yes Yes None Yes

MMesh3D No Yes None Yes

OpenFlipper Yes No Doxygen No
ppendix B. Summary of measurements

The full gradings of the 27 mesh generation software prod-

cts are below. The most recent gradings are available at: https:

/github.com/adamlazz/DomainX . The column headings correspond

ith the above questions from the grading template.
able B.4

nstallability, Val means tests for installation validation.

Name Ins Lin Auto Val Steps Pkgs Uninstall

ADMesh Yes Yes Makefile No 4 0 not avail

CGAL Yes Yes Makefile,

packages

No 18 6 not avail

CGM Yes Yes Makefile scripts No 4 1 not avail

Discretizer Yes No Scripts and

binary

release

No 4 1 not avail

DistMesh Yes No No No 2 0 not avail

enGrid Yes Yes Makefile

(Linux)

Installer

(Windows)

No 13 3 not avail

EZ4U Yes Yes Installer (WIN) No 4 0 not avail

Overture Yes No Doxygen and

Research

N/A

Pamgen Yes No None N/A

Qhull No Yes Handles

roundoff

errors

N/A

Seagrid No No None Yes

snappyHexMesh No Yes Doxygen Yes

TetGen Yes Yes None Yes

TriGrid No No None N/A

UGRID No No None Yes

UNAMalla No No None Yes

ViennaGrid No No No N/A

Algor Yes No Advertised as

accurate

N/A

Argus ONE No No No Yes

https://github.com/adamlazz/DomainX

66 W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71

Table B.6

Reliability grading results.

Name Break during install Break during initial test

ADMesh No No

CGAL No No

CGM No No

Discretizer No No

DistMesh No No

enGrid No No

EZ4U Yes 2 Yes

Geompack++ No No

GMSH No N/A

iso2mesh Yes 3 No

Mefisto No No

MeshGenC++ No No

MeshLab No No

MMesh3D No No

OpenFlipper Yes No

Overture Yes 4 N/A

Pamgen No No

Qhull No No

Seagrid No No

snappyHexMesh No No

TetGen No No

TriGrid Yes 5 N/A

UGRID Yes 6 No

UNAMalla No N/A

ViennaGrid No N/A

Algor No N/A

Argus ONE No No

2 Windows error “This program might not have been installed properly”.
3 Needed to add /bin to path.
4 Difficult to install.
5 No password for .exe and src installation failed many times.
6 Chrome detected malicious code during download.

Table B.7

Robustness grading results.

Name Handle garbage input Handle line ending change

ADMesh Yes N/A

CGAL Yes N/A

CGM No No

Discretizer Yes N/A

DistMesh No 7 N/A

enGrid Yes N/A

EZ4U No N/A

Geompack++ Yes N/A

GMSH Yes N/A

iso2mesh Yes N/A

Mefisto Yes N/A

MeshGenC++ Yes N/A

MeshLab Yes N/A

MMesh3D Yes N/A

OpenFlipper Yes Yes

Overture Yes Yes

Pamgen Yes N/A

Qhull Yes N/A

Seagrid Yes N/A

snappyHexMesh Yes N/A

TetGen Yes 8 N/A

TriGrid Yes N/A

UGRID Yes N/A

UNAMalla Yes N/A

ViennaGrid Yes N/A

Algor Yes N/A

Argus ONE Yes N/A

7 Admittedly not robust.
8 Advertised as robust.

W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71 67

Table B.8

Performance grading results.

Name Evidence of performance considerations

ADMesh No

CGAL Yes. Ensuring correctness = high overhead

CGM No

Discretizer No

DistMesh No

enGrid No

EZ4U No

Geompack++ No

GMSH No

iso2mesh No

Mefisto None

MeshGenC++ Yes. Advertised as fast

MeshLab No

MMesh3D No

OpenFlipper Yes, Valgrind

Overture No

Pamgen Yes. Parallel with MPI

Qhull Choice of language

Seagrid No

snappyHexMesh Yes. Parallel

TetGen Yes. Advertised as fast

TriGrid No

UGRID Yes. Advertised as fast

UNAMalla No

ViennaGrid No

Algor Yes. Advertised as fast

Argus ONE No

Table B.9

Usability grading results.

