
VALIDATION DSL FOR CLIENT-SERVER

APPLICATIONS

VALIDATION DSL FOR CLIENT-SERVER APPLICATIONS

BY

VITALII FEDORENKO

a thesis

submitted to the department of computing & software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Science

c© Copyright by Vitalii Fedorenko, July, 2012

All Rights Reserved

Master of Science (2012) McMaster University

(Computing & Software) Hamilton, Ontario, Canada

TITLE: VALIDATION DSL FOR CLIENT-SERVER APPLICA-

TIONS

AUTHOR: Vitalii Fedorenko (vitalii.fed@gmail.com)

SUPERVISOR: Dr. Jacques Carette

ii

Abstract

Given the nature of client-server applications, most use some freeform interface, like

web forms, to collect user input. The main difficulty with this approach is that all

parameters obtained in this fashion need to be validated and normalized to protect

the application from invalid entries. This is the problem addressed here: how to take

client input and preprocess it before passing the data to a back-end, which concen-

trates on business logic. The method of implementation is a rule engine that uses

Groovy internal domain-specific language (DSL) for specifying input requirements.

We will justify why the DSL is a good fit for a validation rule engine, describe ex-

isting techniques used in this area and comprehensively address the related issues of

accidental complexity, security, and user experience.

iii

Acknowledgements

I am thankful to my supervisor, Dr. Jacques Carette. The discussions I had with

him and the comments I got were always helpful and informative. I am grateful to

my wife, Anna, for her inspiration, love, and understanding. A special gratitude to

my parents, who instilled in me a lifelong passion for learning.

iv

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Table of Contents

1 Introduction..1
1.1 Background...1
1.2 Roadmap..2

2 Input Validation...4
2.1 Validation on server and client sides...4
2.2 Sanitization ..5
2.3 Type check...6
2.4 Canonicalization...7
2.5 Business logic validation...7
2.6 Tamperproofing...8
2.7 Example of input validation...8

3 Common problems in input validation.................................10
3.1 Essential and accidental complexity..10
3.2 Accidental complexity of validation code...11
3.3 User experience...12
3.4 Security..13
3.5 Lack of code reuse...15

4 Current Techniques for Input Preprocessing.........................16
4.1 View level validation...16
4.2 Field level validation...19
4.3 Form level validation..20
4.4 Model level validation...23
4.5 Defining rules using monads..27
4.6 Business Rules Management Systems...29
4.7 JavaScript validation...29
4.8 Sharing of validation code on client and server side..........................31
4.9 Leveraging Ajax for input validation...32
4.10 Web application firewall..33
4.11 Summary..33

5 Framework Requirements..35
5.1 Centralized input preprocessing...36
5.2 Whitelist validation...37
5.3 Cross-site request forgery and protection from bots38
5.4 Expressive language syntax...38
5.5 Client side...40
5.6 Library of common converters and validators...................................40
5.7 Summary..41

6 Input Data Flow ..42
v

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

6.1 Form validation..42
6.2 Validation of navigation request...46
6.3 Summary..47

7 Choice of Groovy DSL...48
7.1 Pros and cons of Groovy DSL...48
7.2 Other considered options..50

8 DSL Syntax and Semantics..51
8.1 Rules and functions scripts..51
8.2 Validators...52
8.3 Converters..52
8.4 Rule application...53
8.5 Empty subrule...53
8.6 Composite rules ..54
8.7 Optional parameters...55
8.8 Type conversion...56
8.9 Accessing other parameters values...56
8.10 Rule groups ..57
8.11 Closures..58
8.12 Combined parameters...59
8.13 List parameters..59
8.14 Custom parameters..59
8.15 Conditional rules..60
8.16 Default converters and skip function...60
8.17 Reuse of preprocessing rules...61
8.18 Rule extension...61
8.19 Multi-line rule..62
8.20 Boolean converters..62
8.21 Variables...62
8.22 Not logged rules...63
8.23 Block validation..63
8.24 Security validator...64

