
STATE OF THE PRACTICE FOR MEDICAL IMAGING SOFTWARE

ASSESSING THE STATE OF THE PRACTICE FOR MEDICAL IMAGING

SOFTWARE

By

AO DONG.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the degree

Master of Engineering in Computing and Software

McMaster University

© Copyright by Ao Dong, August 2021

MASTER OF ENGINEERING (2021) McMaster University

(Computing and Software) Hamilton, Ontario

TITLE: Assessing the State of the Practice for Medical Imaging Software

AUTHOR: Ao Dong

SUPERVISOR: Dr. Spencer Smith and Dr. Jacques Carette

NUMBER OF PAGES: ix, 116

ii

Abstract

We present a general method to assess the state of the practice for Scientific Computing

(SC) software and apply the method to the Medical Imaging (MI) software. This method

guided us to select 29 MI software projects from 48 candidates, assess 10 software qual-

ities (Installability, Correctness & Verifiability, Reliability, Robustness, Usability, Main-

tainability, Reusability, Understandability, Visibility/Transparency, and Reproducibility)

by answering 103 questions for each software, and interview eight of the 29 development

teams. The results helped us with revealing the current status of MI software development.

Based on the quantitative data for the first nine qualities, we ranked the MI software with

the Analytic Hierarchy Process (AHP). The top three software products were 3D Slicer,

ImageJ, and OHIF Viewer, which received high scores for most qualities. 3D Slicer was

among the top two for all nine qualities except robustness. By interviewing the developers,

we identified three major types of pain points during their development process: i) the lack

of resources; ii) the difficulty to balance between four factors: compatibility, maintainabil-

ity, performance, and security; iii) the lack of access to real-world datasets for testing. We

collected proven and potential solutions for these problems. The interviews also helped

us to understand the status of documentation, project management, and five qualities (cor-

rectness, maintainability, understandability, usability, and reproducibility) in the projects.

We summarized the threats and strategies to these qualities. For future SC software de-

velopment, we proposed recommendations on improving software qualities, dealing with

limited resources, choosing a tech stack, and enriching the testing datasets. The recommen-

dations include adopting test-driven development, using continuous integration and contin-

uous delivery (CI/CD), using git and GitHub, maintaining good documentation, supporting

third-party plugins or extensions, considering web application solutions, and establishing

community collaboration in an SC domain.

Keywords: Medical Imaging, Scientific Computing, software engineering, software qual-

ity, Analytic Hierarchy Process, developer interview

iii

Acknowledgments

I would like to express my appreciation to my instructors, Dr. Spencer Smith and Dr.

Jacques Carette, for guiding me through the research and report writing. I also would like to

thank other members of our team, Peter Michalski, Oluwaseun Owojaiye, and Dr. Michael

Noseworthy.

I have my special thanks to my wife, who has always been considerate and supportive

during the whole of my graduate study.

iv

Abbreviations and Acronyms

symbol description
2D Two-Dimensional
3D Three-Dimensional
AHP Analytic Hierarchy Process
API Application Programming Interface
CI/CD Continuous Integration and Continuous Delivery
DICOM Digital Imaging and Communications in Medicine
FAQ Frequently Asked Questions
L Linux
LOC Lines of Code
M macOS
MI Medical Imaging
MTTF Mean Time to Failure
NOC Number of Contributors
MVC Model, View, and Controller
OS Operating System
OSS Open Source Software
PACS Picture Archiving and Communication System
Q Question
Rlsd Release Date
RQ Research Question
SC Scientific Computing
scc Sloc Cloc and Code
VM Virtual Machine
V Visualization
W Windows

v

Contents

Abstract iii

Acknowledgments iv

Abbreviations and Acronyms v

1 Introduction 2

1.1 Motivation . 3

1.2 Research Questions . 4

1.3 Scope . 5

1.4 Overview of the Methodology . 6

1.5 Organization . 6

2 Background 9

2.1 Software Categories . 9

2.1.1 Open Source Software . 10

2.1.2 Freeware . 10

2.1.3 Commercial Software . 10

2.2 Software Quality Definitions . 11

2.3 Analytic Hierarchy Process . 12

vi

3 Methodology 15

3.1 Domain Selection . 15

3.2 Software Product Selection . 16

3.2.1 Identify Software Candidates . 16

3.2.2 Filter the Software List . 16

3.2.3 Vet the Software List . 18

3.3 Grading Software . 18

3.3.1 Grading Template . 18

3.3.2 Empirical Measurements . 22

3.3.3 Technical Details . 23

3.4 Interview Methods . 23

3.4.1 Interview Questions . 24

3.4.2 Interviewee Selection . 24

3.4.3 Interview Process . 25

3.5 Applying the Method to MI . 25

3.5.1 Domain Selection . 25

3.5.2 Software Product Selection . 25

3.5.3 Grading Software . 27

3.5.4 Interviews . 28

4 Measurement Results 29

4.1 Installability . 32

4.2 Correctness & Verifiability . 34

4.3 Surface Reliability . 36

4.4 Surface Robustness . 37

4.5 Surface Usability . 38

4.6 Maintainability . 40

vii

4.7 Reusability . 42

4.8 Surface Understandability . 43

4.9 Visibility/Transparency . 44

4.10 Overall Scores . 46

5 Interviews with Developers 48

5.1 Current and Past Pain Points . 49

5.1.1 Resource Pain Points . 50

5.1.2 Balance Pain Points . 51

5.1.3 Testing Pain Point . 53

5.2 Documents in the Projects . 54

5.3 Contribution Management and Project Management 55

5.4 Discussions on Software Qualities . 58

5.4.1 Correctness . 58

5.4.2 Maintainability . 60

5.4.3 Understandability . 60

5.4.4 Usability . 61

5.4.5 Reproducibility . 62

6 Answers to Research Questions 64

6.1 Artifacts in the Projects . 64

6.2 Tools in the Projects . 66

6.3 Principles, Processes, and Methodologies in the Projects 66

6.4 Pain Points and Solutions . 67

6.5 Software Qualities . 68

6.6 Our Ranking versus the Community Ratings 68

6.6.1 Our Ranking versus the GitHub Popularity 69

viii

6.6.2 Designated Top Software versus the Domain Experts’ Recommen-

dation . 71

6.7 Threats to Validity . 72

6.7.1 Threats to Construct Validity . 73

6.7.2 Threats to Internal Validity . 73

6.7.3 Threats to External Validity . 74

6.7.4 Threats to Conclusion Validity . 74

7 Recommendations 75

7.1 Recommendations on Improving Software Qualities 75

7.2 Recommendations on Dealing With Limited Resources 78

7.3 Recommendations on Choosing A Tech Stack 80

7.4 Recommendations on Enriching the Testing Datasets 81

8 Conclusions 84

8.1 Key Findings . 84

8.2 Future Works . 86

Bibliography 89

A Full Grading Template 102

B Full Software List Before Filtering 109

C Other Interview Answers 111

D Ethics Approval 116

ix

MEng Thesis - Ao Dong- McMaster - Computing and Software

1

Chapter 1

Introduction

We define Scientific Computing (SC) as “the use of computer tools to analyze or simu-

late mathematical models of real world systems of engineering or scientific importance so

that we can better understand and predict the system’s behaviour” [85]. Many researchers

consider SC as the third pillar of science and engineering, along with theory and experi-

ment [54]. Almost all areas in science and engineering use computers for modeling [30],

and software plays an essential role in modern scientific research [35] [105]. Software de-

velopment in SC depends on three fields of knowledge: engineering or scientific domain

knowledge, mathematical algorithm knowledge, and computational algorithm knowledge

[54] [62]. Thus, most SC software developers are scientists in SC domains [105]. However,

they do not always use the modern software development techniques, tools, and methods

[105]. Therefore, we developed a methodology for assessing the state of the practice for

SC software. We apply this process to Medical Imaging (MI) software that belongs to a

specific domain of SC.

This report analyzes the state of the practice for MI software. MI is the clinical tool to

image the interior of a body, providing information for diagnostic, analytic, and medical

applications [1] [104]. MI is an essential part of collecting accurate information during

2

MEng Thesis - Ao Dong- McMaster - Computing and Software

clinical diagnosis [108]. MI software aims to visualize and process medical images and

produce clinically meaningful information [103].

We aim to study the current status of SC software development in the MI domain;

understand the current merits, drawbacks, and pain points during the development process,

as well as the software qualities in the domain; provide guidelines and recommendations

for future development.

Section 1.1 presents our motivation to start the research set the above goals, Section

1.2 lists our research questions, and Section 1.3 presents the scope of MI software in our

research.

1.1 Motivation

Most scientists think developing and using SC software plays a significant role in their

research [35]. They spend a substantial proportion of their working hours on SC software

development [35] [71], and this proportion of time has increased over the years [35].

Developing SC software requires solid knowledge in specific domains [105]. Many

developers learn software engineering skills by themselves or from their peers, instead of

from proper training [35]. Hannay et al. [35] observe that many scientists showed igno-

rance and indifference to standard software engineering concepts. According to a survey

by Prabhu et al. [71], more than half of the 114 subjects did not use any proper debugger

for their software.

Due to its nature, SC software born from one project can be part of many other projects

in the future, with the potential to disproportionately causing damages to scientific research

[105].

As a result, the development process and quality of SC software concern us. We want

to understand their status in SC domains and improve them. In addition, we want to under-

stand whether problems like these mentioned above occur in all SC domains, or whether the

3

MEng Thesis - Ao Dong- McMaster - Computing and Software

state of the practice varies between domains. We build and refine our methodology, based

on our previous work in scientific domains such as oceanography [88], mesh generation

[94], geographic information systems [93], psychology [89] and seismology [90].

1.2 Research Questions

To achieve our objectives, we devised a few research questions as follows:

RQ1. What artifacts are present in current software projects? What role does documenta-

tion play in the projects? What are the developers’ attitude toward it?

RQ2. What tools are used in the development of current software packages?

RQ3. What principles, processes, and methodologies are used in the development of cur-

rent software packages?

RQ4. What are the pain points for developers working on research software projects?

What aspects of the existing processes, methodologies, and tools do they consider

as potentially needing improvement? What changes to processes, methodologies,

and tools can improve software development and software quality?

RQ5. What is the current status of the following software qualities for the projects? What

actions have the developers taken to address them?

• Installability

• Correctness & Verifiability

• Reliability

• Robustness

• Usability

4

MEng Thesis - Ao Dong- McMaster - Computing and Software

• Maintainability

• Reusability

• Understandability

• Visibility/Transparency

• Reproducibility

RQ6. How does software designated as high quality by this methodology compare with

top-rated software by the community?

1.3 Scope

According to Bankman [10], MI software deals with six different basic problems, while

Angenentet et al. [7] pointed out that four fundamental problems are solved by MI soft-

ware. While both mentioned Segmentation, Registration, and Visualization of medical

images, Bankman also included Enhancement, Quantification, and three functions for MI

archiving and telemedicine systems (Compression, Storage, and Communication) [10]. On

the other hand, Angenent’s team included Simulation [7]. According to Wikipedia contrib-

utors [103], MI software has primary functions in categories Segmentation, Registration,

Visualization (including the basic display, reformatted views, and 3D volume rendering),

Statistical Analysis, and Image-based Physiological Modelling. As Kim et al. [52] de-

scribe, the general steps of medical image analysis after obtaining digital data include En-

hancement, Segmentation, Feature Extraction, Classification, and Interpretation. Besides

the above major functions, some MI software provides supportive functions. For example,

with Tool Kit libraries VTK [83] and ITK [61], developers build software with Visualiza-

tion and Analysis functions; Picture Archiving and Communication System (PACS) helps

users to economically store and conveniently access images [17].

5

MEng Thesis - Ao Dong- McMaster - Computing and Software

Based on our literature survey, we divided MI software into five sub-groups and several

sub-sub-groups by their major functions, as shown in Figure 1.1.

To keep the data collection and analysis feasible, we limited the scope of the software

to the software packages providing the Visualization tools and functions in this project.

1.4 Overview of the Methodology

We designed a general method to assess the state of the practice for SC software. With this

method, we choose an SC domain and identify software candidates in it. Then, we filter the

candidates and produce a final list of about 30 software packages. We measure the qualities

of each software by answering questions on a grading template, as shown in Appendix A.

Comparing with our previous research mentioned in Section 1.1, this project includes a

new type of measurement, the empirical measurements, in the grading template. We use the

empirical measurements to collect metrics from project repositories and source code. With

the quantitative data generated by the template, we rank the software with the Analytic

Hierarchy Process (AHP), which is a technique for group decision-making in complex

situations. Section 2.3 includes description about the AHP. After that, we interview some

of the development teams to further understand the status of their development process.

Finally, we summarize the results and propose recommendations for future SC software

development.

1.5 Organization

We organize this report as follows:

• Introduction to our research and this report.

• Background of our research and methodology.

6

MEng Thesis - Ao Dong- McMaster - Computing and Software

• Methodology of our state of the practice assessment, including an overview of ap-

plying it to the MI software.

• Measurement Results for a list of selected MI software, including measurement

data generated by our grading template, and our ranking to the software on this list.

• Interviews with Developers, including the pain points and other status of their de-

velopment process.

• Answers to Research Questions.

• Recommendations to future SC software development.

• Conclusions to this report, including recommendations to the future state of the prac-

tice study.

• Appendix, including our Full Grading Template, Full Software List Before Filtering,

Other Interview Answers, and Ethics Approval.

7

MEng Thesis - Ao Dong- McMaster - Computing and Software

MI software

Enhancement

Analysis

Registration

Segmentation

Statistical
Analysis

Feature
Extraction

Classification

Interpretation

Simulation/
Modeling

Supporting

Tool Kit

PACS

Visualization

2D
Display

3D
Rendering

Reformatted
Views

Figure 1.1: Major functions of MI software

8

Chapter 2

Background

When designing a method for evaluating the state of the practice of domain-specific soft-

ware, we included a step to select domain and software. Knowledge of different software

categories is essential for the selection. To compare and rank the software qualities with

the grading template in Appendix A, we need the definitions of qualities and the AHP.

In this section, we introduce the relevant software categories (Section 2.1). We also

cover the software quality definitions (Section 2.2) and an overview of the AHP (Section

2.3).

2.1 Software Categories

We target specific software categories to narrow down the scope when selecting software

packages for measuring. One way to categorize them is grouping by functions, such as

analyzing the scope for the MI software (Section 1.3), which requires specific domain

knowledge. In this section, we discuss three common software categories that we can

apply to all SC domains: Open source software (OSS), freeware, and commercial software.

9

MEng Thesis - Ao Dong- McMaster - Computing and Software

2.1.1 Open Source Software

For OSS, the source code is openly accessible. Users have the right to study, change and

distribute it under a license granted by the copyright holder. For many OSS projects, the

development process relies on the collaboration of different contributors worldwide [20].

Accessible source code usually exposes more “secrets” of a software project, such as the

underlying logic of software functions, how developers achieve their works, and the flaws

and potential risks in the final product. Thus, it brings much more convenience to re-

searchers analyzing the qualities of the project.

2.1.2 Freeware

Freeware is software that can be used free of charge. Unlike with OSS, the authors of

freeware do not allow users to access or modify the source code of the software [73].

The term freeware should not be confused with free software, which is similar to OSS.

To the end-users, the differences between freeware and OSS often do not bother them.

The fact that these products are free of charge is likely to make them popular with many

users. However, software developers, end-users who wish to modify the source code, and

researchers looking for insight into software development process will find the inaccessible

source code a problem.

2.1.3 Commercial Software

“Commercial software is software developed by a business as part of its business” [29].

Typically speaking, the users are required to pay to access all of the features of commercial

software, excluding access to the source code. However, some commercial software is also

free of charge [29]. Based on our experience, most commercial software products are not

OSS.

10

MEng Thesis - Ao Dong- McMaster - Computing and Software

For some specific software, the backgrounds of commercial software developers often

differ from the ones of non-commercial OSS. In such a case, the former is usually the

product of software engineers, and the latter is likely to have developers who work in

the domain and are also end-users of the products. One example of such software is SC

software, since the developers need to utilize their domain-specific during the development

process [105].

2.2 Software Quality Definitions

This section lists the definitions of 10 software qualities, which are from Smith et al. [86].

We aim to measure each of them for selected SC software packages. The order of the

first nine qualities follows our grading template in Appendix A. We do not measure repro-

ducibility with the grading template, but discuss it with the developers by interviews.

• Installability The effort required for the installation, uninstallation, or reinstallation

of a software or product in a specified environment [44] [55].

• Correctness & Verifiability A program is correct if it behaves according to its stated

specifications. Verifiability is the extent to which a set of tests can be written and

executed, to demonstrate that the delivered system meets the specification [27].

• Reliability The probability of failure-free operation of a computer program in a spec-

ified environment for a specified time, i.e., the average time interval between two

failures also known as the mean time to failure (MTTF) [65] [27].

• Robustness Software possesses the characteristic of robustness if it behaves “rea-

sonably” in two situations: i) when it encounters circumstances not anticipated in the

requirements specification, and ii) when the assumptions in its requirements specifi-

cation are violated [26] [13].

11

MEng Thesis - Ao Dong- McMaster - Computing and Software

• Usability “The extent to which a product can be used by specified users to achieve

specified goals with effectiveness, efficiency, and satisfaction in a specified context

of use” [45] [46].

• Maintainability The effort with which a software system or component can be mod-

ified to i) correct faults; ii) improve performance or other attributes; iii) satisfy new

requirements [39] [13].

• Reusability “The extent to which a software component can be used with or with-

out adaptation in a problem solution other than the one for which it was originally

developed” [50].

• Understandability “The capability of the software product to enable the user to

understand whether the software is suitable, and how it can be used for particular

tasks and conditions of use” [43].

• Visibility/Transparency The extent to which all of the steps of a software develop-

ment process and the current status of it are conveyed clearly [26].