Name GS tutorial Std Ex User Man Look and feel Visib Prob? User char Support

ADMesh No No Yes Yes No No GitHub issues email

CGAL Yes Yes Yes Yes No No Mailing list forum

CGM No No Yes Yes No No Mailing lists

Discretizer Yes Yes Yes Yes No No Issue tracker, email

DistMesh No Yes Yes Yes No No Email

enGrid Yes Yes Yes Yes No No GitHub issues forum

EZ4U No No Yes 9 Yes No Yes 10 Email

Geompack++ No No Yes Yes No Yes 11 Email

GMSH No Yes Yes No No No Mailing list bug tracker email

iso2mesh Yes Yes Yes Yes No No Mailing lists FAQ

Mefisto No Yes Yes Yes No No Email

MeshGenC++ Yes Yes No Yes No No Mailing list email

MeshLab No Yes Yes No No No Forums bug reporter

MMesh3D No No Yes No No No Email

OpenFlipper No No Yes Yes No No Bug tracker, email

Overture No Yes Yes Yes No No Mailing list

Pamgen No Yes Yes Yes No No Mailing list FAQ contact

Qhull Yes Yes Yes Yes No No Email FAQ

Seagrid Yes Yes No Yes No No Built-in email

snappyHexMesh Yes Yes Yes Yes No No Courses paid bug tracker

TetGen Yes Yes Yes Yes No No Paid support

TriGrid No No Yes Yes No No Email

UGRID No No Yes Yes No No Email

UNAMalla Yes Yes No Yes No No Email

ViennaGrid No No Yes Yes No No Mailing list forum Twitter

Algor No 12 No No Yes No No Support DB commerical

Argus ONE Yes Yes Yes Yes No No FAQ email docs

9 Written in Spanish.
10 Students from upc.edu.
11 Knowledge geometric terms and NURBS curves and surfaces.
12 Not for trial.

68 W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71

Table B.10

Maintainability, no evidence of code clones, C means Corrective, P means Perfective, BB means Bitbucket, ? means

unclear, ∗Not for download.

Name Mul Ver Code rvw Chlog Type Issue track Bug fix CVS Evid

ADMesh Yes GH Yes C GH Yes Git No

CGAL Yes ∗ DG Yes C FusionForge No SVN No

CGM Yes ∗ No No C Trac No Git No

Discretizer Yes ∗ No No C SourceForge No SVN No

DistMesh Yes No Yes ? ? ? ? No

enGrid Yes GH Yes C P GH No Git No

EZ4U No No No ? ? ? ? No

Geompack++ Yes No Yes ? ? ? ? No

GMSH Yes No Yes P Trac Yes SVN No

iso2mesh Yes No Yes C Habitat No SVN No

Mefisto Yes ∗ No No ? ? ? ? No

MeshGenC++ No BB No ? ? 13 ? Git No 14

MeshLab Yes No Yes C SourceForge No SVN No

MMesh3D Yes No Yes ? ? ? Git, BB No

OpenFlipper Yes GH Yes C P GitLab Yes Git Yes 15

Overture Yes ∗ No Yes ? ? 16 ? ? No

Pamgen Yes 17 No No ? ? ? Git No

Qhull Yes No Yes C HTML web page ? ? No

Seagrid No No No ? ? ? SVN No

snappyHexMesh Yes Yes Yes C Self-made? No Git No

TetGen Yes ∗ No Yes ? ? ? ? No

TriGrid Yes ∗ No Yes ? Self-made ? ? No

UGRID Yes ∗ No No ? ? ? ? No

UNAMalla No No No ? ? ? ? No

ViennaGrid Yes GH Yes P GH Yes Git No

Algor Yes ∗ No No ? ? ? ? No

Argus ONE Yes ∗ No No ? ? ? ? No

13 Using Bitbucket, but 0 tickets.
14 Advertised “easy extensibility” but no convincing evidence.
15 Uses plugins for extensibility.
16 Using SF, but 0 tickets.
17 for download in different versions of trilinos.

Table B.11

Reusability grading results.