9 Script Management..65
9.1 Script inclusion..65
9.2 Grails plugin..66
9.3 Rule engine API...66

10 Error Handling...69
10.1 Basic error handling..69
10.2 Custom error parameters..70
10.3 Validation exception...70
10.4 Redirect URL..71
10.5 Value placeholder...71
10.6 Handling of grules exceptions in main application...........................72
10.7 Handling of non-validation exceptions...72

11 Client Library...74
11.1 Initialization..74
11.2 In-line validation..75

vi

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

11.3 Client validation events...76
11.4 Form submission..78
11.5 Validate function..78
11.6 Managing of validation events..78
11.7 W3C standards support...79
11.8 Summary ...79

12 Configuration...81
12.1 Configuration file format...81
12.2 Properties..81
12.3 Logging...82

13 Built-in Functions...83
13.1 Validators..83
13.2 Converters ...88

14 Example...92
15 Conclusion and Future Work..96

15.1 Conclusion...96
15.2 Future work...97

Appendix...98
Core rules script grammar...98

Bibliography...99

vii

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 1

1 Introduction

1.1 Background

There are two main types of data with which a client-server application operates:
internal and external. The former consists of values from a local environment —
constants, functions computation results, parameters from a configuration file,
a secure database etc. This data is protected from outer changes and usually
requires only trivial checks, such as handling of null pointers, verification of type
boundaries and structural constraints imposed by a data model. Internal data is
expected to be safe unless it was modified intentionally by a person or a program
that has access to the application codebase at compile or run time. On the other
hand, data sources which can contain foreign data, like user supplied input,
result of an external API call, or records from a shared database, are external
relative to the main application and should be considered to be potentially invalid
(accidentally or otherwise), and thus need to be checked in accordance with some
set of more complex rules.

The most common validation issues that client-server application developers
must deal with are incorrectly filled forms. The basic flow of a registration process
in web applications, for instance, begins with a client requesting a page with a
form, filling in user information, and clicking the “Submit button” to send the
data to a server for processing. The data from such a form is not much use if the
would-be user does not type in a username or email, for example. In addition, an
application might require that the values it receives from a form are in the correct
format — a name contains only alphabetic characters and a URL for a personal
website is a well-formed resource locator. Finally, we should check that the age is
within certain boundaries.

If not handled properly, data from untrusted sources could conceivably alter a
normal application flow or even give an attacker illicit access to your site [12].
Thus, any external value should be thoroughly analyzed by an application and
assumed to be malicious until proven otherwise. After the data has been tested
the system can accept or reject the input and alert the user to existing problems.
From the above, we can say that the purpose of an all-encompassing validation
system is firstly to ascertain whether a data set contains the expected content
and each parameter value has been properly formatted, while at the second

1

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

stage the input has to be sanitized against acceptable content specification and
validated by business rules before updating the application environment.

In the past decade, several validation frameworks have appeared with the aim
to solve this problem, but we have found that most of the existing solutions have
issues with expressivity, security, and user experience. In this document we
present a solution that mitigates these problems by the creation of a rule engine
with declarative, functional DSL implemented in Groovy. In our work, we leverage
best practices in security, design, web development, and user experience.

Though there are many academic research papers on specific methods of
checking user input, we could not find one that clarifies common ways to validate
input in web projects that would be supplemented by criticism of each approach,
emerging best-use patterns, and recurring anti-patterns, so we tried to describe
some of the most popular techniques in this document.

It is assumed that the reader is familiar with the basics of Java (or, better,
Groovy), JavaScript, HTML, regular expressions, and the Model-View-Controller
pattern [42]. Some examples are provided in Scala, Python, Haskell, PHP, C#,
and XML, but proficiency in these languages is not essential for understanding the
underlying concepts.

1.2 Roadmap

The rest of this document is structured as follows:

Chapter 2, Input Validation, discusses how input data is preprocessed on the
client and server sides, which validation stages the data needs to pass and why.