• Reproducibility “A result is said to be reproducible if another researcher can take

the original code and input data, execute it, and re-obtain the same result” [11].

2.3 Analytic Hierarchy Process

To generate ranking scores for a set of software packages, we use AHP, which utilizes pair-

wise comparisons between all of the packages. Thomas L. Saaty developed this tool, and

people widely used it to make and analyze multiple criteria decisions [96]. AHP organizes

multiple criteria factors in a hierarchical structure and uses pairwise comparisons between

alternatives to calculate relative ratios [78].

12

MEng Thesis - Ao Dong- McMaster - Computing and Software

For a project with m criteria, we can use an m × m matrix A to record the relative

importance between factors. When comparing criterion i and criterion j, the value of Ai j is

decided as follows, and the value of A ji is 1/Ai j [78],

• Ai j = 1 if criterion i and criterion j are equally important;

• Ai j = 9 if criterion i is extremely more important than criterion j;

• Ai j equals to an integer value between 1 and 9 according the the relative importance

of criterion i and criterion j.

The above process assumes that criterion i is not less important than criterion j, other-

wise, we need to reverse i and j and determine A ji first, then Ai j = 1/A ji.

The priority vector w can be calculated by solving the following equation [78],

Aw = λmaxw, (2.1)

where λmax is the maximal eigenvalue of A.

In this project, w is approximated with the classic mean of normalized values approach

[42],

wi =
1
m

m

∑
j=1

Ai j

∑
m
k=1 Ak j

(2.2)

Suppose there are n alternatives, for criterion i = 1,2, ...,m, we can create an n× n

matrix Bi to record the relative preferences between these choices. The way of generating

Bi is similar to the one for A. However, unlike comparing the importance between criteria,

we pairwise decide how much we favor one alternative over the other. We use the same

method to calculate the local priority vector for each Bi.

In this project, the first nine software qualities mentioned in Section 2.2 are the criteria

(m = 9), while 29 software packages (n = 29) are compared for each of the m criteria. The

13

MEng Thesis - Ao Dong- McMaster - Computing and Software

software are evaluated with the grading template in Appendix A and a subjective score

from one to ten is given for each quality for each package. For each quality, for a pair of

packages i and j, such that scorei >= score j, the difference between two scores is diffij =

scorei − score j. The relationship between Ai j = 1 and diffij is as follows:

• Ai j = 1 and diffij = 0 when criterion i and criterion j are equally important;

• Ai j increases when diffij increases;

• Ai j = 9 and diffij = 9 when criterion i is extremely more important than criterion j.

Thus, we approximate the pairwise comparison result of i versus j by the following equa-

tion:

Ai j = min(scorei − score j +1,9) (2.3)

14

Chapter 3

Methodology

We designed a general process for evaluating the state of the practice of domain-specific

SC software, that we instantiate for a specific scientific domain.

Our method involves four steps:

1. choosing a software domain (Section 3.1);

2. collecting and filtering software packages (Section 3.2);

3. grading the selected software (Section 3.3);

4. interviewing development teams for further information (Section 3.4).

Section 3.5 presents an example of how we applied the method on the MI domain.

3.1 Domain Selection

Our methods are generic for any SC software, but they need to be applied to a specific

domain. When choosing a candidate domain, we prefer one with a large number of active

OSS. The reason is that we aim to finalize a list of 30 software packages [87] after the

15

MEng Thesis - Ao Dong- McMaster - Computing and Software

screening step. For example, we remove the ones without recent updates or specific func-

tions. Besides, we prefer OSS projects because our grading method requires access to the

code. In addition, we prefer a domain with an active community developing and using the

software. As a result, it is easier to invite enough developers for interviews.

We prefer 30 software packages providing similar functions or falling into different sub-

groups depending on our research purpose. So the domain needs to have enough candidates

in one sub-group or enough sub-groups to cross-compare.

We also prefer domains in which our team has expertise. We invite domain experts to

join and support our projects. They help us in many aspects, such as vetting the software

list and interview questions.

3.2 Software Product Selection

The process of selecting software packages contains two steps: i) identify software candi-

dates in the chosen domain, ii) filter the list according to our needs [87].

3.2.1 Identify Software Candidates

We start with finding candidate software in publications of the domain. Then, we search

various websites, such as GitHub, swMATH and the Google search results for software

recommendation articles. We should also include the ones suggested by the domain experts

[87].

3.2.2 Filter the Software List

The goal is to build a software list with a length of about 30 [87].

The only “mandatory” requirement is that the software must be OSS, as defined in

Section 2.1.1. We need this because evaluating some software qualities requires the source

16

MEng Thesis - Ao Dong- McMaster - Computing and Software

code.

The other filters are optional, and we consider them according to the number of software

candidates and the objectives of the research project. We apply them in the following

priority order:

1. The functions and purpose of the software. An SC domain often contains software

with various functions and purposes. For example, some MI software packages are

Tool Kit for developers to use, and some others offer Visualization function to end-

users. We have two options:

• selecting a set of software with the same major function. In this case, we can

use the identical process to assess all packages, e.g., same input to measure

Robustness. Also, when we give impression scores to qualities such as Installa-

bility and Usability, the results are more comparable. Thus, it is more feasible

to collect the results and rank the software.

• selecting software from a set of different sub-groups. For example, we can

choose 10 MI software from each of the three sub-groups: Visualization, Tool

Kit, and PACS. The downside: we may need different processes to measure

each sub-group; it may be less accurate to mix all three sub-groups and rank

them together. The benefit: we can cross-compare the development processes

between the sub-groups.

2. The version control tool. The empirical measurement tools listed in Section 3.3.2

only work on projects using Git, so we prefer software with Git. Some manual steps

in empirical measurement depend on a few metrics of GitHub, which makes projects

held on GitHub more favored [87].

3. The age of the software. Some of the OSS projects may experience a lack of recent

maintenance. So we eliminate packages without recent updates, unless they are still

17

MEng Thesis - Ao Dong- McMaster - Computing and Software

popular and highly recommended by the domain users [87]. We consider a software

project as “alive” if it has any update within the last 18 months; otherwise, we mark

it as “dead”.

The order of filters 2 and 3 is flexible. We adjust it according to the number of software

packages affected by the filters, and the number of ones remaining on the list.

3.2.3 Vet the Software List

Before showing our filtered list to the domain experts, we ask them to list their top 10 soft-

ware in the domain. Then, we cross-compare the two lists and discuss the commonality and

variability. In addition, we ask them to vet our filtered list. They provide views on whether

the list is reasonable. We also use their opinions for a filtering process. For example, if a

software package is not OSS and has had no updates for a long time, but the domain experts

identify it as a valuable product, we still consider it in our final list.

3.3 Grading Software

We grade the selected software using a template (Section 3.3.1) and a specific empirical

method (Section 3.3.2). Some technical details for the measurements are in Section 3.3.3.

3.3.1 Grading Template

The full grading template can be found in Appendix A. The template contains 103 questions

that we use for grading software products. Figure 3.1 shows an example of this grading

template.

We use the first section of the template to collect general information, such as the name,

purpose, platform, programming language, publications about the software, the first release

18

MEng Thesis - Ao Dong- McMaster - Computing and Software

Figure 3.1: Grading template example

and the most recent change date, website, source code repository of the product, etc. Infor-

mation in this section helps us understand the projects better and may be helpful for further

analysis, but it does not directly affect the grading scores.

We designed the following nine sections in the template for the nine software qualities

mentioned in Section 2.2. For each quality, we ask several questions and the typical answers

are among the collection of “yes”, “no”, “n/a”, “unclear”, a number, a string, a date, a set

of strings, etc. Each quality needs an overall score between 1 and 10 based on all the

previous questions. For some qualities, we perform surface measurements, which allow us

to measure all packages with reasonable efforts. The surface measurements reveal some

traits of a underlying quality, but may not fully represent it.

• Installability We check the existence and quality of installation instructions. The

19

MEng Thesis - Ao Dong- McMaster - Computing and Software

user experience is also an important factor, such as the ease to follow the instructions,

number of steps, automation tools, and the prerequisite steps for the installation. If

any problem interrupts the process of installation or uninstallation, we give a lower

score to this quality. We also record the Operating System (OS) for the installation

test and whether we can verify the installation.

• Correctness & Verifiability For correctness, we check the projects to identify the

techniques to ensure this quality, such as literate programming, automated testing,

symbolic execution, model checking, unit tests, etc. We also examine whether the

projects use continuous integration and continuous delivery (CI/CD). For verifiabil-

ity, we go through the documents of the projects to check the requirements specifica-

tions, theory manuals, and getting started tutorials. If a getting started tutorial exists

and provides expected results, we follow it and check if the outputs match.

• Surface Reliability We check whether the software breaks during the installation

and the operations following a getting started tutorials, whether there are descriptive

error messages, and if we can recover the process after an error. We use the software

to load damaged images during the assessment to surface robustness, and lower its

score for surface reliability if a software product “break” in this process.

• Surface Robustness We check how the software handles unexpected/unanticipated

input. For example, we prepare broken image files for MI software packages with

the function to load image files. We use a text file (.txt) with a modified exten-

sion name (.dcm) as an unexpected/unanticipated input. We load a few correct in-

put files to ensure the function is working correctly before testing with the unex-

pected/unanticipated ones.

• Surface Usability We examine the documentation of the projects, and we consider

software with a getting started tutorial and a user manual easier to use. Meanwhile,

20

MEng Thesis - Ao Dong- McMaster - Computing and Software

we check if users have any channels to get support. We also record our impressions

and user experiences when testing the software. Easy-to-use graphical user interfaces

give us a better experience, which leads to better scores.

• Maintainability We search the projects’ documents and identify the process of con-

tributing and reviewing code. We believe that the artifacts of a project - including

source code, documents, building scripts, etc. - can significantly affect its maintain-

ability. Thus we check each project for its artifacts, such as API documentation, bug

tracker, release notes, test cases, build files, version control, etc. We also check the

tools supporting issue tracking and version control, the percentages of closed issues,

and the proportion of comment lines in code.

• Reusability We count the total number of code files for each project. Projects with

a large number of components provide more choices to reuse. Furthermore, well-

modularized code, which tends to have smaller parts in separated files, is typically

easier to reuse. Thus, we consider the projects with more code files and less code

lines per file to be more reusable. We use a command-line tool scc to count the

number of text-based files and LOC for all projects. We also decide that the projects

with API documentation can deliver better Reusability.

• Surface Understandability We randomly examine 10 code files. We check the

code’s style within each file, such as whether the identifiers, parameters, indenta-

tion, and formatting are consistent, whether the constants (other than 0 and 1) are

hardcoded, and whether the developers modularized the code. We also check the

descriptive information for the code, such as documents mentioning the coding stan-

dard, the comments in the code, and the descriptions or links for algorithms in the

code.

• Visibility/Transparency To measure this quality, we check the existing documents

21

MEng Thesis - Ao Dong- McMaster - Computing and Software

to find out whether the software development process and current status of a project

are visible and transparent. We examine the development process, current status,

development environment, and release notes for each project. If any information is

missing or poorly conveyed, the visibility/transparency will be lower.

For some qualities, the empirical measurements also affect the score. We use tools to

extract information from the source code repositories. For projects held on GitHub, we

manually collect additional metrics, such as the stars of the GitHub repository, and the

numbers of open and closed pull requests. Section 3.3.2 presents more details about the

empirical measurements.

3.3.2 Empirical Measurements

We use two command-line tools for the empirical measurements. One is GitStats that

generates statistics for git repositories and displays outputs in the form of web pages [28];

the other one is Sloc Cloc and Code (as known as scc) [14], aiming to count the lines of

code, comments, etc.

Both tools measure the number of text-based files in a git repository and lines of text

in these files. Based on our experience, most text-based files in a repository contain pro-

gramming source code, and developers use them to compile and build software products. A

minority of these files are instructions and other documents. So we roughly regard the lines

of text in text-based files as lines of programming code. The two tools usually generate

similar but not identical results. From our understanding, this minor difference is due to

the different techniques to detect if a file is text-based or binary.

Additionally, we manually collect information for projects held on GitHub, such as

the numbers of stars, forks, people watching this repository, open pull requests, closed

pull requests, and the number of months a repository has been on GitHub. A git repos-

itory can have a creation date much earlier than the first day on GitHub. For example,

22

MEng Thesis - Ao Dong- McMaster - Computing and Software

the developers created the git repository of 3D Slicer in 2002, but did not upload a copy

of it to GitHub until 2020. We get the creation date of the GitHub copy by using API

https://api.github.com/repos/:owner/:repository (e.g., https://api.github.com/repos/slicer/slicer).

In the response, the value of “created at” is what we want. The number of months a reposi-

tory has been on GitHub helps us understand the average change of metrics over time, e.g.,

the average new stars per month.

These empirical measurements help us from two aspects. Firstly, they help us with

getting a project overview faster and more accurately. For example, the number of commits

over the last 12 months shows how active this project has been, and the number of stars and

forks may reveal its popularity. Secondly, the results may affect our decisions regarding

the grading scores for some software qualities. For example, if the percentage of comment

lines is low, we double-check the understandability of the code; if the ratio of open versus

closed pull requests is high, we pay more attention to the maintainability.

3.3.3 Technical Details

To test the software on a “clean” system, we create a new virtual machine (VM) for each

software and only install the necessary dependencies before measuring. We make all 30

VMs on the same computer, one at a time, and destroy them after measuring.

We spend about two hours grading each package, unless we find technical issues and

need more time to resolve them. In most of the situation, we finish all the measurements

for one software on the same day.

3.4 Interview Methods

This section introduces our interview questions (Section 3.4.1), method of selecting inter-

viewees (Section 3.4.2), and interview process (Section 3.4.3).

23

MEng Thesis - Ao Dong- McMaster - Computing and Software

3.4.1 Interview Questions

We designed a list of 20 questions to guide our interviews, which can be found in Section

5 and Appendix C.

Some questions are about the background of the software, the development teams, the

interviewees, and how they organize the projects. We also ask about their understandings

of the users. Some questions focus on the current and past difficulties, and the solutions the

team has found or will try. We also discuss the importance and current situations of docu-

mentation. A few questions are about specific software qualities, such as maintainability,

understandability, usability, and reproducibility.

The interviews are semi-structured based on the question list; we ask follow-up ques-

tions when necessary. Based on our experience, the interviewees usually bring up some

exciting ideas that we did not expect, and it is worth expanding on these topics.

3.4.2 Interviewee Selection

For a software list with a length of roughly 30, we aim to interview about ten development

teams. Interviewing multiple individuals from each team gives us more comprehensive

information, but a single engineer well-knowing the project is also sufficient.

Ideally, we select projects after the grading measurements and prefer the ones with

higher overall scores. However, if we do not find enough participants, we reach all teams

on the list. As mentioned in Section 3.5.4, when we applied this process to the MI domain,

we eventually contacted all teams.

We try to find the contacts of the teams on the projects’ websites, such as the official web

pages, repositories, publications, and bio pages of the teams’ institutions. Then, we send

at most two emails to one contact asking for its participation before receiving any replies.

We operate the invitation according to our ethics approval, such as the one in Appendix

D. For example, we ask for participants’ consent before interviewing them, recording the

24

MEng Thesis - Ao Dong- McMaster - Computing and Software

conversation, or including it in our report.

3.4.3 Interview Process

Before contacting any interviewee candidate, we need to receive ethics clearance from the

McMaster University Research Ethics Board. Since the members of the development teams

are usually around the world, we organize these interviews as virtual meetings online with

Zoom. After receiving consent from the interviewees, we also record and transcribe our

discussions.

3.5 Applying the Method to MI

This section shows an overview of applying our method to the MI domain.

3.5.1 Domain Selection

Based on the principles in Section 3.1, we selected the MI domain and the sub-group of

software with the Visualization function shown in Figure 1.1. We also included Dr. Michael

Noseworthy, a professor of Electrical and Computer Engineering at McMaster University,

Co-Director of the McMaster School of Biomedical Engineering, and Director of Medical

Imaging Physics and Engineering at St. Joseph’s Healthcare, and some of his students as

the MI domain experts in our team.

3.5.2 Software Product Selection

By using the method in Section 3.2.1, we identified 48 MI software projects as the can-

didates from publications [12] [15] [31], online articles related to the domain [24] [36]

[64], forum discussions related to the domain [79], etc. Appendix B shows all 48 software

packages.

25

MEng Thesis - Ao Dong- McMaster - Computing and Software

Guided by the method in Section 3.2.2, we filtered the list with a process as follows:

1. Among them, there were eight that we could not find their source code, such as

MicroDicom, Aliza, and jivex. These packages are likely to be freeware defined in

Section 2.1.2 and not OSS. So following guidelines in Section 3.2.2 we removed

them from the list.

2. Next, we focused on the MI software providing Visualization functions, as described

in Section 1.3. Seven of the software on the list were Tool Kits or libraries for other

software to use as dependencies, but not for end-users to view medical images, such

as VTK, ITK, and dcm4che; another three were PACS. We also eliminated these from

the list.

3. Finally, we removed Open Dicom Viewer from the list because it had not received

any updates for a long time (since 2011). After that, only MatrixUser and AMIDE

were considered as “dead”. However, both of them had much more recent updates

(after 2017) than Open Dicom Viewer.

We still preferred projects using git and GitHub and being updated recently, but did not

apply this filter since packages were already below 30. Even without this filter, 27 out of

the 29 software packages on the filtered list used git, and 24 chose GitHub.

Following the process in Section 3.2.3, our domain experts provided a list of top soft-

ware that contains 12 software products (Table 3.1). We compared two lists and found six

common ones.