Name Portions reused Evidence

ADMesh No No

CGAL Framework No

CGM Framework No

Discretizer No No

DistMesh No No

enGrid No No

EZ4U No No

Geompack++ No No

GMSH No No

iso2mesh No No

Mefisto No No

MeshGenC++ No No

MeshLab Yes plugins No 18

MMesh3D No No

OpenFlipper No Yes

Overture Yes this is a framework of tools Yes framework

Pamgen This is a suite of software No

Qhull Yes this software is depended on No

Seagrid Yes possibly No

snappyHexMesh Yes, depended on by Discretizer etc No

TetGen Yes, depended on my GMSH etc No

TriGrid No No

UGRID No No

UNAMalla No No

ViennaGrid No No

Algor Plug-ins No

Argus ONE Plug-ins can be created No

18 plugin documentation is blank.

W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71 69

Table B.12

Portability grading results.

Name Platform Port in code N imprtnt Evid

ADMesh WIN UNIX Makefile N/A N/A

CGAL WIN LIN OSX Makefile cross platform build N/A N/A

CGM LIN OSX Cross platform code No No

Discretizer WIN LIN Cross platform code GUI N/A N/A

DistMesh WIN LIN OSX Cross platform code (MATLAB C++) N/A N/A

enGrid WIN LIN Bundled with specific windows tools No No

EZ4U WIN N/A No No

Geompack++ WIN LIN N/A for exe cross platform code No N/A

GMSH WIN LIN OSX cmake (cross platform building) N/A N/A

iso2mesh WIN LIN OSX MATLAB/Octave code N/A N/A

Mefisto WIN (cygwin) LIN OSX Makefile No No

MeshGenC++ WIN LIN OSX Python environment setup N/A N/A

MeshLab WIN LIN OSX IOS ANDROID Makefile IOS ANDROID separate N/A N/A

MMesh3D UNIX N/A No N/A

OpenFlipper WIN LIN OSX cmake Cross platform build system No Yes

Overture LIN OSX Different install processes. No No

Pamgen UNIX cmake No No

Qhull WIN UNIX cmake N/A N/A

Seagrid WIN LIN OSX Subdirectories in source files N/A N/A

snappyHexMesh LIN N/A No N/A

TetGen WIN LIN OSX cmake N/A N/A

TriGrid WIN UNIX Makefiles packages No N/A

UGRID WIN N/A No N/A

UNAMalla WIN LIN OSX Unclear N/A N/A

ViennaGrid WIN UNIX Makefile N/A N/A

Algor WIN N/A No N/A

Argus ONE WIN N/A No N/A

Table B.13

Understandability grading results.

Name Indent Std Cons Id Cnst Cmnts URL Param Mdlr File name Des doc

ADMesh Yes No Yes No Yes No Yes Yes Yes No

CGAL Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

CGM Yes No No No Yes No Yes Yes Yes Yes

Discretizer Yes No Yes No Yes Yes Yes Yes Yes No

DistMesh Yes No Yes Yes Yes Yes Yes Yes Yes No

enGrid Yes No Yes No Yes No Yes Yes Yes No

EZ4U N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Geompack++ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

GMSH Yes No Yes No Yes Yes Yes Yes Yes No

iso2mesh Yes No Yes No Yes No Yes Yes Yes No

Mefisto Yes No Yes No Yes 19 No Yes Yes No No

MeshGenC++ Yes No Yes No Yes No Yes Yes Yes No

MeshLab Yes No Yes No Yes No Yes Yes Yes Yes

MMesh3D Yes No Yes No Yes Yes Yes Yes Yes No

OpenFlipper Yes No Yes No No No Yes Yes No Yes

Overture Yes No Yes No Yes Yes Yes Yes Yes No

Pamgen Yes No Yes No Yes No Yes Yes Yes No

Qhull Yes No Yes No Yes No Yes Yes Yes No

Seagrid Yes No Yes No Yes No Yes Yes Yes No

snappyHexMesh Yes Yes Yes No Yes No Yes Yes Yes Yes

TetGen Yes No Yes No Yes Yes Yes Yes Yes No

TriGrid Yes No Yes Yes Yes No Yes Yes Yes No

UGRID Yes No Yes No Yes No Yes Yes Yes No

UNAMalla N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

ViennaGrid Yes No Yes No Yes No Yes Yes Yes No

Algor N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Argus ONE N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

19 Comments are in French.

70 W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71

Table B.14

Interoperability grading results.