Chapter 3, Problem Description, describes the current state of affairs in
preprocessing of data in online applications and provides an overview of the
problem that we want to solve.

Chapter 4, Current Techniques in Input Preprocessing, is about the
approaches currently used by frameworks in various languages to validate data
from the client side.

Chapter 5, Framework Requirements, derives the features a framework
should have to at least partly solve the existing problems in processing of external
data.

Chapter 6, Input Data Flow, gives a step-by-step description of the proposed
process of validating data on the client and server sides.

2

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 7, Choice of Groovy DSL, evaluates Groovy as a host language for
internal DSL and explains why it was chosen over other available alternatives.

Chapter 8, DSL Syntax and Semantics, defines the language grammar and
meaning of supported rule expressions.

Chapter 9, Script Management, explains how scripts can interact with each
other and specifies an API that can be used to directly access functionality of the
rule engine.

Chapter 10, Error Handling, shows the syntax for specifying errors in the rules
script and introduces an error handling mechanism available on the side of the
host application.

Chapter 11, Client Library, covers a client-server communication protocol and
callbacks exposed to a client for adjusting the validation process to custom UI
requirements.

Chapter 12, Configuration, provides information about the format and content
of the framework configuration file.

Chapter 13, Built-in Functions, specifies a list of validators and converters
available in the provided functions library.

Chapter 14, Example, demonstrates how the framework can be used in an
online application to preprocess input from a web form.

Chapter 15, Conclusion and Future work, contains a summary of our results,
discusses the strengths and weaknesses of the implemented approach, and
presents ideas for future work.

3

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 2

2 Input Validation

As alluded to above, to ensure that the application is robust against all forms
of input, whether obtained from the user, infrastructure, or database systems,
all external data should be checked according to business requirements and
security policies. These requirements should rigorously constrain what values are
allowed — which types, patterns, ranges, and any entries that do not match these
constraints must be rejected. In this case, the main application logic can assume
that the data satisfies all expected properties and invariants.

User input has to be validated both on the server and on the client (generally
web browser), consequently, we have server and client side validation. In this
chapter we will take a brief look at features peculiar to each of these stages and
define five main types of input preprocessing: well-formedness, sanitization,
canonicalization, business-logic validation, and tamperproofing.

2.1 Validation on server and client sides

When a user submits a filled out form, the entered data is packaged in a request
and transmitted to the server, where the submitted values are checked for
syntactic and semantic correctness before any business logic is applied. This point
in the request/response cycle is called server-side validation. For instance, before
adding a new account to a database, an application can test that an email address
has the right format and that the desired username is available. If an error is
found, a response with the corresponding information is sent back to the client
and shown in a form understandable by the user, usually by displaying an error
message next to a problematic form field.

If only server side validation is implemented, users receive feedback about the
input data only after it has been processed by the server. This results in additional
time spent to enter the data, as periodic round-trips (termed postbacks) to the
web-server are needed. While some postbacks are unavoidable, you should
always be mindful of ways to minimize travel across the wire, especially for
environments where the Internet connection is unreliable or expensive (like
mobile clients). One technique that saves postbacks is using client side scripting

4

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

to validate user input before submitting the form data to the web server [111].
Client side validation provides the user with immediate feedback as he types
or submits a form, and if the input is in the wrong format, not all required
information is supplied, or there is some other validation problem, the client
script notifies the user with an error message and does not allow to post back
to the web server until the error is corrected. In this way, it improves usability
with a more responsive interface, reduces the time spent filling in the form and
communication traffic [82].

In web applications client side validation is handled by code in a programming
language that can be run within a browser (such as JavaScript, Dart [124], etc)
. However, it can be easily turned off by a user, which is the main drawback
of this type of validation. Additionally, even if the script has checked the data,
there is always the possibility of modifying a request that was formed by a client
application before it gets to a server. This is why a client should never be trusted,
and validation must be implemented on both sides — otherwise there is no
guarantee that the application will collect valid data. By using double validation,
we gather the best features of the two: fast response, more secure validation and
a better user experience [51]. Also, since there is often a part of validation checks
that cannot be carried out by a browser (like user credentials), the server side set
of validation rules is always a superset of the client side rules.