26

MEng Thesis - Ao Dong- McMaster - Computing and Software

Software On both lists
3D Slicer X
Horos X
ImageJ X
Fiji X
AFNI
FSL
Freesurfer
Mricron X
Mango X
Tarquin
Diffusion Toolkit
MRItrix

Table 3.1: Top software by the MI domain experts

We included Mango in the initial list, but removed it because it was not OSS. However,

we kept Papaya, a the web version of Mango. Instead of MRIcron, we chose MRIcroGL,

because MRIcron development had moved to MRIcroGL [76].

Six software packages on the domain experts’ list were not on our filtered list. We

believed their primary function was Analysis mentioned in Section 1.3. Thus, we did not

include them in our final list.

After vetting our filtered list, the domain experts believed it was reasonable and did

not identify any problem. Thus, as shown in Appendix B, eventually, we had 29 software

products on the final list.

3.5.3 Grading Software

Then we followed the steps in Section 3.3 to measure and grade the software. 27 out of the

29 packages are compatible with two or three different OS such as Windows, macOS, and

Linux, and 5 of them are browser-based, making them platform-independent. However, in

the interest of time, we only performed the measurements for each project by installing it

27

MEng Thesis - Ao Dong- McMaster - Computing and Software

on one of the platforms, most likely Windows.

3.5.4 Interviews

We received ethics clearance from the McMaster University Research Ethics Board (Ap-

pendix D). Going through the interview process in Section 3.4, we contacted all of the 29

teams. Members from eight teams responded and agreed to participate. As a result, we

interviewed nine developers and architects from the eight teams.

28

Chapter 4

Measurement Results

As discussed in Section 3.3, we use a grading template and a empirical method to measure

the selected software. We applied this step to the MI domain (Section 3.5.3). This section

shows the summary of the measurement results. The detailed data can be found in the

repository https://data.mendeley.com/datasets/k3pcdvdzj2/1. This section contains part of

the answers to RQ5.

Table 4.1 shows the 29 software packages that we measured, along with some summary

data collected in the year 2020. As mentioned in Section 3.3.1, we used scc (Section 3.3.2)

to count the Lines of Code (LOC), excluding the comment and blank lines. We arrange

the items in the descending order of the LOC. We found the initial release dates (Rlsd) in

their documents for most projects and marked the two unknown dates with “?”. We used

the date of the latest change to each code repository to decide the latest update. We found

out funding information (Fnd) for only eight projects.

We counted the number of contributors (NOC). We considered anyone who made at

least one accepted commit to the source code as a contributor. Thus, the NOC is not

usually the same as the number of long-term members. Many of these projects received

change requests and code from the community, such as pull requests and git commits on

29

MEng Thesis - Ao Dong- McMaster - Computing and Software

GitHub.

Table 4.1 also shows the supported OS for each software package. Twenty-five of them

could work on all three OSs: Windows (W), macOS (M), and Linux (L). However, there

was a significant difference in the philosophy to achieve cross-platform compatibility. Most

of them were native software products, but five were naturally platform-independent web

applications, as shown in column “Web”.

30

MEng Thesis - Ao Dong- McMaster - Computing and Software

Software Rlsd Updated Fnd NOC LOC
OS

Web
W M L

ParaView [3] 2002 2020-10 X 100 886326 X X X X
Gwyddion [66] 2004 2020-11 38 643427 X X X
Horos [38] ? 2020-04 21 561617 X
OsiriX Lite [81] 2004 2019-11 9 544304 X
3D Slicer [51] 1998 2020-08 X 100 501451 X X X
Drishti [57] 2012 2020-08 1 268168 X X X
Ginkgo CADx [106] 2010 2019-05 3 257144 X X X
GATE [47] 2011 2020-10 45 207122 X X
3DimViewer [95] ? 2020-03 X 3 178065 X X
medInria [25] 2009 2020-11 21 148924 X X X
BioImage Suite Web [69] 2018 2020-10 X 13 139699 X X X X
Weasis [75] 2010 2020-08 8 123272 X X X
AMIDE [59] 2006 2017-01 4 102827 X X X
XMedCon [67] 2000 2020-08 2 96767 X X X
ITK-SNAP [107] 2006 2020-06 X 13 88530 X X X
Papaya [74] 2012 2019-05 9 71831 X X X
OHIF Viewer [110] 2015 2020-10 76 63951 X X X X
SMILI [16] 2014 2020-06 9 62626 X X X
INVESALIUS 3 [5] 2009 2020-09 10 48605 X X X
dwv [60] 2012 2020-09 22 47815 X X X X
DICOM Viewer [2] 2018 2020-04 X 5 30761 X X X
MicroView [41] 2015 2020-08 2 27470 X X X
MatrixUser [58] 2013 2018-07 1 23121 X X X
Slice:Drop [32] 2012 2020-04 3 19020 X X X X
dicompyler [68] 2009 2020-01 2 15941 X X
Fiji [82] 2011 2020-08 X 55 10833 X X X
ImageJ [77] 1997 2020-08 X 18 9681 X X X
MRIcroGL [53] 2015 2020-08 2 8493 X X X
DicomBrowser [8] 2012 2020-08 3 5505 X X X

Table 4.1: Final software list

Most of the projects used more than one programming language, including a primary

language that the developers used the most. Figure 4.1 shows the primary languages versus

the number of projects using them.

31

MEng Thesis - Ao Dong- McMaster - Computing and Software

C++ JavaScript Java C Python Pascal Matlab
0

2

4

6

8

10

12 11

6

4
3 3

1 1

Primary language

N
um

be
ro

fp
ro

je
ct

s

Figure 4.1: Primary languages versus number of projects using them

We failed to install DICOM Viewer, so we could not test its surface reliability and

surface robustness. We kept this software on our list because the other seven qualities do

not rely on a successful installation. Besides, the DICOM Viewer team built it as a plugin

software for NextCloud (https://apps.nextcloud.com/) platform, which was a unique choice

we had not seen before. We wanted to keep it to enrich the diversity.

4.1 Installability

Figure 4.2 lists the scores of installability.

32

MEng Thesis - Ao Dong- McMaster - Computing and Software

Figure 4.2: AHP installability scores

We found installation instructions for 16 projects. Among the ones without instructions,

BioImage Suite Web and Slice:Drop are web applications with online versions to use, thus

they do not need installation. Installing 10 of the projects required extra dependencies.

Five of them are the web applications in Table 4.1, and depended on a browser; dwv, OHIF

Viewer, and GATE needed extra dependencies to build; ImageJ and Fiji needed an unzip

tool; MatrixUser was based on Matlab; DICOM Viewer needed to work on a Nextcloud

platform.

3D Slicer has the highest score because it had easy to follow installation instructions,

and the installation processes were automated, fast, and frustration-free, with all depen-

dencies automatically added. There were also no errors during the installation and unin-

stallation steps. Many other software packages also had installation instructions and auto-

mated installers, and we had no trouble installing them, such as INVESALIUS 3, Gwyddion,

33

MEng Thesis - Ao Dong- McMaster - Computing and Software

XMedCon, and MicroView. We gave them various scores based on the understandability of

the instructions, installation steps, and user experience. Since BioImage Suite Web and

Slice:Drop needed no installation, we gave them higher scores. BioImage Suite Web also

provided an option to download cache to local for offline usage, which was easy to apply.

dwv, GATE, and DICOM Viewer showed severe problems. We could not install them.

We spent a reasonable amount of time on these problems, then considered them as major

obstacles for normal users if we could not figure out any solutions. We suspect that only

a part of the users faced the same problems, and given a lot of time, we might be able to

find solutions. However, the difficulties greatly impacted the installation experiences, and

we graded these software packages with lower scores. For example, dwv and GATE had

the option to build from the source code, and we failed the building processes following

the instructions. Although we could not locally build them, we could use a deployed online

version for dwv, and a VM version for GATE. With those, we finished all the measurements

for them. Furthermore, DICOM Viewer depended on the NextCloud platform, and we could

not successfully install the dependency.

MatrixUser has a lower score because it depended on Matlab. We considered installing

Matlab takes many more steps and time, and some users may not have a license to use

Matlab.

4.2 Correctness & Verifiability

The scores of correctness & verifiability are shown in Figure 4.3. Generally speaking,

the packages with higher scores adopted more techniques to improve correctness, and had

better documents for us to verify it.

34

MEng Thesis - Ao Dong- McMaster - Computing and Software

Figure 4.3: AHP correctness & verifiability scores

After examining the source code, we could not find any evidence of unit testing in more

than half of the projects. Unit testing benefits most parts of the software’s life cycle, such

as designing, coding, debugging, and optimization [34]. It can reveal the bugs at an earlier

stage of the development process, and the absence of unit testing may cause problems for

correctness & verifiability.

We could not find requirements specifications for most projects. The only document we

found is a road map of 3D Slicer, which contained design requirements for the upcoming

changes. However, it did not record the conditions for previous versions. We also could

not identify the theory manuals for all of the projects. Even for some projects with well-

organized documents, requirements specifications and theory manuals were still missing.

We identified five projects using CI/CD tools, which are 3D Slicer, ImageJ , Fiji, dwv,

and OHIF Viewer.

35

MEng Thesis - Ao Dong- McMaster - Computing and Software

In this section, the information about CI/CD tools is part of the answers to RQ2, and

the information about software testing and documentation is part of the answers to RQ3.

4.3 Surface Reliability

As described in Section 4.1, we could not build dwv and GATE. However, since there was

an online or VM version of them, successful deployment is possible. So the failure of

installation did not affect their scores in surface reliability. Figure 4.4 shows the AHP

results.

Figure 4.4: AHP surface reliability scores

As shown in Section 4.1, most of the software products did not “break” during instal-

lation or did not need installation; dwv and GATE broke in the building stage, and the

36

MEng Thesis - Ao Dong- McMaster - Computing and Software

processes were not recoverable; we could not install the dependency for DICOM Viewer.

Of the seven software packages with a getting started tutorial and operation steps in the

tutorial, most showed no error when we followed the steps. However, GATE could not open

macro files and became unresponsive several times, without any descriptive error message.

When assessing surface robustness (Section 4.4), we found out that Drishti crashed during

loading damaged image files and did not show any descriptive error message. On the other

hand, we did not see any problems with the online version of dwv.

4.4 Surface Robustness

Figure 4.5 presents the scores for surface robustness.

Figure 4.5: AHP surface robustness scores

37

MEng Thesis - Ao Dong- McMaster - Computing and Software

The packages with higher scores elegantly handled the unexpected/unanticipated in-

puts, typically showing a clear error message. We might underestimate the score of OHIF

Viewer since we needed further customization to load data, and the test was not complete.

Digital Imaging and Communications in Medicine (DICOM) is a widely used MI stan-

dard, and “it defines the formats for medical images that can be exchanged with the data and

quality necessary for clinical use” [9]. According to their documentation, all 29 software

packages should support the DICOM standard. We prepared two types of image files: the

ones in correct formats and the broken ones. We used two MI sample files in the DICOM

format as the image files with valid formats; we created a standard text file, changed its

extension name from “.txt” to “.dcm”, and used it as the unexpected/unanticipated input.

Being tested with the input files with correct formats, all software packages except

GATE loaded the images correctly. GATE failed this test for unknown reasons.

With the unexpected/unanticipated input, MatrixUser, dwv, and Slice:Drop ignored the

incorrect format of the file and loaded it regardless. They did not show any error message

and displayed a blank image. MRIcroGL behaved similarly except that it showed a mean-

ingless image with noise pixels. Drishti successfully detected the broken format of the file,

but the software crashed as a result. We recorded Drishti’s issue to the measurement of its

reliability in Section 4.1.

4.5 Surface Usability

Figure 4.6 lists the AHP scores for surface usability.

38

MEng Thesis - Ao Dong- McMaster - Computing and Software

Figure 4.6: AHP surface usability scores

We found a getting started tutorial for only 11 projects but a user manual for 22 projects.

MRIcroGL was the only one with documentation for the expected user characteristics.

The software with higher scores usually provided both comprehensive document guid-

ance and a good user experience. INVESALIUS 3 set an excellent example of a detailed

and precise user manual. GATE also provided a large number of documents, but we think

that they conveyed the ideas poorly, as we had trouble understanding and using them.

Table 4.2 shows the user support models by the number of projects using them. This

table contains part of the answers to RQ2. Maybe not every team intended to use GitHub

issues to answer users’ questions, but many users use them to seek help.

39

MEng Thesis - Ao Dong- McMaster - Computing and Software

User support model Number of projects
GitHub issue 24
Frequently Asked Questions (FAQ) 12
Forum 10
E-mail address 9
GitLab issue, SourceForge discussions 2
Troubleshooting 2
Contact form 1

Table 4.2: User support models by number of projects

4.6 Maintainability

Figure 4.7 shows the AHP results for maintainability.

Figure 4.7: AHP maintainability scores

40

MEng Thesis - Ao Dong- McMaster - Computing and Software

We marked 3D Slicer with a much higher score than others because it did very well at

closing the identified issues, and more importantly, we found it to have the most compre-

hensive artifacts. For example, as far as we could find out, only a few of the 29 projects

had a project plan, developer’s manual, or API documentation, and only 3D Slicer, ImageJ,

Fiji included all three documents. Meanwhile, 3D Slicer has a much higher percentage of

closed issues (91.65%) than ImageJ (52.49%) and Fiji (63.79%). Table 4.3 shows which

projects had these documents, in the descending order of their maintainability scores. This

table contains part of the answers to RQ1 and RQ3.

Software Proj plan Dev manual API doc
3D Slicer X X X
ImageJ X X X
Weasis X
OHIF Viewer X X
Fiji X X X
ParaView X
SMILI X
medInria X
INVESALIUS 3 X
dwv X
BioImage Suite Web X
Gwyddion X X

Table 4.3: Software with the maintainability documents

27 of the 29 projects used git as the version control tool; AMIDE used Mercurial; Gwyd-

dion used Subversion. 24 projects used GitHub for their repositories; XMedCon , AMIDE,

and Gwyddion used SourceForge; DicomBrowser and 3DimViewer used BitBucket. The

information about version control tools is part of the answers to RQ2.

41

MEng Thesis - Ao Dong- McMaster - Computing and Software

4.7 Reusability

Figure 4.7 shows the AHP results for reusability.

Figure 4.8: AHP reusability scores

As described in Section 3.3.1, we gave higher scores to the projects with an API doc-

ument. As shown in Table 4.3, seven projects had API documents. We also considered

projects with more code files and less LOC per code file as more reusable. Table 4.4 shows

the number of text-based files by projects, which we used to approximate the number of

code files. The table also lists the total number of lines (including comments and blanks),

LOC, and average LOC per file. We arranged the items in the descending order of their

reusability scores.

42

MEng Thesis - Ao Dong- McMaster - Computing and Software

Software Text files Total lines LOC LOC/file

OHIF Viewer 1162 86306 63951 55
3D Slicer 3386 709143 501451 148
Gwyddion 2060 787966 643427 312
ParaView 5556 1276863 886326 160
OsiriX Lite 2270 873025 544304 240
Horos 2346 912496 561617 239
medInria 1678 214607 148924 89
Weasis 1027 156551 123272 120
BioImage Suite Web 931 203810 139699 150
GATE 1720 311703 207122 120
Ginkgo CADx 974 361207 257144 264
SMILI 275 90146 62626 228
Fiji 136 13764 10833 80
Drishti 757 345225 268168 354
ITK-SNAP 677 139880 88530 131
3DimViewer 730 240627 178065 244
DICOM Viewer 302 34701 30761 102
ImageJ 40 10740 9681 242
dwv 188 71099 47815 254
MatrixUser 216 31336 23121 107
INVESALIUS 3 156 59328 48605 312
AMIDE 183 139658 102827 562
Papaya 110 95594 71831 653
MicroView 137 36173 27470 201
XMedCon 202 129991 96767 479
MRIcroGL 97 50445 8493 88
Slice:Drop 77 25720 19020 247
DicomBrowser 54 7375 5505 102
dicompyler 48 19201 15941 332

Table 4.4: Number of files and lines

4.8 Surface Understandability

Figure 4.9 shows the scores for surface understandability.

43

MEng Thesis - Ao Dong- McMaster - Computing and Software

Figure 4.9: AHP surface understandability scores

All projects had a consistent code style with parameters in the same order for all func-

tions; the code was modularized; the comments were clear, indicating what is being done,

not how. However, we only found explicit identification of a coding standard for 3 out of

the 29: 3D Slicer, Weasis, and ImageJ. We also found hard-coded constants in medInria,

dicompyler, MicroView, and Papaya. We did not find any reference to the used algorithms

in projects XMedCon, DicomBrowser, 3DimViewer, BioImage Suite Web, Slice:Drop, Ma-

trixUser, DICOM Viewer, dicompyler, and Papaya.

4.9 Visibility/Transparency

Figure 4.10 shows the AHP scores for visibility/transparency. Generally speaking, the

teams that actively documented their development process and plans scored higher because

44

MEng Thesis - Ao Dong- McMaster - Computing and Software

they delivered better communication to people outside the team.

Figure 4.10: AHP visibility/transparency scores

Table 4.5 shows the projects which had documents for the development process, project

status, development environment, and release notes, in the descending order of their visi-

bility/transparency scores. This table contains part of the answers to RQ1 and RQ3.

45

MEng Thesis - Ao Dong- McMaster - Computing and Software

Software Dev process Proj status Dev env Rls notes
3D Slicer X X X X
ImageJ X X X X
Fiji X X X
MRIcroGL X
Weasis X X
ParaView X
OHIF Viewer X X
DICOM Viewer X X
medInria X X
SMILI X
Drishti X
INVESALIUS 3 X
OsiriX Lite X
GATE X
MicroView X
MatrixUser X
BioImage Suite Web X
ITK-SNAP X
Horos X
dwv X
Gwyddion X

Table 4.5: Software with the visibility/transparency documents

4.10 Overall Scores

As described in Section 2.3, for our AHP measurements, there are nine criteria which are

the nine software qualities and 29 software packages as the alternatives. In the absence

of requirements for an actual project, we made all nine qualities equally important, so the

score of each quality affects the overall scores on the same scale.