Name Ext systems Workflow API def

ADMesh None No N/A

CGAL Yes GMP OpenGL Qt etc No N/A

CGM ACIS Cubit or

Open.Cascade

No Yes

Discretizer OpenFOAM Paraview

fxruby (GUI)

No N/A

DistMesh None No N/A

enGrid VTK Qt Netgen

(tetrahedral)

No N/A

EZ4U None No N/A

Geompack++ Author’s polygonView

libraries

Yes, Geomview N/A

GMSH FLTK OpenGL Netgen

TetGen more

No N/A

iso2mesh CGAL binary included No N/A

Mefisto None No N/A

MeshGenC++ MATLAB Python No N/A

MeshLab VCG Library No No

MMesh3D None No N/A

OpenFlipper Plugins Yes Yes

Overture Overture framework

A++ P++ OpenGL

No Yes

Pamgen Many No No

Qhull In octave mathematica

and geomview

No Yes

Seagrid None No No

snappyHexMesh 12 (build-essential flex

bison cmake

zlib1g-dev

qt4-dev-tools

libqt4-dev gnuplot

libreadline-dev

libncurses-dev

libxt-dev)

No Yes

TetGen GMSH and more No Yes

TriGrid None No N/A

UGRID None No N/A

UNAMalla None No N/A

ViennaGrid None No N/A

Algor Microsoft .NET

framework

Yes, Autodesk Yes

Argus ONE None No N/A

Table B.15

Visibility grading results.

Name Dev process External exam

ADMesh Yes, GitHub 6 (two sites, need look for info in package)

CGAL Yes, Dev manual 8 (one main site, all information available)

CGM No 6 (TRAC and BitBucket site)

Discretizer No 4 (new site, old site, and SF)

DistMesh No 6 (one site, one page)

enGrid Yes, GitHub 7 (two sites)

EZ4U No 5 (one site, spanish manual)

Geompack++ No 7 (one page)

GMSH No 8 (one site)

iso2mesh No 7 (one site)

Mefisto No 7 (one site, lots of information)

MeshGenC++ No 7 (one site, decent amount of information)

MeshLab Yes, students graded on new plugins 8 (one site)

MMesh3D No 7 (wiki, bitbucket)

OpenFlipper No 5 (multiple sites, inconsistencies between them)

Overture No 6 (one site, external tutorials)

Pamgen No 5 (pamgen, trilinos, git, google code)

Qhull No 6 (one site, good info, external tuts poor)

Seagrid No 7 (two sites, main and bad repo site)

snappyHexMesh Yes, code dev section 7 (one site)

TetGen No 8 (one site)

TriGrid No 8 (one site)

UGRID No 4 (one site

UNAMalla No 5 (one site)

ViennaGrid Yes, GitHub 5 (three sites)

Algor No 5 (one site)

Argus ONE No 7 (one site)

W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71 71

Table B.16

Reproducibility, ∗Sample data, but not for verification.

Name Dev env Ver test data Tools to capture exp context

ADMesh No No None

CGAL No Yes tests None

CGM No Yes tests None

Discretizer No No ∗ None

DistMesh No No None

enGrid Yes No None

EZ4U No No None

Geompack++ No No ∗ None

GMSH No No None

iso2mesh No No None

Mefisto No No ∗ None

MeshGenC++ No No None

MeshLab No No None

MMesh3D Yes 20 No ∗ None

OpenFlipper No No None

Overture No Yes None

Pamgen No Yes test suite None

Qhull No Yes test suite None

Seagrid No No ∗ None

snappyHexMesh No No None

TetGen No No None

TriGrid No No None

UGRID No No None

UNAMalla No No None

ViennaGrid No Yes test suite None

Algor No No None

Argus ONE No No ∗ None

20 OS X 10.5.4 Ubuntu 8.10.

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

eferences

[1] Archer B., Prickett C., Hugosson F.. Check; 2014. http://sourceforge.net/projects/
check/ .

[2] Argus ONE. Argus ONE; 2013. http://www.argusone.com/ .
[3] Autodesk Inc.. Algor; 2014. http://www.autodesk.com/products/simulation/

features/simulation-mechanical/all/gallery-view .