Another technique often used by developers of online applications is Ajax
technology (Asynchronous JavaScript and XML). It allows to instantly validate
entered data on the server without reloading a page. The pros and cons of Ajax
will be discussed further in Chapter 4.

2.2 Sanitization

One of the first stages in input preprocessing is sanitizing, which can be defined
as removing accidentally or deliberately added redundant symbols and making
potentially malicious data safe. This stage should be done with utmost caution,
as without sanitization, an attacker can compromise the application by supplying
carefully crafted input to attempt SQL injection [101], cross-site scripting (XSS)
[93], abnormal URI input [102], or another type of attack [98]. For example,
in cross-site scripting, an attacker can exploit vulnerabilities in input validation
by injecting client side script code in the HTTP parameters values, and when the
script code is embedded in the response, a user's browser evaluates it as part
of the page. With this technique, one can easily steal authentication cookies or
other secure data stored on the client side, and since the browser downloads the
script code from a trusted site, it has no way of recognizing that the code is not
legitimate (unless sandboxing technique is used) [99].

5

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

There are two main strategies for sanitization of external data: via whitelist and
via blacklist. In whitelist sanitization, any character which is not a member of
an approved list is removed, encoded, or replaced [34]. For example, if a phone
number is required for input, all non-digit characters that occur in it have to be
stripped out. Thus, (555) 123-1234, 555.123.1234, and 5551231234\";DROP
TABLE USER;-- will be converted to just 5551231234.

On the other hand, in blacklist sanitization an input and output are analyzed
for a set of known characters (or sequence of characters) that do not meet the
application security policy or can lead to data corruption. In an effort to make
the input safe for further processing, such characters are eliminated or escaped
so that they will be treated as literals and never as, for instance, an interpreter
instruction. The blacklist approach is often impractical as it has overhead costs
for maintaining the set of patterns for unacceptable data, which can be relatively
large and change over time. For example, there are 70 unique ways to encode
the “less than” symbol and in this way inject an HTML tag for XSS attack [100],
so while some services prohibit special HTML symbols like <, /, and > in the
user input, these characters sometimes can be encoded as %20, %2F, and %3E
respectively to circumvent a sanitization filter. Nevertheless, when it is possible to
prove that all possible variations of bad input are well-known, will remain finite,
and the range of valid data cannot be defined in advance (so we cannot match on
a whitelist), adopting the blacklist strategy can still provide good protection.

Sanitization has to be performed for all application tiers: on the presentation
layer, an application should check values against XSS attacks, on the persistence
layer — against SQL injection, for directory lookups — for LDAP injection [94],
and so on. This allows a database library or a template engine to make certain
assumptions about the content of free variables which values are supplied at
runtime.

2.3 Type check

A type check validation ensures that a provided input value is of the right
primitive type, such as an integer, double, or character. For example, at this
stage an application may check that the specified age is an integer value. This
check is generally implemented using regular expressions or type converters.
Violation of data type requirements makes further processing of the entry
impossible.

A common mistake at this stage is direct casting from an initial data type to a
target primitive type without additional format checks. Such implementation can
result in run time exceptions or other undesirable application behavior.

6

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

2.4 Canonicalization

Data in canonical form is in its most standard or simplest form, while
canonicalization is the process of converting data to such a form [92, 104]. To
establish the canonical form of the input, this process takes into account current
character encodings, locale, and other system settings [31]. For example, the
following strings specify the same file path in Linux and share the same canonical
representation — an absolute file path to this file (/home/myuser/tmp/file.txt):

tmp.txt
~/tmp/file.txt
~/tmp/./file.txt
/home/myuser/tmp/file.txt
~/tmp/subdir/../file.txt

For such a canonical form to exist there should be a surjective function f that
converts any valid initial value to a canonical form, and another function g that in
turn bijectively maps the canonical form to entities under consideration (to satisfy
this requirement both f and g should always terminate).