Figure 4.11 shows the overall scores of all 29 software packages in descending order.

Since we produced the scores from the AHP process, the total sum of the 29 scores is

precisely 1.

46

MEng Thesis - Ao Dong- McMaster - Computing and Software

Figure 4.11: Overall AHP scores for all 9 software qualities

The top three software products 3D Slicer, ImageJ, and OHIF Viewer had higher scores

in most criteria. 3D Slicer ranked in the top two software products for all qualities except

surface robustness; ImageJ ranked in the top three products for correctness & verifiabil-

ity, surface reliability, surface usability, maintainability, surface understandability, and

visibility/transparency; OHIF Viewer ranked in the top five products for correctness & ver-

ifiability, surface reliability, surface usability, maintainability, and reusability. We might

underestimate its scores of qualities surface reliability and surface robustness for DICOM

Viewer, but equally compared it with the other software for the rest seven qualities.

47

Chapter 5

Interviews with Developers

The measurement results in Section 4 are based on the information collected by ourselves.

Such information is sufficient to measure the projects with reasonable efforts, but incom-

plete for us to understand the development process more deeply. For example, we usually

cannot identify the following information in a project’s documents: the pain points during

the development, the threats to certain software qualities, and the developers’ strategies to

address them. We believe interviews with developers can collect the additional information

we need. As a result, our method involves interviews with developers in a domain (Section

3.4). We applied this step to the MI domain (Section 3.5.4).

In this section, we summarize some answers from the interviews. We highlight the

answers that are the most informative and interesting in this section, and summarize the

rest in Appendix C.

As mentioned in Section 3.5.4, we contacted all 29 teams. Some of them responded and

participated in the interviews. Eventually, we interviewed nine developers from eight of the

29 MI software projects. The eight projects are 3D Slicer, INVESALIUS 3, dwv, BioImage

Suite Web, ITK-SNAP, MRIcroGL, Weasis, and OHIF. We spent about 90 minutes for each

interview and asked 20 prepared questions. We also asked following-up questions when

48

MEng Thesis - Ao Dong- McMaster - Computing and Software

we thought it was worth diving deeper. One participant was too busy to have an interview,

so they wrote down their answers. The interviewees may have provided multiple answers

to each question. Thus, when counting the number of answers, the total result is sometimes

larger than nine.

5.1 Current and Past Pain Points

By asking questions 9, 10, and 12, we tried to identify the pain points during the develop-

ment process in the eight projects. The pain points include current and past obstacles. We

also asked the interviewees how they would solve the problems. This section contains the

answers to RQ4. Questions 9, 10, and 12 are as follows:

Q9. Currently, what are the most significant obstacles in your development process?

Q10. How might you change your development process to remove or reduce these obsta-

cles?

Q12. In the past, is there any major obstacle to your development process that has been

solved? How did you solve it?

Table 5.1 shows the number of times the interviewees mentioned the current and past

obstacles in their projects.

49

MEng Thesis - Ao Dong- McMaster - Computing and Software

Category Obstacle
Num ans.

current past

Resource
Lack of fundings 3
Lack of time to devote to the project 2 1

Balance
Hard to keep up with changes in OS and libraries 1
Hard to support multiple OS 2
Hard to support lower-end computers 1 2

Testing Lack of access to real-world datasets for testing 3 2

Others

Hard to have a high level roadmap from the start 1
Not enough participants for usability tests 1
Only a few people fully understand the large codebase 1
Hard to transfer to new technologies 2
Hard to understand users’ needs 1
Hard to maintain good documentations 1

Table 5.1: Current and past obstacles by the numbers of interviewees with the answers

The interviewees provided some potential and proven solutions for the problems in

Table 5.1. We group these pain points into three major categories of obstacles: resource,

balance, and testing. We put the less mentioned ones into the category Others. Sections

5.1.1, 5.1.2, and 5.1.3 include further discussion about the three major groups of pain points

and their solutions.

5.1.1 Resource Pain Points

We summarize the pain points in the resource category as the lack of fundings and time.

The potential and proven solutions are:

Potential solutions from interviewees:

• when the team does not have enough developers for building new features and fixing

bugs at the same time, shifting from development mode toward maintenance mode;

• licensing the software to commercial companies that integrate it into their products;

50

MEng Thesis - Ao Dong- McMaster - Computing and Software

• better documentation to save time for answering users’ and developers’ questions;

• supporting third-party plugins and extensions.

Proven solutions from interviewees:

• GitHub Actions, which is a good CI/CD tool to save time.

Many interviewees thought lack of fundings and lack of time were the most significant

obstacles. The interviewees from 3D Slicer team and OHIF team pointed out that it was

more challenging to get fundings for software maintenance as opposed to research. The

interviewee from the ITK-SNAP team thought more fundings was a way to solve the lack

of time problem, because they could hire more dedicated developers. On the other hand,

the interviewee from the Weasis team did not think that fundings could solve the same

problem, since he still would need a lot of time to supervise the project.

No interviewee suggested any solution to bring extra funding to the project. However,

they provided ideas to save time, such as better documentation, third-party plugins, and

good CI/CD tools.

5.1.2 Balance Pain Points

We summarize the pain points in the balance category as the difficulty to balance between

four factors: cross-platform compatibility, convenience to development & mainte-

nance, performance, and security. They are also related to the choice between native

application and web application.

The potential and proven solutions are:

Potential solutions from interviewees:

• web applications that use computing power from computers GPU;

51

MEng Thesis - Ao Dong- McMaster - Computing and Software

• to better support lower-end computers, adopting a web-based approach with backend

servers;

• to better support lower-end computers, using memory-mapped files to consume less

computer memory;

• more funding;

• maintaining better documentations to ease the development & maintenance pro-

cesses;

Proven solutions from interviewees:

• one interviewee saw the performance problem disappeared over the years when com-

puters became more and more powerful.

Table 5.2 shows the teams’ choices between native application and web application.

In all the 29 teams on our list, most of them chose to develop native applications. For

the eight teams we interviewed, three of them were building web applications, and the

MRIcroGL team was considering web-based solutions. So we had a good chance to discuss

the differences between the two choices with the interviewees.

Software team Native application Web application
3D Slicer X
INVESALIUS 3 X
dwv X
BioImage Suite Web X
ITK-SNAP X
MRIcroGL X
Weasis X
OHIF X
Total number among the eight teams 5 3
Total number among the 29 teams 24 5

Table 5.2: Teams’ choices between native application and web application

52

MEng Thesis - Ao Dong- McMaster - Computing and Software

The interviewees talked about the advantages and disadvantages of the two choices. We

summarize the opinions from the interviewees in Table 5.3.

Native application Web application

Ad - higher performance
- easy to achieve cross-platform compatibility
- simpler build process

Disad
- hard to achieve cross-platform compatibility
- more complicated build process

Without a backend:
- lower performance
With a backend:
- harder for privacy protection
- extra cost for backend servers

Table 5.3: Advantages and disadvantages of native application and web application

5.1.3 Testing Pain Point

The pain point in the testing category is the lack of access to real-world datasets for

testing. The information about software testing in this section is part of the answers to

RQ3.

The potential and proven solutions are:

Potential solutions from interviewees:

• using open datasets

Proven solutions from interviewees:

• asking the users to provide deidentified copies of medical images if they have prob-

lems loading the images;

• sending the beta versions of software to medical workers who can access the data

and complete the tests;

• if (part of) the team belongs to a medical school or a hospital, using the datasets they

can access;

53

MEng Thesis - Ao Dong- McMaster - Computing and Software

• if the team has access to MRI scanners, self-building sample images for testing;

• if the team has connections with MI equipment manufacturers, asking for their help

on data format problems;

• storing all images that cause special problems, and maintaining this special dataset

over time.

No interviewee provided a perfect way to solve this problem. However, connections

between the development team and medical professionals/institutions could ease the pain.

5.2 Documents in the Projects

We tried to understand the interviewees’ opinions on documentation and the quality of

documentations with questions 11 and 19. The information about documentation is part of

the answers to RQ3.

Q11. How does documentation fit into your development process? Would improved doc-

umentation help with the obstacles you typically face?

Q19. Do you think the current documentation can clearly convey all necessary knowledge

to the users? If yes, how did you successfully achieve it? If no, what improvements

are needed?

Table 5.4 summarizes interviewees’ opinions on documentation. Interviewees from

each of the eight projects thought that documentation was important to their projects, and

most of them said that it could save their time to answer questions from users and devel-

opers. Most of them saw the need to improve their documentation, and only three of them

thought that their documentations conveyed information clearly enough.

54

MEng Thesis - Ao Dong- McMaster - Computing and Software

Opinion on documentation Num ans.
Documentation is vital to the project 8
Documentation of the project needs improvements 7
Referring to documentation saves time to answer questions 6
Lack of time to maintain good documentation 4
Documentation of the project conveys information clearly 3
Coding is more fun than documentation 2
Users help each other by referring to documentation 1

Table 5.4: Opinions on documentation by the numbers of interviewees with the answers

Table 5.5 lists some of the documentation tools and methods mentioned by the inter-

viewees. This table contains part of the answers to RQ2.

Tool or method for documentation Num ans.
Forum discussions 3
Videos 3
GitHub 2
Mediawiki / wiki pages 2
Workshops 2
Social media 2
Writing books 1
Google Form 1
State management 1

Table 5.5: Tools and methods for documentation by the numbers of interviewees with the
answers

5.3 Contribution Management and Project Management

We tried to understand how the teams managed the contributions and their projects by

asking the following questions:

Q5. Do you have a defined process for accepting new contributions into your team?

Q13. What is your software development model? For example, waterfall, agile, etc.

55

MEng Thesis - Ao Dong- McMaster - Computing and Software

Q14. What is your project management process? Do you think improving this process can

tackle the current problem? Were any project management tools used?

Although some team may have a documented process for accepting new contributions,

no one talked about it during the interview. However, most of them mentioned using

GitHub and pull requests to manage contributions from the community. The interviewees

generally gave very positive feedback on using GitHub. Some also said they had handled

the project repository with some other tools, and eventually transferred to git and GitHub.

Table 5.6 shows the number of times the interviewees mentioned the methods of receiving

contributions. This table contains part of the answers to RQ2.

Method of receiving contributions
Num ans.
current past

GitHub with pull requests 8
Code contributions from emails 3
Code contributions from forums 1
Sharing the git repository by email 1

Table 5.6: Methods of receiving contributions by the numbers of interviewees with the
answers

For managing contributions, the 3D Slicer team encouraged users to develop their ex-

tensions for specific use cases, and the OHIF team was trying to enable the use of plug-ins;

the interviewee from the ITK-SNAP team said one way of accepting new team members

was through funded academic projects.

Table 5.7 shows the software development models by the numbers of interviewees with

the answers. Only two interviewees confirmed their development models. The others did

not think they used a specific model, but three of them suggested that their processes were

similar to Waterfall or Agile.

56

MEng Thesis - Ao Dong- McMaster - Computing and Software

Software development model Num ans.
Undefined/self-directed 3
Similar to Agile 2
Similar to Waterfall 1
Agile 1
Waterfall 1

Table 5.7: Software development models by the numbers of interviewees with the answers

Some interviewees mentioned the project management tools they used, which are in

Table 5.8. This table contains part of the answers to RQ2. Generally speaking, the inter-

viewees talked about two types:

• Trackers, including GitHub, issue trackers, bug trackers and Jira;

• Documents, including GitHub, Wiki page, Google Doc, and Confluence.

Project management tools Num ans.
GitHub 3
Issue trackers 1
Bug trackers 1
Jira 1
Wiki page 1
Google Doc 1
Confluence 1

Table 5.8: Project management tools by the numbers of interviewees with the answers

No interviewee introduced any strictly defined project management process. The most

common way was following the issues, such as bugs and feature requests. Additionally, the

3D Slicer team had weekly meetings to discuss the goals for the project; the INVESALIUS

3 team relied on the GitHub process for their project management; the ITK-SNAP team had

a fixed six-month release pace; only the interviewee from the OHIF team mentioned that

57

MEng Thesis - Ao Dong- McMaster - Computing and Software

the team has a project manager; the 3D Slicer team and BioImage Suite Web team were

doing nightly builds and tests.

Most interviewees skipped the second part of Q14 “Do you think improving this pro-

cess can tackle the current problem?”. In retrospect, we should not have asked a yes-or-no

question, since it is not very informative. The interviewee from the OHIF team gave a pos-

itive answer to this question. They believed that a better project management process can

improve the efficiency of junior developers. They also improved the project management

tools (from public Jira to public GitHub repository plus private Jira), so they could better

communicate externally and internally.

The information about contribution management and project management in this sec-

tion is part of the answers to RQ3.

5.4 Discussions on Software Qualities

Questions 15–18, and 20 are about the software qualities of correctness, maintainability,

understandability, usability, and reproducibility, respectively. We asked these questions to

understand the threats to these qualities and the developers’ strategies to improve them. We

discuss each quality in a separate section below. This section contains part of the answers

to RQ5.

5.4.1 Correctness

Q15. Was it hard to ensure the correctness of the software? If there were any obstacles,

what methods have been considered or practiced to improve the situation? If prac-

ticed, did it work?

Table 5.9 shows the threats to correctness by the numbers of interviewees with the

answers.

58

MEng Thesis - Ao Dong- McMaster - Computing and Software

Threat to correctness Num ans.
Complexity - data in various formats and complicated standards. 2
Complexity - different MI machines create data in different ways. 2
Complexity - additional functions besides viewing. 1
The lack of real word image data for testing. 1
The team cannot use private data for debugging even when the data cause problems. 1
With huge datasets for testing, the tests are expensive and time-consuming. 1
It is hard to manage releases. 1
The project has no unit tests. 1
The project has no dedicated quality assurance team. 1

Table 5.9: Threats to correctness by the numbers of interviewees with the answers

Table 5.10 shows the strategies to ensure correctness by the numbers of interviewees

with the answers. The interviewees from the 3D Slicer and ITK-SNAP teams thought that

the self-tests and automated tests were beneficial and could significantly save time. The

interviewee from the Weasis team kept collecting medical images for more than ten years.

These images have caused problems with the software. So he had samples to test specific

problems.

Strategy to ensure correctness Num ans.
Test-driven development, component tests, integration tests, smoke tests, regression tests. 4
Self tests / automated tests. 3
Two stage development process / stable release & nightly builds. 3
CI/CD. 1
Using deidentified copies of medical images for debugging. 1
Sending beta versions to medical workers who can access the data to do the tests. 1
Collecting and maintaining a dataset of problematic images. 1

Table 5.10: Strategies to ensure correctness by the numbers of interviewees with the an-
swers

The information about software testing in this section is part of the answers to RQ3.

59

MEng Thesis - Ao Dong- McMaster - Computing and Software

5.4.2 Maintainability

Q16. When designing the software, did you consider the ease of future changes? For

example, will it be hard to change the system’s structure, modules, or code blocks?

What measures have been taken to ensure the ease of future changes and maintains?

Table 5.11 shows the strategies to ensure maintainability by the numbers of intervie-

wees with the answers. The modular approach is the most talked-about solution to improve

maintainability. The 3D Slicer team used a well-defined structure for the software, which

they named as “event-driven MVC pattern”. Moreover, 3D Slicer discovers and loads nec-

essary modules at runtime, according to the configuration and installed extensions. The

BioImage Suite Web team had designed and re-designed their software multiple times in

the last 10+ years. They found that their modular approach effectively supported the main-

tainability [49].

Strategy to ensure maintainability Num ans.
Modular approach / maintain repetitive functions as libraries. 5
Supporting third-party extensions. 1
Easy-to-understand architecture. 1
Dedicated architect. 1
Starting from simple solutions. 1
Documentation. 1

Table 5.11: Strategies to ensure maintainability by the numbers of interviewees with the
answers

5.4.3 Understandability

Q17. Provide instances where users have misunderstood the software. What, if any, actions

were taken to address understandability issues?

Table 5.12 shows the threats to understandability by the numbers of interviewees with

60

MEng Thesis - Ao Dong- McMaster - Computing and Software

the answers. It separates understandability issues to users and developers by the horizontal

dash line.

Threat to understandability Num ans.
Not all users understand how to use some features. 2
The team has no dedicated user experience (UX) designer. 1
Some important indicators are not noticeable (e.g. a progress bar). 1
Not all users understand the purpose of the software. 1
Not all users know if the software includes certain features. 1
Not all users understand how to use the command line tool. 1
Not all users understand that the software is a web application. 1
Not all developers understand how to deploy the software. 1
The architecture is difficult for new developers to understand. 1

Table 5.12: Threats to understandability by the numbers of interviewees with the answers

Table 5.13 shows the strategies to ensure understandability by the numbers of intervie-

wees with the answers.

Strategy to ensure understandability Num ans.
Documentation / user manual / user mailing list / forum. 4
Graphical user interface. 2
Testing every release with active users. 1
Making simple things simple and complicated things possible. 1
Icons with more clear visual expressions. 1
Designing the software to be intuitive. 1
Having a UX designer with the right experience. 1
Dialog windows for important notifications. 1
Providing an example if the users need to build the software by themselves. 1

Table 5.13: Strategies to ensure understandability by the numbers of interviewees with the
answers

5.4.4 Usability

Q18. What, if any, actions were taken to address usability issues?

61

MEng Thesis - Ao Dong- McMaster - Computing and Software

Table 5.14 shows the strategies to ensure usability by the numbers of interviewees with

the answers. The information about software testing in this table is part of the answers to

RQ3.