[4] Barber C.B., Dobkin D.P., Huhdanpaa H.. Qhull; 2012. http://www.qhull.org/ .
[5] Bastarrica MC , Hitschfeld-Kahler N . An evolvable meshing tool through a flex-

ible object-oriented design.. In: International meshing roundtable. Citeseer;
2004. p. 203–12 .

[6] Bastarrica MC , Hischfeld-Kahler N . Designing a product family of meshing
tools. Adv Eng Softw 2006;37(1):1–10 .

[7] Bergqvist B.. Discretizer; 2013. http://www.discretizer.org/ .

[8] Berti G. GrAL-the grid algorithms library. Future Gener Comput Syst
2006;22(1-2):110–22. http://dx.doi.org/10.1016/j.future.2003.09.002 .

[9] Carette J , ElSheikh M , Smith S . A generative geometric kernel. In: ACM
SIGPLAN 2011 workshop on partial evaluation and program manipulation

(PEPM’11); 2011. p. 53–62 .
[10] CEA-LIST. Frama-C; 2014. http://frama-c.com/ .

[11] CGAL People. CGAL; 2014. http://www.cgal.org/ .

[12] Davison AP . Automated capture of experiment context for easier reproducibil-
ity in computational research. Comput Sci Eng 2012;14(4):48–56 .

[13] Dolling A.. TriGrid; 2013. http://trigrid.sourceforge.net/ .
[14] ElSheikh AH , Smith WS , Chidiac SE . Semi-formal design of reliable mesh gen-

eration systems. Adv Eng Softw 2004;35(12):827–41 .
[15] enGits. enGrid; 2014. http://engits.eu/en/engrid .

[16] Fang Q. iso2mesh; 2013. http://iso2mesh.sourceforge.net/cgi-bin/index.cgi .

[17] Fathom Team. CGM; 2013. http://trac.mcs.anl.gov/projects/ITAPS/wiki/CGM .
[18] Geuzaine C., Remacle J.-F. GMSH; 2014. http://www.geuz.org/gmsh/ .

[19] Gewaltig M-O , Cannon R . Quality and sustainability of software tools in neu-
roscience. Cornell University Library; 2012. p. 1–20 .

20] Gewaltig M-O , Cannon R . Current practice in software development for com-
putational neuroscience and how to improve it. PLOS Comput Biol 2014:1–9 .

[21] Ghezzi C , Jazayeri M , Mandrioli D . Fundamentals of software engineering. 2.

Prentice Hall; 2002 .
22] Girona J. EZ4U; Unclear. http://www.lacan.upc.edu/ez4u.htm .

23] Hashimoto M., Bender J. Vagrant; 2014. https://github.com/mitchellh/vagrant .
[24] Hawken D. UGRID; 2012. http://www.telusplanet.net/public/djhawken/ugrid.

htm .
25] Henshaw W.D., Schwendeman D.W. Overture; 2014. http://www.

overtureframework.org/index.html .

26] Hron ̌cok M. ADMesh; 2014. http://www.varlog.com/admesh-htm .
[27] Joe B. Geompack++; 2012. http://members.shaw.ca/bjoe/ .
28] Kelly D. Industrial scientific software: a set of interviews on software devel-
opment. In: Proceedings of the 2013 conference of the center for advanced

studies on collaborative research. CASCON ’13. Riverton, NJ, USA: IBM Corp.;
2013. p. 299–310 . http://dl.acm.org/citation.cfm?id=2555523.2555555 .

29] Kelly DF. A software chasm: software engineering and scientific computing.
IEEE Softw 2007;24(6). http://dx.doi.org/10.1109/MS.2007.155 . 120–119.

30] Kobbelt L. OpenVolumeMesh; 2013. http://www.openvolumemesh.org/ .
[31] Kumar A., Pye J., Gerhardy M. CUnit; 2014. http://sourceforge.net/projects/

cunit/ .

32] Lazzarato A , Smith S , Carette J . State of the practice for remote sensing soft-
ware. Technical Report CAS-15-03-SS. McMaster University; 2015 .