Strategy to ensure usability Num ans.
Usability tests and interviews with end users. 3
Adjusting according to users’ feedbacks. 3
Straightforward and intuitively designed interface / professional UX designer. 2
Providing step-by-step processes, and showing the step numbers. 1
Making the basic functions easy to use without reading the documentation. 1
Focusing on limited number of functions. 1
Making the software more streamlined. 1
Downsampling images to consume less memory. 1
An option to load only part of the data to boost performance. 1

Table 5.14: Strategies to ensure usability by the numbers of interviewees with the answers

5.4.5 Reproducibility

Q20. Do you have any concern that your computational results won’t be reproducible in

the future? Have you taken any steps to ensure reproducibility?

Table 5.15 shows the threats to reproducibility by the numbers of interviewees with the

answers.

Threat to reproducibility Num ans.
If the software is closed-source, the reproducibility is hard to achieve. 1
The project has no user interaction tests. 1
The project has no unit tests. 1
Using different versions of some common libraries may cause problems. 1
CPU variability can leads to non-reproducibility. 1
The team may misinterpret how manufacturers create medical images. 1

Table 5.15: Threats to reproducibility by the numbers of interviewees with the answers

62

MEng Thesis - Ao Dong- McMaster - Computing and Software

Table 5.16 shows the strategies to ensure reproducibility by the numbers of intervie-

wees with the answers. The interviewee from the 3D Slicer team provided various sug-

gestions. One interviewee from another team suggested that they used 3D Slicer as the

benchmark to test their reproducibility.

Strategy to ensure reproducibility Num ans.
Regression tests / unit tests / having good tests. 6
Making code, data, and documentation available / OSS / open-source libraries. 5
Running same tests on all platforms. 1
A dockerized version of the software, insulating it from the OS environment. 1
Using standard libraries. 1
Monitoring the upgrades of the libraries. 1
Clearly documenting the versions. 1
Bringing along the exact versions of all the dependencies with the software. 1
Providing checksums of the data. 1
Benchmarking the software against other software with similar purposes. 1

Table 5.16: Strategies to ensure reproducibility by the numbers of interviewees with the
answers

The information about software testing in this section is part of the answers to RQ3.

63

Chapter 6

Answers to Research Questions

This section answers our research questions from Section 1.2. Sections 6.1– 6.6 summarize

the answers to the six questions, respectively. Section 6.7 lists the threats to the validity of

our research. The answers are based on our quality measurements in Section 4 and devel-

oper interviews in Section 5. We refer to these sections to avoid repetition, and organize

the references in tables (e.g. Table 6.1).

6.1 Artifacts in the Projects

RQ1. What artifacts are present in current software projects?

We answer this question by examining the documentation, scanning the source code,

and interviewing the developers of the projects. Table 6.1 shows the sections and tables

containing answers to this research question.

Section or table Description
Table 4.3 Maintainability documents
Table 4.5 Visibility/transparency documents

Table 6.1: Sections and tables with answers to RQ1

64

MEng Thesis - Ao Dong- McMaster - Computing and Software

As mentioned in Section 3.3.1, we search for all the artifacts in a project when measur-

ing maintainability. The detailed records of the existing artifacts in the 29 MI projects are

at https://data.mendeley.com/datasets/k3pcdvdzj2/1. Table 6.2 summarizes the frequency

of the artifacts. This table also contains part of the answers to RQ3.

Artifact Number of projects
README 29
Version Control 29
License 28
Bug tracker 28
Change request 28
User Manual 22
Release notes 22
Build file 18
Tutorials 18
Installation Guide 16
Test cases 15
Authors 14
FAQ 14
Acknowledgements 12
Executable files 10
Developer’s Manual 8
API documentation 7
Troubleshooting guide 6
Project Plan 5

Table 6.2: Artifacts by their frequency in the 29 MI projects

We summarized the definitions of the artifacts in https://github.com/.../Artifacts MiningV3.xlsx.

Source code is a type of artifact. Since we only included OSS on the final list (Section

3.5.2), every project’s source code was available. Thus, we excluded it in the above table.

65

MEng Thesis - Ao Dong- McMaster - Computing and Software

6.2 Tools in the Projects

RQ2. What tools are used in the development of current software packages?

We answer this question by measuring the qualities and interviewing the developers.

This section summarizes the tools used for CI/CD, user support, version control, documen-

tation, contribution management, and project management. Table 6.3 shows the sections

and tables containing answers to this research question.

Section or table Description
Section 4.2 CI/CD tools
Table 4.2 User support tools
Section 4.6 Version control tools
Table 5.5 Documentation tools
Table 5.6 Contribution management tools
Table 5.8 Project management tools

Table 6.3: Sections and tables with answers to RQ2

As mentioned in Section 4.2, we identified five projects using CI/CD tools. 3D Slicer

and OHIF Viewer used CircleCI; ImageJ, Fiji, and dwv used Travis. We identified the

above projects and tools by examining the documentation and source code of all projects.

Thus, we may missed some projects or tools. According to the interviews with developers,

dwv and Weasis used GitHub Actions.

6.3 Principles, Processes, and Methodologies in the Projects

RQ3. What principles, processes, and methodologies are used in the development of cur-

rent software packages?

We answer this question by measuring the qualities and interviewing the developers.

This section shows the principles, processes, and methodologies in software testing, docu-

66

MEng Thesis - Ao Dong- McMaster - Computing and Software

mentation, contribution management, project management, and improving software quali-

ties. Table 6.4 shows the sections and tables containing answers to this research question.

Section or table Description
Section 4.3, 5.1.3, 5.4.1, and 5.4.5; Table 5.14 Software testing
Section 4.3 and 5.2; Table 4.3, 4.5, and 6.2 Documentation
Section 5.3 Contribution management
Section 5.3 Project management

Table 6.4: Sections and tables with answers to RQ3

We identified the use of unit testing in less than half of the 29 projects. On the other

hand, the interviewees believed that testing (including usability tests with users) was the

top solution to improve correctness, usability, and reproducibility. One pain point in the

development process is the lack of access to real-world datasets for testing. The developers’

strategies to address it is in Section 5.1.3. One threat to correctness is: with huge datasets

for testing, the tests are expensive and time-consuming. Three interviewees endorsed self

tests / automated tests, which may save time for testing.

All 29 projects did not have theory manuals. We identified a road map in the 3D Slicer

project, and no requirements specifications for the rest. Eight of the nine interviewees

thought that documentation was essential to their projects. However, they hold the common

opinion that their documentation needed improvements. Nearly half of them also believed

that the lack of time prevented them from improving the documentation.

6.4 Pain Points and Solutions

RQ4. What are the pain points for developers working on research software projects?

What aspects of the existing processes, methodologies, and tools do they consider

as potentially needing improvement? What changes to processes, methodologies,

67

MEng Thesis - Ao Dong- McMaster - Computing and Software

and tools can improve software development and software quality?

We answer this question by interviewing the developers. The answers to this question,

including the pain points and the solutions proposed by the developers, are in Section 5.1.

6.5 Software Qualities

RQ5. What is the current status of the following software qualities for the projects? What

actions have the developers taken to address them?

This section includes our answers from the qualities measurements and interviews with

the developers. Table 6.5 shows the sections and tables containing answers to this research

question.

Section or table Description
Section 4.1 Installability
Section 4.2 and 5.4.1 Correctness & verifiability
Section 4.3 Reliability
Section 4.4 Robustness
Section 4.5 and 5.4.4 Usability
Section 4.6 and 5.4.2 Maintainability
Section 4.7 Reusability
Section 4.8 and 5.4.3 Understandability
Section 4.9 Visibility/transparency
Section 5.4.5 Reproducibility

Table 6.5: Sections and tables with answers to RQ4

6.6 Our Ranking versus the Community Ratings

RQ6. How does software designated as high quality by this methodology compare with

top-rated software by the community?

68

MEng Thesis - Ao Dong- McMaster - Computing and Software

We answer this question by grading the qualities of the software, collecting ratings from

the MI community, then conducting two comparisons:

• comparing our ranking with the community ratings on GitHub, such as GitHub stars,

number of forks, and number of people watching the projects (Section 6.6.1);

• comparing top-rated software designated by our methodology with the ones recom-

mended by our domain experts (Section 6.6.2).

6.6.1 Our Ranking versus the GitHub Popularity

Table 6.6 shows our ranking to the 29 MI projects, and their GitHub metrics if applicable.

As mentioned in Section 4.6, 24 projects used GitHub. Since GitHub repositories have

different creation dates, we collect the number of months each stayed on GitHub, and

calculate the average number of new stars, people watching, and forks per 12 months. The

method of getting the creation date is described in Section 3.3.2, and we obtained these

metrics in July, 2021.

In Table 6.6, we used the average number of new stars per 12 months as an indicator

of the GitHub popularity, and listed the items in the descending order of this number. We

ordered the non-GitHub items by our ranking. Generally speaking, most of the top-ranking

MI software projects also received greater attention and popularity on GitHub. Between

our ranking and the GitHub stars-per-year ranking, four of the top five software projects

are the same.

Project dwv was popular on GitHub, but we ranked it low. As mentioned in Section 4.1,

we failed to build it locally, and used the test version on its websites for the measurements.

We followed the instructions and tried to run the command “yarn run test” locally, which

did not work. In addition, the test version did not detect a broken DICOM file and dis-

played a blank image as described in Section 4.4. We might underestimate the scores for

69

MEng Thesis - Ao Dong- McMaster - Computing and Software

dwv due to uncommon technical issues. We also ranked DICOM Viewer much lower than

its popularity. As mentioned in Section 4.1 it depended on the NextCloud platform that

we could not successfully install. Thus, we might underestimate the scores of its surface

reliability and surface robustness. We weighted all qualities equally, which is not likely to

be the case with all users. As a result, some projects with high popularity may not perform

well in all qualities.

Software Our ranking Stars/yr Watches/yr Forks/yr
3D Slicer 1 284 19 128
OHIF Viewer 3 277 19 224
dwv 23 124 12 51
ImageJ 2 84 9 30
ParaView 5 67 7 28
Horos 12 49 9 18
Papaya 17 45 5 20
Fiji 4 44 5 21
DICOM Viewer 29 43 6 9
INVESALIUS 3 10 40 4 17
Weasis 6 36 5 19
dicompyler 26 35 5 14
OsiriX Lite 9 34 9 24
MRIcroGL 18 24 3 3
GATE 25 19 6 26
Ginkgo CADx 14 19 4 6
BioImage Suite Web 8 18 5 7
Drishti 27 16 4 4
Slice:Drop 20 10 2 5
ITK-SNAP 15 9 1 4
medInria 7 7 3 6
SMILI 13 3 1 2
MatrixUser 28 2 0 0
MicroView 16 1 1 1
Gwyddion 11 n/a n/a n/a
XMedCon 19 n/a n/a n/a
DicomBrower 21 n/a n/a n/a
AMIDE 22 n/a n/a n/a
3DimViewer 24 n/a n/a n/a

Table 6.6: Software ranking versus GitHub metrics

70

MEng Thesis - Ao Dong- McMaster - Computing and Software

6.6.2 Designated Top Software versus the Domain Experts’ Recom-

mendation

As shown in Section 3.5.2, our domain experts recommended a list of top software with 12

software products. Table 6.7 and 6.8 compare the top 12 software projects ranked by our

methodology with the ones from the domain experts.

All of the top 4 software from the domain experts are among the top 12 ones ranked by

our methodology. 3 of the top 4 on both lists are the same ones: 3D Slicer, ImageJ, and

Fiji. 3D Slicer is also the top 1 of both rankings.

As mentioned in Section 3.5.2, six of the recommended software packages did not have

visualization as the primary function, so we did not include them on our final list.

Our ranking Assessed software Domain experts
1 3D Slicer 1
2 ImageJ 3
3 OHIF Viewer n/a
4 Fiji 4
5 ParaView n/a
6 Weasis n/a
7 medInria n/a
8 BioImage Suite Web n/a
9 OsiriX Lite n/a
10 INVESALIUS 3 n/a
11 Gwyddion n/a
12 Horos 2

Table 6.7: Top software by our ranking versus domain experts’ recommendation

71

MEng Thesis - Ao Dong- McMaster - Computing and Software

Our ranking Recommended software Domain experts
1 3D Slicer 1
12 Horos 2
2 ImageJ 3
4 Fiji 4
n/a AFNI 5
n/a FSL 6
n/a Freesurfer 7
18* Mricron 8
17** Mango 9
n/a Tarquin 10
n/a Diffusion Toolkit 11
n/a MRItrix 12

Table 6.8: Domain experts’ recommendation versus our ranking

* MRIcron development had moved to MRIcroGL, as mentioned in Section 3.5.2. Thus,

we measured and ranked MRIcroGL at 18.

** We included Mango in the initial list, but removed it because it was not OSS. Papaya

is a the web version OSS of Mango. We measured and ranked Papaya at 17.

6.7 Threats to Validity

This section lists all the potential threats to validity in our research. The definitions of

common validity are [6][109]:

Construct Validity: “Defines how effectively a test or experiment measures up to its claims.

This aspect deals with whether or not the researcher measures what is intended to be

measured” [6].

Internal Validity: “This aspect relates to the examination of causal relations. Internal

validity examines whether an experimental treatment/condition makes a difference

or not, and whether there is evidence to support the claim” [6].

72

MEng Thesis - Ao Dong- McMaster - Computing and Software

External Validity: “Define the domain to which a study’s findings can be generalized”

[109].

Conclusion Validity: “Demonstrate that the operations of a study such as the data collec-

tion procedure can be repeated, with the same results” [109].

We categorize and present the threats to validity in the following subsections.

6.7.1 Threats to Construct Validity

• We compared nine software qualities for 29 software packages, so we could only

spend a limited time on each of them. As a result, our assessments may have missed

something relevant.

• Our ranking is partly based on surface (shallow) measurement, which may not fully

reveal the underlying qualities.

6.7.2 Threats to Internal Validity

• It was not practical to ask each development team for every piece of information. We

collected much information - such as artifacts and funding situations of software - by

ourselves. There may be cases that we missed some information.

• As mentioned in Section 5, one interviewee was too busy to participate in a full

interview, so he provided a version of written answers to us. Since we did not have the

chance to explain our questions or ask him follow-up questions, there is a possibility

of misinterpretation of the questions or answers.

• As mentioned in Section 4.1, we could not install or build dwv, GATE, and DICOM

Viewer. We used a deployed online version for dwv, a VM version for GATE, but no

73

MEng Thesis - Ao Dong- McMaster - Computing and Software

alternative for DICOM Viewer. We might underestimate their rank due to uncommon

technical issues.

6.7.3 Threats to External Validity

• We interviewed eight teams, which is a good proportion of the 29. However, there is

still a risk that they might not well represent the whole MI software community.

• Our ranking gave all qualities equal weight, which may not be the case with all users.

Thus, it may not represent the popularity of software among users.

• The number of GitHub stars, watches, and forks are not perfect measures of popular-

ity, but they are what we had available.

6.7.4 Threats to Conclusion Validity

• We used the grading template in Appendix A to guide our measurements. Our im-

pressions of the software - such as user experience - were factors in deciding some

scores. Thus, there is a risk that some scores may be subjective and biased.

74

Chapter 7

Recommendations

This section presents our recommendations on SC software development. In general, our

suggestions apply to all SC domains, unless we specifically mention that a particular guide-

line is only for MI software.

Section 7.1 discusses the actions that can potentially improve the ten software qualities.

Sections 7.2, 7.3, and 7.4 are based on the primary pain points collected from the developers

in the MI domain, but we believe scientists and developers are likely to face them in most

SC domains. These sections contain our general suggestions tackling them.

7.1 Recommendations on Improving Software Qualities

Based on our quality measurements in Sections 4 and discussions with the developers in

Sections 5.4, we collected many key points that may improve the software qualities. We

list the primary ones by each quality as follows,

• Installability (Section 4.1)

– clear instructions;

– automated installer;

75

MEng Thesis - Ao Dong- McMaster - Computing and Software

– including all dependencies in the installer;

– avoiding heavily depending on other commercial products (e.g. Matlab);

– considering building a web application that needs no installation.

• Correctness & Verifiability (Section 4.2 and 5.4.1)

– test-driven development with unit tests, integration tests, and nightly tests;

– two stage development process with stable release & nightly builds;

– CI/CD;

– requirements specifications and theory manuals [91] [92].

– static code analysis tools (e.g. Lint and SonarQube)

• Reliability (Section 4.3)

– test-driven development with unit tests, integration tests, and nightly tests.

– two stage development process with stable release & nightly builds;

– descriptive error messages.

• Robustness (Section 4.4)

– designing with exceptions and make the software failures graceful;

– descriptive error messages.

• Usability (Section 4.5 and 5.4.4)

– usability tests and interviews with end users;

– adjusting according to users’ feedbacks;

– getting started tutorials;

– user manuals;

76

MEng Thesis - Ao Dong- McMaster - Computing and Software

– professional UX designs;

– active supports to users.

• Maintainability (Section 4.6 and 5.4.2)

– using GitHub;

– modular approach with the design principle proposed by Parnas: “system de-

tails that are likely to change independently should be the secrets of separate

modules; the only assumptions that should appear in the interfaces between

modules are those that are considered unlikely to change.” [70]

– documentation for developers: project plan, developer’s manual, and API doc-

umentation.

• Reusability (Section 4.7)

– modular approach;

– API documentation;

– tools that generate software documentation for developers (e.g. Doxygen, Javadoc,

and Sphinx).

• Understandability (Section 4.8 and 5.4.3)

– modular approach;

– good coding style: consistent indentation and formatting style; consistent, dis-

tinctive, and meaningful code identifiers; keeping parameters in the same order

for all functions; avoiding hard-coded constants (other than 0 and 1);

– clear comments, indicating what is being done, not how;

– description of used algorithms;

77

MEng Thesis - Ao Dong- McMaster - Computing and Software

– documentation of explicit requirements on coding standard;

– communication between developers and users via GitHub issues, mailing lists,

and forums.

– graphical user interface.

• Visibility/Transparency (Section 4.9)

– documents for the development process, project status, development environ-

ment, and release notes.

• Reproducibility (Section 5.4.5)

– test-driven development with unit tests, integration tests, and nightly tests.

– open-source;

– making data and documentation available;

– using open-source libraries.

7.2 Recommendations on Dealing With Limited Resources

The limitation of resources has many faces. We regard the lack of fundings, time, and

developers as representations of this problem.

We summarize our discussion with the MI software developers in Section 5.1.1 with

the following recommendations,

• Identify the root cause. More fundings or developers may not solve the problem of

lacking time. It is beneficial to identify the underlying obstacles to the team.

• Maintain a good documentation. Creating and updating documentation consumes

time, but can save much more time in the long term. If the users and developers can

78

MEng Thesis - Ao Dong- McMaster - Computing and Software

find answers to their questions themselves, they are less likely to abuse the team’s

issue tracker.

• Adopt time-saving tools. A good CI/CD tool (e.g., GitHub Actions) saves time for

building and deploying the product, and automated tests can work in the background

while developers are focusing on other tasks.

• Use test-driven development process. Many people think writing test cases is less

fun than building the functional code, but this is only true before we encounter the

bugs. Identifying and fixing bugs can consume substantial resources. Setting up the

test cases costs time, but generates more benefits in the long run.

• Consider supporting third-party plugins or extensions. Why not let users share

the burden? No software product can deliver every user’s needs, and the large quan-

tity of features leads to more bugs and maintenance problems. So it may be a good

idea to shift some development and maintenance responsibilities to the users. The

users may also be happy about the extra flexibility.

• Consider “hibernating” for a while. When developers are not enough, the team

can shift from development mode toward maintenance mode for some time. Stop

building new features, and instead fix bugs and design problems from the past. If the

development team can repay some of its technical debt, the software qualities may

improve as a result.

• Commercialization is not always toxic. Licensing the software to commercial com-

panies to use as internal modules of their products may bring financial supports to

the team. Meanwhile, the project can stay open-source for the community.

79

MEng Thesis - Ao Dong- McMaster - Computing and Software

7.3 Recommendations on Choosing A Tech Stack

A tech stack refers to a set of technologies used by a team to build software and manage

the project. Section 5.1.2 lists the advantages and disadvantages between native and web

applications. In this section, we give further suggestions on the choice of a tech stack to

address the compatibility, maintainability, performance, and security of software.

• Identify the priorities of the qualities. It is hard to cover all aspects. Some teams

achieve all four above qualities for their software, but it is not an easy task. Sec-

tions 5.1.2 contains more details about the difficulty of balancing between the four

qualities. A team needs to prioritize its objectives according to its resource and ex-

perience.

• Be open-minded about new technologies. Web applications with only a frontend

are known for worse performance than native applications. However, new technolo-

gies may ease this difference. For example, some JavaScript libraries can help the

frontend harness the power of computer GPU and accelerate graphical computing. In

addition, there are new frameworks helping developers with cross-platform compati-

bility. For example, the Flutter project enables support for web, mobile, and desktop

OS with one codebase.

• Use git and GitHub. As mentioned in Sections 4.6, almost all of the 29 MI software

projects used git, and the majority of them used GitHub. We found from the projects’

websites and our interviews with developers that, some projects moved from other

version control tools to git and GitHub. GitHub provides convenient repository and

project management, and OSS projects receive more attention and contribution on

GitHub.

• Web applications can also deliver high performance. Web applications with back-

end servers may perform even better than native applications. If a team needs to sup-

80

MEng Thesis - Ao Dong- McMaster - Computing and Software

port lower-end computers, it is good to use back-end servers for heavy computing

tasks.

• Backend servers can have low costs. It is worth exploring the serverless solutions

from major cloud service providers. Serverless still uses a server, but the team is

only charged when they use it. The solution is event-driven, and costs the team by

the number of requests it processes. Thus, serverless can be very cost-effective for

the less intensively used functions.

• Web transmission may diminish security. Transferring sensitive data online can be

a problem for projects requiring high security. Regulations in some SC domains may

forbid doing so. In this case, a web application with a backend may not be a good

choice.

• Maintain a good documentation. No matter what tech stack a team uses, a well-

maintained project plan, developer’s manual, and API documentation always help

team members to contribute more and make fewer mistakes.

7.4 Recommendations on Enriching the Testing Datasets

As described in Section 5.1, it was difficult for some software development teams in the

MI domain to access real-world medical imaging datasets. This problem restricted their

capability and flexibility to test their software. We believe software developers in other SC

domains may also face similar issues.

Based on Section 5.1.3, we provide some suggestions as follows,

• Build and maintain good connections to datasets. A team can build connec-

tions with professionals working in the SC domain, who may have access to private

81

MEng Thesis - Ao Dong- McMaster - Computing and Software

datasets and perform tests for the team. Moreover, if a team has such professionals

as internal members, the process can be even simpler.

• Collect and maintain datasets over time. A team may face all kinds of strange

problems caused by various unique inputs over the years of development. It is worth

collecting and maintaining this data, which can form a good dataset for testing.

• Search for open data sources. In general, there are many open datasets in different

SC domains. Take MI as an example, there are Chest X-ray Datasets by National

Institute of Health (https://nihcc.app.box.com/v/ChestXray-NIHCC) [100], Cancer

Imaging Archive (https://www.cancerimagingarchive.net/) [72], and MedPix by Na-

tional Library of Medicine (https://medpix.nlm.nih.gov/home) [84]. A team develop-

ing MI software should be able to find more open datasets according to their needs.

• Create sample data for testing. If a team can access tools creating sample data, they

may also self-build datasets for testing. For example, an MI software development

team can use an MRI scanner to create images of objects, animals, and volunteers.

The team can build the images based on specific testing requirements.

• Remove privacy from sensitive data. For data with sensitive information, a team

can ask the data owner to remove such information or add noise to protect privacy.

One example is using deidentified copies of medical images for testing.

• Establish community collaboration in the domain. During our interviews with

developers in the MI domain, we heard many stories of asking for supports from

other professionals or equipment manufacturers. However, we believe that broader

collaboration between development teams can address this problem better. Some

datasets are too sensitive to share, but if the community has some kind of “group

discussion”, teams can better express their needs, and professionals can better offer

voluntary support for testing. Ultimately, the community can establish a nonprofit

82

MEng Thesis - Ao Dong- McMaster - Computing and Software

organization as a third-party, which maintains large datasets, tests OSS in the domain,

and protects privacy.

83

Chapter 8

Conclusions

We analyzed the state of the practice for SC software in the MI domain. To better achieve

our goals in Section 1, we proposed six research questions in Section 1.2.

Our methods in Section 3 form a general process to evaluate domain-specific software,

that we apply on specific SC domains. As mentioned in Section 3.5, following this process,

we chose the MI domain, identified 48 SC software candidates in it, then selected 29 of

them to our final list. Section 4 lists our measurements to nine software qualities for the 29

projects, and Section 5 contains our interviews with eight of the 29 teams, discussing their

development process and five software qualities.

We answered our six research questions in Section 6. In addition, Section 7 presents

our recommendations on SC software development.

8.1 Key Findings

With the measurement results in Section 4, we revealed some current status of SC software

development and qualities in the MI domain. We ranked the 29 software projects in nine

qualities based on the grading scores. 3D Slicer, ImageJ, and OHIF Viewer are the top

84

MEng Thesis - Ao Dong- McMaster - Computing and Software

three software by their overall scores.

The interview results in Section 5 show some merits, drawbacks, and pain points within

the development process. The three primary categories of pain points are:

• the lack of fundings and time;

• the difficulty to balance between four factors: cross-platform compatibility, conve-

nience to development & maintenance, performance, and security;

• the lack of access to real-world datasets for testing.

We summarized the solutions from the developers to address these problems. We also col-

lected the status of software testing, documentation, contribution management, and project

management in the eight projects.

Our answers to the research questions (Section 6) are based on the above findings. We

identified the existing artifacts, tools, principles, processes, and methodologies in the 29

projects. By comparisons in Section 6.6, we found out: 1) four of the top five software

projects in our ranking were also among the top five ones receiving the most GitHub stars

per year (Table 6.6); 2) three of the top four in our ranking were among the top four pro-

vided by the domain experts (Table 6.7).

Section 7 presents our recommendations on improving software qualities and easing

pain points during development. Some highlighted ones are:

• adopting test-driven development with unit tests, integration tests, and nightly tests;

• maintaining good documentation (e.g., installation instructions, requirements speci-

fications, theory manuals, getting started tutorials, user manuals, project plan, devel-

oper’s manual, API documentation, requirements on coding standards, development

process, project status, development environment, and release notes);

• using CI/CD;

85

MEng Thesis - Ao Dong- McMaster - Computing and Software

• using git and GitHub;

• modular approach with the design principle proposed by Parnas [70];

• considering newer technologies (e.g., web application and serverless solution);

• various ways of enriching the testing datasets in Section 7.4.

8.2 Future Works

With learnings from this project, we summarized recommendations for the future state of

the practice assessments:

• we can make the surface measurements less shallow. For example:

– surface reliability: our current measurement relies on the processes of installa-

tion and getting started tutorials. However, not all software needs installation

or has a getting started tutorial. We can design a list of operation steps, perform

the same operations with each software, and record any errors.

– surface robustness: we used damaged images as inputs for this measuring MI

software. This process is similar to fuzz testing [102], which is one type of fault

injection [101]. We may adopt more fault injection methods, and identify tools

and libraries to automate this process.

– surface usability: we can design usability tests and test all software projects

with end-users. The end-users can be volunteers and domain experts.

– surface understandability: our current method does not require understanding

the source code. As software engineers, perhaps we can select a small module

of each project, read the source code and documentation, try to understand the

logic, and score the ease of the process.

86

MEng Thesis - Ao Dong- McMaster - Computing and Software

• we can further automate the measurements on the grading temple in Appendix A. For

example, with automation scripts and the GitHub API, we may save significant time

on retrieving the GitHub metrics. We have started to build a tool for this purpose, with

its source code at this repository https://github.com/smiths/AIMSS/.../GitHubMetricsCollector.

This GitHub Metrics Collector can take GitHub repository links as input, automati-

cally collect metrics from the GitHub API, and record the results. We can improve

and use this tool in our future projects;

• the grading standard can be more explicit. For example, we can explicitly define

scores for each item in the grading temple.

• we can improve some interview questions. Some examples are:

– in Q14, “Do you think improving this process can tackle the current problem?”

is a yes-or-no question, which is not informative enough. As mentioned in

Section 5.3, most interviewees ignored it. We can change it to “By improving

this process, what current problems can be tackled?”;

– in Q16, we can ask more details about the modular approach, such as ”What

principles did you use to divide code into modules? Can you give an example

of using the principles?”;

– Q17 and Q18 should respectively ask understandability to developers and us-

ability to end-users.

• we can better organize the interview questions. Since we use audio conversion tools

to transcribe the answers, we should make the transcription easier to read. For exam-

ple, we can order them together for questions about the five software qualities and

compose a similar structure for each.

• we can mark the follow-up interview questions with keywords. For example, say

87

MEng Thesis - Ao Dong- McMaster - Computing and Software

“this is a follow-up question” every time asking one. Thus, we record this sentence

in the transcription, and it will be much easier to distinguish the follow-up questions

from the 20 designed questions.

In addition, we propose a few SC domains that are potentially suitable for future works:

• Metallurgy

• Quantitative Finance

• Computational Fluid Dynamics

• Basic Linear Algebra

• Finite Elements

• Sparse Linear Solvers

After applying our method on various domains, we can start a meta-study to compare the

state of the practice for software in different domains.

88

Bibliography

[1] U.S. Food & Drug Administration. Medical imag-

ing. https://www.fda.gov/radiation-emitting-products/

radiation-emitting-products-and-procedures/medical-imaging, 2021.

[Online; accessed 25-July-2021].

[2] Aysel Afsar. Dicom viewer. https://github.com/ayselafsar/dicomviewer,

2021. [Online; accessed 27-May-2021].

[3] J. Ahrens, Berk Geveci, and Charles Law. Paraview: An end-user tool for large data

visualization. Visualization Handbook, 01 2005.

[4] Aliza. Aliza ms dicom viewer. https://www.aliza-dicom-viewer.com/, 2021.

[Online; accessed 27-May-2021].

[5] Paulo Amorim, Thiago Franco de Moraes, Helio Pedrini, and Jorge Silva. Invesalius:

An interactive rendering framework for health care support. page 10, 12 2015.

[6] Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and

Alexander Chatzigeorgiou. Identifying, categorizing and mitigating threats to valid-

ity in software engineering secondary studies. Information and Software Technology,

106, 02 2019.

89

https://www.fda.gov/radiation-emitting-products/radiation-emitting-products-and-procedures/medical-imaging
https://www.fda.gov/radiation-emitting-products/radiation-emitting-products-and-procedures/medical-imaging
https://github.com/ayselafsar/dicomviewer
https://www.aliza-dicom-viewer.com/

MEng Thesis - Ao Dong- McMaster - Computing and Software

[7] S. Angenent, Eric Pichon, and Allen Tannenbaum. Mathematical methods in medi-

cal image processing. Bulletin (new series) of the American Mathematical Society,

43:365–396, 07 2006.

[8] Kevin Archie and Daniel Marcus. Dicombrowser: Software for viewing and modi-

fying dicom metadata. Journal of digital imaging : the official journal of the Society

for Computer Applications in Radiology, 25:635–45, 02 2012.

[9] Medical Imaging Technology Association. About dicom: Overview. https://www.

dicomstandard.org/about-home, 2021. [Online; accessed 11-August-2021].

[10] Isaac N. Bankman. Preface. In Isaac N. Bankman, editor, Handbook of Medical

Imaging, Biomedical Engineering, pages xi – xii. Academic Press, San Diego, 2000.

[11] F. Benureau and N. Rougier. Re-run, Repeat, Reproduce, Reuse, Replicate: Trans-

forming Code into Scientific Contributions. ArXiv e-prints, August 2017.

[12] Kari Björn. Evaluation of open source medical imaging software: A case study

on health technology student learning experience. Procedia Computer Science,

121:724–731, 01 2017.

[13] Barry W Boehm. Software engineering: Barry W. Boehm’s lifetime contributions to

software development, management, and research, volume 69. John Wiley & Sons,

2007.

[14] Ben Boyter. Sloc cloc and code. https://github.com/boyter/scc, 2021. [On-

line; accessed 27-May-2021].

[15] Andreas Brühschwein, Julius Klever, Anne-Sophie Hoffmann, Denise Huber, Elis-

abeth Kaufmann, Sven Reese, and Andrea Meyer-Lindenberg. Free dicom-

viewers for veterinary medicine: Survey and comparison of functionality and user-

90

https://www.dicomstandard.org/about-home
https://www.dicomstandard.org/about-home
https://github.com/boyter/scc

MEng Thesis - Ao Dong- McMaster - Computing and Software

friendliness of medical imaging pacs-dicom-viewer freeware for specific use in vet-

erinary medicine practices. Journal of Digital Imaging, 03 2019.

[16] Shekhar Chandra, Jason Dowling, Craig Engstrom, Ying Xia, Anthony Paproki,

Ales Neubert, David Rivest-Hénault, Olivier Salvado, Stuart Crozier, and Jurgen

Fripp. A lightweight rapid application development framework for biomedical im-

age analysis. Computer Methods and Programs in Biomedicine, 164, 07 2018.

[17] Robert Choplin, J Boehme, and C Maynard. Picture archiving and communication

systems: an overview. Radiographics : a review publication of the Radiological

Society of North America, Inc, 12:127–9, 02 1992.

[18] CIT. Mipav. https://mipav.cit.nih.gov, 2020. [Online; accessed 27-May-

2021].

[19] ClearCanvas. Clearcanvas. https://github.com/ClearCanvas/ClearCanvas,

2015. [Online; accessed 27-May-2021].

[20] James Edward Corbly. The free software alternative: Freeware, open source soft-

ware, and libraries. Information Technology and Libraries, 33(3):65–75, Sep. 2014.

[21] cornerstone. cornerstone. https://github.com/cornerstonejs/cornerstone,

2020. [Online; accessed 27-May-2021].

[22] dcm4che. dcm4che. https://github.com/dcm4che/dcm4che, 2021. [Online;

accessed 27-May-2021].

[23] DCMTK. Dcmtk. https://github.com/DCMTK/dcmtk, 2021. [Online; accessed

27-May-2021].

[24] Steve Emms. 16 best free linux medical imaging software. https://www.

linuxlinks.com/medicalimaging/, 2019. [Online; accessed 02-February-2020].

91

https://mipav.cit.nih.gov
https://github.com/ClearCanvas/ClearCanvas
https://github.com/cornerstonejs/cornerstone
https://github.com/dcm4che/dcm4che
https://github.com/DCMTK/dcmtk
https://www.linuxlinks.com/medicalimaging/
https://www.linuxlinks.com/medicalimaging/

MEng Thesis - Ao Dong- McMaster - Computing and Software

[25] Pierre Fillard, Nicolas Toussaint, and Xavier Pennec. Medinria: Dt-mri processing

and visualization software. 04 2012.

[26] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of software en-

gineering. Prentice Hall PTR, 1991.

[27] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software En-

gineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

[28] Tomasz Gieniusz. Gitstats. https://github.com/tomgi/git_stats, 2019. [On-

line; accessed 27-May-2021].

[29] GNU. Categories of free and nonfree software. https://www.gnu.org/

philosophy/categories.html, 2019. [Online; accessed 20-May-2021].

[30] Gene Golub and James M. Ortega. Scientific computing: an introduction with par-

allel computing. Academic Press, 2014.