[33] Marras S. MMesh3D; 2014. http://mmesh3d.wikispaces.com/ .
34] Möbius J, Kobbelt L. Openflipper: an open source geometry processing and

rendering framework. In: Proceedings of the 7th international conference on
curves and surfaces. Berlin, Heidelberg: Springer-Verlag; 2012. p. 488–500.

doi: 10.1007/978- 3- 642- 27413- 8 _ 31 . 978-3-642-27412-1.

[35] Norman DA . The design of everyday things. reprint paperback. New York: Basic
Books; 2002 . 0-465-06710-7.

36] OpenFOAM Foundation. snappyHexMesh; 2014. http://www.openfoam.org/
docs/user/snappyHexMesh.php .

[37] Owen SJ . A survey of unstructured mesh generation technology. In: Interna-
tional meshing roundtable; 1998. p. 239–67 .

38] Parnas D . On the design and development of program families. IEEE Trans

Softw Eng 1976;SE-2(1):1–9 .
39] Perronnet A. Mefisto; 2013. http://www.ann.jussieu.fr/ ∼perronnet/mefistoa.

gene.html .
40] Persson P.-O. DistMesh; 2012. http://persson.berkeley.edu/distmesh/ .

[41] Ranzuglia G., Cignoni P. MeshLab; 2014. http://meshlab.sourceforge.net/ .
42] Remacle J-F , Shephard MS . An algorithm oriented mesh database. Int J Numer

Methods Eng 2003;58:349–74 .

43] Roache PJ . Verification and validation in computational science and engineer-
ing. Albuquerque, New Mexico: Hermosa Publishers; 1998 .

44] Rossel PO, Bastarrica MC, Hitschfeld-Kahler N, Díaz V, Medina M. Domain
modeling as a basis for building a meshing tool software product line. Adv

Eng Softw 2014;70:77–89. doi: 10.1016/j.advengsoft.2014.01.011 .
45] Rossmanith J.A., DoGPack Team. MeshGenC++; 2014. http://www.

dogpack-code.org/MeshGenC++/ .

46] Rupp K.. ViennaGrid; 2013. http://viennagrid.sourceforge.net/ .
[47] Saaty TL . How to make a decision: The analytic hierarchy process. Eur J Oper

Res 1990;48(1):9–26 .
48] Sánchez P.B.. UNAMalla; 2013. http://lya.fciencias.unam.mx/unamalla/home _ i.

html .
49] Schneiders R.. Software; 1998. http://www.robertschneiders.de/

meshgeneration/software.html .

50] Segal J . When software engineers met research scientists: a case study. Emp
Softw Eng 2005;10(4):517–36 .

[51] Segal J . Some problems of professional end user developers. In: VLHCC ’07:
proceedings of the IEEE symposium on visual languages and human-centric

computing. Washington, DC, USA: IEEE Computer Society; 2007. p. 111–18 .
0-7695-2987-9.

52] Segal J. Models of scientific software development. In: Proceedings of the
first international workshop on software engineering for computational sci-

ence and engineering (SECSE 2008). Leipzig, Germany: In conjunction with the

30th International Conference on Software Engineering (ICSE); 2008. p. 1–6 .
http://www.cse.msstate.edu/ ∼SECSE08/schedule.htm .

53] Segal J . Developing scientific software. IEEE Softw 2008;25(4):18–20 .
54] Si H.. TetGen; 2013. http://wias-berlin.de/software/tetgen/ .

55] Signell R.. Seagrid; 2014. http://woodshole.er.usgs.gov/operations/modeling/
seagrid/index.html .

56] Smith S , Lai L . A new requirements template for scientific computing. In: Pro-

ceedings of SREP’05; 2005. p. 1–15 .
[57] Smith S , Sun Y , Carette J . State of the practice for developing oceanographic

software. Technical Report CAS-15-02-SS. McMaster University, Department of
Computing and Software; 2015 .

58] Smith S , Sun Y , Carette J . Comparing psychometrics software development be-
tween CRAN and other communities. Technical Report CAS-15-01-SS. McMas-

ter University; 2015 .