[31] Daniel Haak, Charles-E Page, and Thomas Deserno. A survey of dicom viewer soft-

ware to integrate clinical research and medical imaging. Journal of digital imaging,

29, 10 2015.

[32] Daniel Haehn. Slice:drop: collaborative medical imaging in the browser. pages 1–1,

07 2013.

[33] Daniel Haehn, Nicolas Rannou, Banu Ahtam, Patricia Grant, and Rudolph Pienaar.

Neuroimaging in the browser using the x toolkit. volume 8, 10 2012.

[34] Paul Hamill. Unit test frameworks: Tools for high-quality software development.

O’Reilly Media, 2004.

[35] Jo Erskine Hannay, Carolyn MacLeod, Janice Singer, Hans Petter Langtangen, Diet-

mar Pfahl, and Greg Wilson. How do scientists develop and use scientific software?

92

https://github.com/tomgi/git_stats
https://www.gnu.org/philosophy/categories.html
https://www.gnu.org/philosophy/categories.html

MEng Thesis - Ao Dong- McMaster - Computing and Software

In 2009 ICSE Workshop on Software Engineering for Computational Science and

Engineering, pages 1–8, 2009.

[36] Mehedi Hasan. Top 25 best free medical imaging soft-

ware for linux system. https://www.ubuntupit.com/

top-25-best-free-medical-imaging-software-for-linux-system/,

2020. [Online; accessed 30-January-2020].

[37] Frank Heckel, Michael Schwier, and Heinz-Otto Peitgen. Object-oriented applica-

tion development with mevislab and python. pages 1338–1351, 01 2009.

[38] horosproject.org. Horos. https://github.com/horosproject/horos, 2020.

[Online; accessed 27-May-2021].

[39] IEEE. Ieee standard glossary of software engineering terminology. Standard, IEEE,

1991.

[40] Raster Images. Oviyam. http://oviyam.raster.in/index.html, 2021. [Online;

accessed 27-May-2021].

[41] Parallax Innovations. Microview. https://github.com/parallaxinnovations/

MicroView/, 2020. [Online; accessed 27-May-2021].

[42] Alessio Ishizaka and Markus Lusti. How to derive priorities in ahp: A comparative

study. Central European Journal of Operations Research, 14:387–400, 12 2006.

[43] ISO. Iec 9126-1: Software engineering-product quality-part 1: Quality model.

Geneva, Switzerland: International Organization for Standardization, 21, 2001.

[44] ISO/IEC. Systems and software engineering - systems and software quality require-

ments and evaluation (square) - system and software quality models. Standard, In-

ternational Organization for Standardization, Mar 2011.

93

https://www.ubuntupit.com/top-25-best-free-medical-imaging-software-for-linux-system/
https://www.ubuntupit.com/top-25-best-free-medical-imaging-software-for-linux-system/
https://github.com/horosproject/horos
http://oviyam.raster.in/index.html
https://github.com/parallaxinnovations/MicroView/
https://github.com/parallaxinnovations/MicroView/

MEng Thesis - Ao Dong- McMaster - Computing and Software

[45] ISO/TR. Ergonomics of human-system interaction — usability methods supporting

human-centred design. Standard, International Organization for Standardization,

June 2002.

[46] ISO/TR. Ergonomics of human-system interaction — part 11: Usability: Definitions

and concepts. Standard, International Organization for Standardization, March 2018.

[47] Sama Jan, Giovanni Santin, Daniel Strul, S Staelens, K Assié, Damien Autret,

Stéphane Avner, Remi Barbier, Manuel Bardiès, Peter Bloomfield, David Brasse,

Vincent Breton, Peter Bruyndonckx, Irene Buvat, AF Chatziioannou, Yunsung Choi,

YH Chung, Claude Comtat, Denise Donnarieix, and Christian Morel. Gate: a sim-

ulation toolkit for pet and spect. Physics in medicine and biology, 49:4543–61, 11

2004.

[48] Sébastien Jodogne. The orthanc ecosystem for medical imaging. Journal of Digital

Imaging, 31, 05 2018.

[49] Alark Joshi, Dustin Scheinost, Hirohito Okuda, Dominique Belhachemi, Isabella

Murphy, Lawrence Staib, and Xenophon Papademetris. Unified framework for de-

velopment, deployment and robust testing of neuroimaging algorithms. Neuroinfor-

matics, 9:69–84, 03 2011.

[50] Panagiotis Kalagiakos. The non-technical factors of reusability. In Proceedings of

the 29th Conference on EUROMICRO, page 124. IEEE Computer Society, 2003.

[51] Ron Kikinis, Steve Pieper, and Kirby Vosburgh. 3D Slicer: A Platform for Subject-

Specific Image Analysis, Visualization, and Clinical Support, volume 3, pages 277–

289. 01 2014.

94

MEng Thesis - Ao Dong- McMaster - Computing and Software

[52] Tae-Yun Kim, Jaebum Son, and Kwanggi Kim. The recent progress in quantitative

medical image analysis for computer aided diagnosis systems. Healthcare informat-

ics research, 17:143–9, 09 2011.

[53] Chris Rorden’s Lab. Mricrogl. https://github.com/rordenlab/MRIcroGL,

2021. [Online; accessed 27-May-2021].

[54] Rubin H. Landau. A first course in scientific computing: symbolic, graphic, and

numeric modeling using Maple, Java, Mathematica, and Fortran90. Princeton Uni-

versity Press, 2005.

[55] Jörg Lenhard, Simon Harrer, and Guido Wirtz. Measuring the installability of service

orchestrations using the square method. In 2013 IEEE 6th International Conference

on Service-Oriented Computing and Applications, pages 118–125. IEEE, 2013.

[56] Xiangrui Li, Paul Morgan, John Ashburner, Jolinda Smith, and Chris Rorden. The

first step for neuroimaging data analysis: Dicom to nifti conversion. Journal of

Neuroscience Methods, 264, 03 2016.

[57] Ajay Limaye. Drishti, a volume exploration and presentation tool. volume 8506,

page 85060X, 10 2012.

[58] Fang Liu, Julia Velikina, Walter Block, Richard Kijowski, and Alexey Samsonov.

Fast realistic mri simulations based on generalized multi-pool exchange tissue

model. IEEE Transactions on Medical Imaging, PP:1–1, 10 2016.

[59] Andy Loening. Amide. https://sourceforge.net/p/amide/code/ci/

default/tree/amide-current/, 2017. [Online; accessed 27-May-2021].

[60] Yves Martelli. dwv. https://github.com/ivmartel/dwv, 2021. [Online; ac-

cessed 27-May-2021].

95

https://github.com/rordenlab/MRIcroGL
https://sourceforge.net/p/amide/code/ci/default/tree/amide-current/
https://sourceforge.net/p/amide/code/ci/default/tree/amide-current/
https://github.com/ivmartel/dwv

MEng Thesis - Ao Dong- McMaster - Computing and Software

[61] Matthew McCormick, Xiaoxiao Liu, Julien Jomier, Charles Marion, and Luis

Ibanez. Itk: Enabling reproducible research and open science. Frontiers in neu-

roinformatics, 8:13, 02 2014.

[62] Hemant Kumar Mehta. Mastering Python scientific computing: a complete guide for

Python programmers to master scientific computing using Python APIs and tools.

Packt Publishing, 2015.

[63] MicroDicom. Microdicom. https://www.microdicom.com/, 2021. [Online; ac-

cessed 27-May-2021].

[64] Hamza Mu. 20 free & open source dicom viewers for windows. https://medevel.

com/free-dicom-viewers-for-windows/, 2019. [Online; accessed 31-January-

2020].

[65] JD Musa, Anthony Iannino, and Kazuhira Okumoto. Software reliability: prediction

and application, 1987.

[66] D Nevcas and P Klapetek. Gwyddion: an open-source software for spm data analy-

sis. Cent Eur J Phys, 10, 01 2012.

[67] E Nolf, Tony Voet, Filip Jacobs, R Dierckx, and Ignace Lemahieu. (x)medcon

* an opensource medical image conversion toolkit. European Journal of Nuclear

Medicine and Molecular Imaging, 30:S246, 08 2003.

[68] A. Panchal and R. Keyes. Su-gg-t-260: Dicompyler: An open source radiation

therapy research platform with a plugin architecture. Medical Physics - MED PHYS,

37, 06 2010.

[69] Xenophon Papademetris, Marcel Jackowski, Nallakkandi Rajeevan, Robert Consta-

ble, and Lawrence Staib. Bioimage suite: An integrated medical image analysis

suite. 1, 01 2005.

96

https://www.microdicom.com/
https://medevel.com/free-dicom-viewers-for-windows/
https://medevel.com/free-dicom-viewers-for-windows/

MEng Thesis - Ao Dong- McMaster - Computing and Software

[70] David Parnas, Systems Branch, Washington C, P. Clements, and David Weiss. The

modular structure of complex systems. 09 2000.

[71] Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu Huang, Hanjun

Kim, Nick P. Johnson, Feng Liu, Soumyadeep Ghosh, Stephen Beard, Taewook Oh,

Matthew Zoufaly, David Walker, and David I. August. A survey of the practice

of computational science. SC ’11, New York, NY, USA, 2011. Association for

Computing Machinery.

[72] F. Prior, Kirk Smith, Ashish Sharma, Justin Kirby, Lawrence Tarbox, Ken Clark,

William Bennett, Tracy Nolan, and John Freymann. The public cancer radiology

imaging collections of the cancer imaging archive. Scientific Data, 4:sdata2017124,

09 2017.

[73] The Linux Information Project. Freeware definition. http://www.linfo.org/

freeware.html, 2006. [Online; accessed 20-May-2021].

[74] UTHSCSA Research Imaging Institute. Papaya. https://github.com/

rii-mango/Papaya, 2019. [Online; accessed 27-May-2021].

[75] Nicolas Roduit. Weasis. https://github.com/nroduit/nroduit.github.io,

2021. [Online; accessed 27-May-2021].

[76] Chris Rorden. Mricron. https://github.com/neurolabusc/MRIcron, 2021.

[Online; accessed 11-August-2021].

[77] Curtis Rueden, Johannes Schindelin, Mark Hiner, Barry Dezonia, Alison Walter,

and Kevin Eliceiri. Imagej2: Imagej for the next generation of scientific image data.

BMC Bioinformatics, 18, 11 2017.

97

http://www.linfo.org/freeware.html
http://www.linfo.org/freeware.html
https://github.com/rii-mango/Papaya
https://github.com/rii-mango/Papaya
https://github.com/nroduit/nroduit.github.io
https://github.com/neurolabusc/MRIcron

MEng Thesis - Ao Dong- McMaster - Computing and Software

[78] Thomas L. Saaty. How to make a decision: The analytic hierarchy process. Euro-

pean Journal of Operational Research, 48(1):9–26, 1990. Desicion making by the

analytic hierarchy process: Theory and applications.

[79] Ravi Samala. Can anyone suggest free software for medical images segmentation

and volume? https://www.researchgate.net/post/Can_anyone_suggest_

free_software_for_medical_images_segmentation_and_volume, 03 2014.

[Online; accessed 31-January-2020].

[80] Santesoft. Sante dicom viewer lite. https://www.santesoft.com/win/

sante-dicom-viewer-pro/sante-dicom-viewer-pro.html, 2021. [Online; ac-

cessed 27-May-2021].

[81] Pixmeo SARL. Osirix lite. https://github.com/pixmeo/osirix, 2019. [Online;

accessed 27-May-2021].

[82] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark

Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Ben-

jamin Schmid, Jean-Yves Tinevez, Daniel White, Volker Hartenstein, Kevin Eliceiri,

Pavel Tomancak, and Albert Cardona. Fiji: An open-source platform for biological-

image analysis. Nature methods, 9:676–82, 06 2012.

[83] Will Schroeder, Bill Lorensen, and Ken Martin. The visualization toolkit. Kitware,

2006.

[84] James Smirniotopoulos. Medpix medical image database, 10 2014.

[85] Spencer Smith. Systematic development of requirements documentation for general

purpose scientific computing software. pages 205–215, 09 2006.

[86] Spencer Smith, Jacques Carette, Olu Owojaiye, Peter Michalski, and Ao Dong.

Quality definitions of qualities. Manuscript in preparation, 2020.

98

https://www.researchgate.net/post/Can_anyone_suggest_free_software_for_medical_images_segmentation_and_volume
https://www.researchgate.net/post/Can_anyone_suggest_free_software_for_medical_images_segmentation_and_volume
https://www.santesoft.com/win/sante-dicom-viewer-pro/sante-dicom-viewer-pro.html
https://www.santesoft.com/win/sante-dicom-viewer-pro/sante-dicom-viewer-pro.html
https://github.com/pixmeo/osirix

MEng Thesis - Ao Dong- McMaster - Computing and Software

[87] Spencer Smith, Jacques Carette, Olu Owojaiye, Peter Michalski, and Ao Dong.

Methodology for assessing the state of the practice for domain x. Manuscript in

preparation, 2021.

[88] Spencer Smith, Yue Sun, and Jacques Carette. State of the practice for develop-

ing oceanographic software. Technical report, 04 2015. CAS-15-02-SS. McMaster

University, Department of Computing and Software.

[89] Spencer Smith, Yue Sun, and Jacques Carette. Statistical software for psychology:

Comparing development practices between cran and other communities, 2018.

[90] Spencer Smith, Zheng Zeng, and Jacques Carette. Seismology software: state of the

practice. Journal of Seismology, 22, 05 2018.

[91] W. Spencer Smith. A rational document driven design process for scientific com-

puting software. In Jeffrey C. Carver, Neil Chue Hong, and George Thiruvathukal,

editors, Software Engineering for Science, chapter Section I – Examples of the Ap-

plication of Traditional Software Engineering Practices to Science, pages 33–63.

Taylor & Francis, 2016.

[92] W. Spencer Smith and Lei Lai. A new requirements template for scientific com-

puting. In J. Ralyté, P. Ȧgerfalk, and N. Kraiem, editors, Proceedings of the First

International Workshop on Situational Requirements Engineering Processes – Meth-

ods, Techniques and Tools to Support Situation-Specific Requirements Engineering

Processes, SREP’05, pages 107–121, Paris, France, 2005. In conjunction with 13th

IEEE International Requirements Engineering Conference.

[93] W. Spencer Smith, Adam Lazzarato, and Jacques Carette. State of the practice for

gis software, 2018.

99

MEng Thesis - Ao Dong- McMaster - Computing and Software

[94] W Spencer Smith, D Adam Lazzarato, and Jacques Carette. State of the practice for

mesh generation and mesh processing software. Advances in Engineering Software,

100:53–71, 2016.

[95] TESCAN. 3dimviewer. https://bitbucket.org/3dimlab/3dimviewer/src/

master/, 2020. [Online; accessed 27-May-2021].

[96] Omkarprasad S. Vaidya and Sushil Kumar. Analytic hierarchy process: An overview

of applications. European Journal of Operational Research, 169(1):1–29, 2006.

[97] Marcel van Herk. Conquest. https://github.com/marcelvanherk/

Conquest-DICOM-Server, 2021. [Online; accessed 27-May-2021].

[98] Open Dicom Viewer. Open dicom viewer. https://sourceforge.net/p/

opendicomviewer/code/HEAD/tree/, 2011. [Online; accessed 27-May-2021].

[99] Visus. Jivex dicom viewer. https://www.visus.com/en/downloads/

jivex-dicom-viewer.html, 2021. [Online; accessed 27-May-2021].

[100] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and

Ronald Summers. Chestx-ray8: Hospital-scale chest x-ray database and bench-

marks on weakly-supervised classification and localization of common thorax dis-

eases. arXiv:1705.02315, 05 2017.

[101] Wikipedia contributors. Fault injection — Wikipedia, the free encyclopedia, 2021.

[Online; accessed 28-August-2021].

[102] Wikipedia contributors. Fuzzing — Wikipedia, the free encyclopedia, 2021. [Online;

accessed 28-August-2021].

[103] Wikipedia contributors. Medical image computing — Wikipedia, the free encyclo-

pedia, 2021. [Online; accessed 25-July-2021].

100

https://bitbucket.org/3dimlab/3dimviewer/src/master/
https://bitbucket.org/3dimlab/3dimviewer/src/master/
https://github.com/marcelvanherk/Conquest-DICOM-Server
https://github.com/marcelvanherk/Conquest-DICOM-Server
https://sourceforge.net/p/opendicomviewer/code/HEAD/tree/
https://sourceforge.net/p/opendicomviewer/code/HEAD/tree/
https://www.visus.com/en/downloads/jivex-dicom-viewer.html
https://www.visus.com/en/downloads/jivex-dicom-viewer.html

MEng Thesis - Ao Dong- McMaster - Computing and Software

[104] Wikipedia contributors. Medical imaging — Wikipedia, the free encyclopedia, 2021.

[Online; accessed 25-July-2021].

[105] Greg Wilson, Dhavide Aruliah, C. Titus Brown, Neil Chue Hong, Matt Davis,

Richard Guy, Steven Haddock, Kathryn Huff, Ian Mitchell, Mark Plumbley, Ben

Waugh, Ethan White, and Paul Wilson. Best practices for scientific computing.

PLoS Biology, 12:e1001745, 01 2014.

[106] Gert Wollny. Ginkgo cadx. https://github.com/gerddie/ginkgocadx, 2020.

[Online; accessed 27-May-2021].

[107] Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel Gimpel Smith,

Sean Ho, James C. Gee, and Guido Gerig. User-guided 3D active contour segmenta-

tion of anatomical structures: Significantly improved efficiency and reliability. Neu-

roimage, 31(3):1116–1128, 2006.

[108] Xiaofeng Zhang, Nadine Smith, and Andrew Webb. 1 - medical imaging. In

David Dagan Feng, editor, Biomedical Information Technology, Biomedical Engi-

neering, pages 3–27. Academic Press, Burlington, 2008.