59] Smith WS , Chen C-H . Commonality analysis for mesh generating systems.
Technical Report CAS-04-10-SS. McMaster University, Department of Comput-

ing and Software; 2004 .
60] Smith WS, Yu W. A document driven methodology for improving the quality

of a parallel mesh generation toolbox. Adv Eng Softw 2009;40(11):1155–67.
http://dx.doi.org/10.1016/j.advengsoft.20 09.05.0 03 .

[61] Tang J . Developing scientific computing software: current processes and future

directions, Hamilton, ON: McMaster University; 2008. Master’s thesis .
62] The Trilinos Project. Pamgen; 2014. http://trilinos.sandia.gov/packages/

pamgen/ .
63] Wilson G , Aruliah D , Brown CT , Hong NPC , Davis M , Guy RT , et al. Best prac-

tices for scientific computing. CoRR; 2013 .
64] Wilson GV. Where’s the real bottleneck in scientific computing? Scien-

tists would do well to pick some tools widely used in the software in-

dustry. Am Scientist 2006;94(1) . http://www.americanscientist.org/issues/pub/
wheres- the- real- bottleneck- in- scientific- computing .

http://sourceforge.net/projects/check/
http://www.argusone.com/
http://www.autodesk.com/products/simulation/features/simulation-mechanical/all/gallery-view
http://www.qhull.org/
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0002
http://www.discretizer.org/
http://dx.doi.org/10.1016/j.future.2003.09.002
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0004
http://frama-c.com/
http://www.cgal.org/
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0005
http://trigrid.sourceforge.net/
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0006
http://engits.eu/en/engrid
http://iso2mesh.sourceforge.net/cgi-bin/index.cgi
http://trac.mcs.anl.gov/projects/ITAPS/wiki/CGM
http://www.geuz.org/gmsh/
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0009
http://www.lacan.upc.edu/ez4u.htm
https://github.com/mitchellh/vagrant
http://www.telusplanet.net/public/djhawken/ugrid.htm
http://www.overtureframework.org/index.html
http://www.varlog.com/admesh-htm
http://members.shaw.ca/bjoe/
http://dl.acm.org/citation.cfm?id=2555523.2555555
http://dx.doi.org/10.1109/MS.2007.155
http://www.openvolumemesh.org/
http://sourceforge.net/projects/cunit/
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0012
http://mmesh3d.wikispaces.com/
http://dx.doi.org/10.1007/978-3-642-27413-8_31
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0014
http://www.openfoam.org/docs/user/snappyHexMesh.php
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0016
http://www.ann.jussieu.fr/~perronnet/mefistoa.gene.html
http://persson.berkeley.edu/distmesh/
http://meshlab.sourceforge.net/
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0018
http://dx.doi.org/10.1016/j.advengsoft.2014.01.011
http://www.dogpack-code.org/MeshGenC++/
http://viennagrid.sourceforge.net/
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0020
http://lya.fciencias.unam.mx/unamalla/home_i.html
http://www.robertschneiders.de/meshgeneration/software.html
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0022
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0022
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0022
http://www.cse.msstate.edu/~SECSE08/schedule.htm
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0024
http://wias-berlin.de/software/tetgen/
http://woodshole.er.usgs.gov/operations/modeling/seagrid/index.html
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0028
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0028
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0028
http://dx.doi.org/10.1016/j.advengsoft.2009.05.003
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0030
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0030
http://trilinos.sandia.gov/packages/pamgen/
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30129-6/sbref0031
http://www.americanscientist.org/issues/pub/wheres-the-real-bottleneck-in-scientific-computing

	State of the practice for mesh generation and mesh processing software
	1 Introduction
	2 Background
	2.1 Software qualities
	2.2 Analytic hierarchy process

	3 Method
	3.1 Software product selection
	3.2 Grading template
	3.3 Grading process

	4 Summary of results
	4.1 Installability
	4.2 Correctness and verifiability
	4.3 Reliability
	4.4 Robustness
	4.5 Performance
	4.6 Usability
	4.7 Maintainability
	4.8 Reusability
	4.9 Portability
	4.10 Understandability
	4.11 Interoperability
	4.12 Visibility
	4.13 Reproducibility
	4.14 Overall quality ranking

	5 Recommendations
	6 Conclusions
	 Acknowledgments
	Appendix A Full grading template
	Appendix B Summary of measurements
	 References