[109] Xin Zhou, Yuqin Jin, He Zhang, Shanshan Li, and Xin Huang. A map of threats to

validity of systematic literature reviews in software engineering. pages 153–160, 01

2016.

[110] Erik Ziegler, Trinity Urban, Danny Brown, James Petts, Steve D. Pieper, Rob Lewis,

Chris Hafey, and Gordon J. Harris. Open health imaging foundation viewer: An ex-

tensible open-source framework for building web-based imaging applications to sup-

port cancer research. JCO Clinical Cancer Informatics, (4):336–345, 2020. PMID:

32324447.

101

https://github.com/gerddie/ginkgocadx

Appendix A

Full Grading Template

Table A.1 lists the measurements that we use to assess the software products. We use

the first section to collect general information of software projects. The following nine

sections assess the nine software qualities. The last three sections are for the empirical

measurements.

102

MEng Thesis - Ao Dong- McMaster - Computing and Software

Table A.1: Measurement Template
Summary Information
Software name? (string)
URL? (URL)
Affiliation (institution(s)) (string or N/A)
Software purpose (string)
Number of developers (all developers that have contributed at least one commit to
the project) (use repo commit logs) (number)
How is the project funded? (unfunded, unclear, funded∗) where ∗ requires a string
to say the source of funding
Initial release date? (date)
Last commit date? (date)
Status? (alive is defined as presence of commits in the last 18 months) (alive, dead,
unclear)
License? (GNU GPL, BSD, MIT, terms of use, trial, none, unclear, other∗) ∗ given
via a string
Platforms? (set of Windows, Linux, OS X, Android, other∗) ∗ given via string
Software Category? The concept category includes software that does not have
an officially released version. Public software has a released version in the public
domain. Private software has a released version available to authorized users only.
(concept, public, private)
Development model? (open source, freeware, commercial, unclear)
Publications about the software? Refers to publications that have used or mentioned
the software. (number or unknown)
Source code URL? (set of url, n/a, unclear)
Programming language(s)? (set of FORTRAN, Matlab, C, C++, Java, R, Ruby,
Python, Cython, BASIC, Pascal, IDL, unclear, other∗) ∗ given via string
Is there evidence that performance was considered? Performance refers to either
speed, storage, or throughput. (yes∗, no)
Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

103

MEng Thesis - Ao Dong- McMaster - Computing and Software

Installability (Measured via installation on a virtual machine.)
Are there installation instructions? (yes, no)
Are the installation instructions in one place? Place referring to a single document
or web-page. (yes, no, n/a)
Are the installation instructions linear? Linear meaning progressing in a single
series of steps. (yes, no, n/a)
Are the instructions written as if the person doing the installation has none of the
dependent packages installed? (yes, no, unclear)
Are compatible operating system versions listed? (yes, no)
Is there something in place to automate the installation (makefile, script, installer,
etc)? (yes∗, no)
If the software installation broke, was a descriptive error message displayed? (yes,
no, n/a)
Is there a specified way to validate the installation? (yes∗, no)
How many steps were involved in the installation? (Includes manual steps like
unzipping files) Specify OS. (number, OS)
What OS was used for the installation? (Windows, Linux, OS X, Android, other∗)
∗given via string
How many extra software packages need to be installed before or during installa-
tion? (number)
Are required package versions listed? (yes, no, n/a)
Are there instructions for the installation of required packages / dependencies? (yes,
no, n/a)
Run uninstall, if available. Were any obvious problems caused? (yes∗ , no, unavail)
Overall impression? (1 .. 10)
Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

104

MEng Thesis - Ao Dong- McMaster - Computing and Software

Correctness and Verifiability
Any reference to the requirements specifications of the program or theory manuals?
(yes∗ , no, unclear)
What tools or techniques are used to build confidence of correctness? (literate pro-
gramming, automated testing, symbolic execution, model checking, assertions used
in the code, Sphinx, Doxygen, Javadoc, confluence, unclear, other∗) ∗ given via
string
If there is a getting started tutorial? (yes, no)
Are the tutorial instructions linear? (yes, no, n/a)
Does the getting started tutorial provide an expected output? (yes, no∗, n/a)
Does your tutorial output match the expected output? (yes, no, n/a)
Are unit tests available? (yes, no, unclear)
Is there evidence of continuous integration? (for example mentioned in documen-
tation, Jenkins, Travis CI, Bamboo, other) (yes∗, no, unclear)
Overall impression? (1 .. 10)
Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)
Surface Reliability
Did the software “break” during installation? (yes∗ , no)
If the software installation broke, was the installation instance recoverable? (yes,
no, n/a)
Did the software “break” during the initial tutorial testing? (yes∗, no, n/a)
If the tutorial testing broke, was a descriptive error message displayed? (yes, no,
n/a)
If the tutorial testing broke, was the tutorial testing instance recoverable? (yes, no,
n/a)
Overall impression? (1 .. 10)
Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)
Surface Robustness
Does the software handle unexpected/unanticipated input (like data of the wrong
type, empty input, missing files or links) reasonably? (a reasonable response can
include an appropriate error message.) (yes, no∗)
For any plain text input files, if all new lines are replaced with new lines and carriage
returns, will the software handle this gracefully? (yes, no∗, n/a)
Overall impression? (1 .. 10)
Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

105

MEng Thesis - Ao Dong- McMaster - Computing and Software

Surface Usability
Is there a getting started tutorial? (yes, no)
Is there a user manual? (yes, no)
Are expected user characteristics documented? (yes, no)
What is the user support model? FAQ? User forum? E-mail address to direct ques-
tions? Etc. (string)
Overall impression? (1 .. 10)
Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)
Maintainability
What is the current version number? (number)
Is there any information on how code is reviewed, or how to contribute? (yes∗, no)
Are artifacts available? (List every type of file that is not a
code file – for examples please look at the ‘Artifact Name’
column of https://gitlab.cas.mcmaster.ca/SEforSC/se4sc/-/blob/git-
svn/GradStudents/Olu/ResearchProposal/Artifacts MiningV3.xlsx) (yes∗, no,
unclear) ∗list via string
What issue tracking tool is employed? (set of Trac, JIRA, Redmine, e-mail, discus-
sion board, sourceforge, google code, git, BitBucket, none, unclear, other∗) ∗ given
via string
What is the percentage of identified issues that are closed? (percentage)
What percentage of code is comments? (percentage)
Which version control system is in use? (svn, cvs, git, github, unclear, other∗) ∗
given via string
Overall impression? (1 .. 10)
Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)
Reusability
How many code files are there? (number)
Is API documented? (yes, no, n/a)
Overall impression? (1 .. 10)
Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

106

MEng Thesis - Ao Dong- McMaster - Computing and Software

Surface Understandability (Based on 10 random source files)
Consistent indentation and formatting style? (yes, no, n/a)
Explicit identification of a coding standard? (yes∗, no, n/a)
Are the code identifiers consistent, distinctive, and meaningful? (yes, no∗ , n/a)
Are constants (other than 0 and 1) hard coded into the program? (yes, no∗ , n/a)
Comments are clear, indicate what is being done, not how? (yes, no∗ , n/a)
Is the name/URL of any algorithms used mentioned? (yes, no∗ , n/a)
Parameters are in the same order for all functions? (yes, no∗ , n/a)
Is code modularized? (yes, no∗ , n/a)
Overall impression? (1 .. 10)
Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)
Visibility/Transparency
Is the development process defined? If yes, what process is used. (yes∗, no, n/a)
Are there any documents recording the development process and status? (yes∗, no))
Is the development environment documented? (yes∗, no)
Are there release notes? (yes∗, no)
Overall impression? (1 .. 10)
Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

107

MEng Thesis - Ao Dong- McMaster - Computing and Software

Raw Metrics (Measured via git stats)
Number of text-based files. (number)
Number of binary files. (number)
Number of total lines in text-based files. (number)
Number of total lines added to text-based files. (number)
Number of total lines deleted from text-based files. (number)
Number of total commits. (number)
Numbers of commits by year in the last 5 years. (Count from as early as possible if
the project is younger than 5 years.) (list of numbers)
Numbers of commits by month in the last 12 months. (list of numbers)
Raw Metrics (Measured via scc)
Number of text-based files. (number)
Number of total lines in text-based files. (number)
Number of code lines in text-based files. (number)
Number of comment lines in text-based files. (number)
Number of blank lines in text-based files. (number)
Repo Metrics (Measured via GitHub)
Number of people watching this repo. (number)
Number of stars. (number)
Number of forks. (number)
Number of open pull requests. (number)
Number of closed pull requests. (number)
Number of months on GitHub. (number)
Accessed date. (date)

108

Appendix B

Full Software List Before Filtering

Table B.1 lists the 48 software before filtering. We selected 29 of them to the final list,

which are all open-source and in Visualization (V) sub-group. We found software packages

in sub-groups Tool Kit (TK) and Picture Archiving and Communication System (PACS) but

removed them from the final list. The table also shows the sources of identifying them.

Source
Software

Final
list

Open-
source

Sub-
group [12] [15] [31] [24] [36] [64] [79]

3D Slicer [51] X X V X X X X
Ginkgo CADx [106] X X V X X X X X X
XMedCon [67] X X V X X X X
Weasis [75] X X V X X X X
MRIcroGL [53] X X V X X X X
SMILI [16] X X V X X X
ImageJ [77] X X V X X X X
Fiji [82] X X V X
DicomBrowser [8] X X V X X
3DimViewer [95] X X V X X X
Horos [38] X X V X X
OsiriX Lite [81] X X V X X X
dwv [60] X X V X X
Drishti [57] X X V X
BioImage Suite Web [69] X X V X

109

MEng Thesis - Ao Dong- McMaster - Computing and Software

Source
Software

Final
list

Open-
source

Sub-
group [12] [15] [31] [24] [36] [64] [79]

OHIF Viewer [110] X X V Other source: [110]
Slice:Drop [32] X X V X
GATE [47] X X V X
ITK-SNAP [107] X X V X
ParaView [3] X X V X
MatrixUser [58] X X V X
DICOM Viewer [2] X X V X
INVESALIUS 3 [5] X X V X
medInria [25] X X V X
dicompyler [68] X X V X
MicroView [41] X X V X
Papaya [74] X X V X X X
AMIDE [59] X X V X X X
Gwyddion [66] X X V X
VTK [83] X TK X
ITK [61] X TK X
DCMTK [23] X TK X X
XTK [33] X TK Other source: it is used by slice:drop
dcm4che [22] X TK X X X
cornerstone [21] X TK X
dcm2niix [56] X TK X
orthanc [48] X PACS X X
Conquest [97] X PACS X
ClearCanvas [19] X PACS, V X
Open Dicom
Viewer [98] X V X X

MicroDicom [63] V X X
Aliza [4] V X X
JiveX [99] V X X
MIPAV [18] V X
Oviyam [40] V X
MeVisLab [37] V X
Sante DICOM
Viewer Lite [80] V X

Navegatium
DICOM Viewer V X

Table B.1: Full software list before filtering

110

Appendix C

Other Interview Answers

We asked 20 interview questions to the nine interviewees from eight software projects. We

discuss the answers to interview questions 5, 9, 10, 11, 12, 13, 14, and 19 in Section 5, and

summarize the answers to the other questions in this section.

Q1. Interviewees’ current position/title? degrees?

Six of the nine interviewees revealed their position/title, such as CEO of a company,

endowed chair and professor in universities, software engineers in a commercial company

and a hospital.

Most of them answered their backgrounds and degrees. Table C.1 shows the highest

academic degrees the participants have, and Table C.2 shows what majors they studied.

Many of the interviewees studied in multiple majors.

Highest degree Num ans.
PHD 4
Master 3
Bachelor 0
Unspecified academic degree 2

Table C.1: Interviewees’ highest academic degrees

111

MEng Thesis - Ao Dong- McMaster - Computing and Software

Major Num ans.
Computer Science 4
Physics 2
Biomedical Engineering 1
Neuroimaging 1
Geology (image analysis) 1
Media Arts and Sciences 1
Mechanical Engineering 1
Materials Engineering 1
Psychology 1

Table C.2: Interviewees’ majors at university

Q2. Interviewees’ contribution to/relationship with the software?

Table C.3 shows the interviewees’ roles and responsibilities in the projects. One of

the participants did not explicitly mention his role, but implicitly revealed that he was a

primary contributor to the project.

Role in the projects Num ans.
Chief Architect 2
Lead Developer 1
Core Developer 5
Unspecified 1

Table C.3: Interviewees’ roles in the projects

Q3. Length of time the interviewee has been involved with this software?

Table C.4 shows the distribution of the lengths of time the interviewees had worked on

the projects.

112

MEng Thesis - Ao Dong- McMaster - Computing and Software

Years Num ans.
0-1 1
2-5 0
6-10 2
11-15 3
16-20 2
21-25 1

Table C.4: Lengths of time that the interviewees worked in the projects

Q4. How large is the development group?

The size of each group grows and shrinks over the years. Most teams mentioned that

the team members join and leave. Some teams said that when there was sufficient funding,

they could afford more developers.

Table C.5 shows the numbers of active members at the time of interviews. The members

include people working on development and project management.

Num mbrs Num ans.
1-3 5
4-6 3

Table C.5: Numbers of current members in the projects

As shown in the table, no team had a vast number of members. Some projects had more

developers, such as 3D Slicer; on the other hand, some teams such as dwv had only one

primary developer, plus a maximum of two or three developers occasionally.

3D Slicer is a special case, because it supports third-party extensions. So there have

been community members developing and maintaining these extensions. Table C.5 does

not include these members.

Q6. What is the typical background of a developer?

113

MEng Thesis - Ao Dong- McMaster - Computing and Software

Not all interviewees could clearly answer this question. Many of them talked about

the backgrounds of members with who they were familiar. Table C.6 shows the number of

times all interviewees mentioned a background.

Background of a developer Num ans.
Computer Science, Information
Technology, and Software Development 6

Imaging 2
Medical Imaging 1
Mathematics 1
Biomedical Engineering 1
Computer Aided Medical Procedures 1
Physician 1

Table C.6: Backgrounds of developers by the numbers of interviewees with the answers

Q7. What is your estimated number of users? How did you come up with that estimate?

None of the interviewees knew the exact number of users. Some of them provided esti-

mations based on different facts. However, we do not think these numbers are comparable

to each other.

Software Rough estimation Considered facts

3D Slicer 100,000
1) search results on Google Scholar;
2) number of new posts per year on slicer.org;
3) number of downloads.

INVESALIUS 3 75,000 Number of random IDs created by new installation.
dwv No estimation About 20 companies integrated dwv in their products.
BioImage Suite Web 100 active users Only counted the active users from several Universities.
ITK-SNAP 10,000 plus Number of downloads.
MRIcroGL No estimation The top 1 downloaded software on the NITRC list.
Weasis 10,000 incl. one-time users Number of profiles.
OHIF About 5000 Some platforms integrated OHIF; hard to estimate.

Table C.7: Rough Estimations for the Number of Users

114

MEng Thesis - Ao Dong- McMaster - Computing and Software

Table C.7 shows the estimations and how the interviewees made them. It is clear that

some estimated only the active users, and some counted users who had used only once. So

we do not compare these numbers.

Q8. What is the typical background of a user?

All interviewees provided several different user backgrounds, and all of them men-

tioned medical researchers or medical professionals. Table C.8 shows the number of times

all interviewees mentioned a background.

Background of a user Num ans.
Medical Researchers 6
Doctors/Health care professionals/Surgeons 5
Student Researchers 4
Patients 3
Paleontologist 1
Biomechanical Engineers 1
Imaging Researchers 1
Mechanical Engineers 1

Table C.8: Backgrounds of users by the numbers of interviewees with the answers

115

Appendix D

Ethics Approval

This project received ethics clearance from the McMaster Research Ethics Board on Febru-

ary 20, 2021.

Project Title: AIMSS - State of the Practice

MREB#: 5219

116

	Abstract
	Acknowledgments
	Abbreviations and Acronyms
	Introduction
	Motivation
	Research Questions
	Scope
	Overview of the Methodology
	Organization

	Background
	Software Categories
	Open Source Software
	Freeware
	Commercial Software

	Software Quality Definitions
	Analytic Hierarchy Process

	Methodology
	Domain Selection
	Software Product Selection
	Identify Software Candidates
	Filter the Software List
	Vet the Software List

	Grading Software
	Grading Template
	Empirical Measurements
	Technical Details

	Interview Methods
	Interview Questions
	Interviewee Selection
	Interview Process

	Applying the Method to MI
	Domain Selection
	Software Product Selection
	Grading Software
	Interviews

	Measurement Results
	Installability
	Correctness & Verifiability
	Surface Reliability
	Surface Robustness
	Surface Usability
	Maintainability
	Reusability
	Surface Understandability
	Visibility/Transparency
	Overall Scores

	Interviews with Developers
	Current and Past Pain Points
	Resource Pain Points
	Balance Pain Points
	Testing Pain Point

	Documents in the Projects
	Contribution Management and Project Management
	Discussions on Software Qualities
	Correctness
	Maintainability
	Understandability
	Usability
	Reproducibility

	Answers to Research Questions
	Artifacts in the Projects
	Tools in the Projects
	Principles, Processes, and Methodologies in the Projects
	Pain Points and Solutions
	Software Qualities
	Our Ranking versus the Community Ratings
	Our Ranking versus the GitHub Popularity
	Designated Top Software versus the Domain Experts' Recommendation

	Threats to Validity
	Threats to Construct Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Conclusion Validity

	Recommendations
	Recommendations on Improving Software Qualities
	Recommendations on Dealing With Limited Resources
	Recommendations on Choosing A Tech Stack
	Recommendations on Enriching the Testing Datasets

	Conclusions
	Key Findings
	Future Works

	Bibliography
	Full Grading Template
	Full Software List Before Filtering
	Other Interview Answers
	Ethics Approval