Figure 1: Canonicalization

Web applications are particularly prone to issues pertaining to incorrect
canonicalization, as many well-known exploits use different representations of file
paths and URLs to get unauthorized access to system resources. Thus, such data
should be always transformed to a canonical form before it is processed by an
application.

2.5 Business logic validation

Business logic validation is a process that ensures data is sane in terms of the
application model — that numbers are correctly signed and within limited range,
strings have the right length, a desired username is available and so on. That is,

7

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

it prevents cases where a value type is valid, but the business rules behind the
application disallow this concrete value. This form of validation usually occurs
after both the type check and sanitization have already been applied.

A simple example would be a shopping cart limitation in an online store — at the
type check stage, a quantity of an ordered product is parsed to an integer, while
business-logic validation tests that the user has not exceeded his credit limit.
For string values it is convenient to implement business-logic validation using a
regular expression language. For instance, if an application expects a US zip code,
the regular expression \d{5}(-\d{4})? can be used.

It also should be mentioned that validation cannot be considered as a way to
bring a user to enter true (or at least useful) information, but only to ensure
syntactically and semantically valid input. For example, if you allow a name field
to contain only alphabetic characters and a site visitor tries to input fake data like
an arbitrary number of digits, it would be unreasonable to expect that after seeing
an error message about the wrong format, he will enter his real name instead
of "qwerty" or any other dummy alphabetic string.

2.6 Tamperproofing

On the server side, an application needs to be always aware that after some
value is transferred from a server to a client it may be changed by the latter.
Integrity checks (or tamperproofing) are essential to ensure that in the case of
using data provided by a client that was earlier retrieved from the server, it has
not been tampered with between client/server interactions. Tamperproofing must
be included wherever data passes from a trusted to a less trusted boundary,
such as from a web server to a user's browser in a hidden field or cookie [34].
For example, the integrity check can inspect whether a client uses the same
transaction ID on all steps of a money transfer form.

2.7 Example of input validation

Suppose we develop a bank application in which a funds transfer transaction is
performed in two steps. Initially, the server responds with the form that contains
the <input> field for the amount to be transferred and the <select> field with
values for possible payee accounts:

<form method=”post”>
 <input type=”text” name=”amount”/>
 <select name=”payeeid”>
 <option value="1">University Account Department</option>

8

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 <option value="2">Internet Service Provider</option>
 ...
 </select>
</form>

While filling in the web form, the user chooses the recipient and sends the
selected value to the application server. The first step the application has to
make regarding the recipient ID is to check the value against security policies
(sanitization) and ascertain whether it has an integer type (type check), then
the ID is checked for existence (business-logic validation). Similarly the server
performs validation for the amount field, but also converts its value to the format
with a fixed number of decimal digits (canonicalization). When this stage is
finished successfully, the second form with other fields and the transaction ID as
a hidden input is sent back to the user. After the user has filled it in and clicked
the submit button, the transaction ID with all other values is sent back to the
server where the ID is checked for integrity (tamperproofing). For example, the
following pseudo code validates the transaction ID parameter and retrieves the
corresponding recipient account information:

if ‘transactionId’ in http parameters:
 transactionId = sanitize http parameter ‘transactionId’
 if transactionId is not a natural number:
 throw InvalidTransactionIdError
 if <transactionId, payerId> in currentTransactions:
 recipientAccount = get recipient by transactionId
 else:
 throw NoSuchTransactionIdError
else:
 throw NoTransactionIdError
make transfer to recipientAccount

In this example we described only one possible invocation order of validation
stages, but in general, it can vary for different types of inputs. The sole restriction
is that business-logic validation should be always applied to values first processed
by other stages.

9

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 3

3 Common problems in input
validation

A common scenario used to implement user input validation for a client-server
application includes the following steps:

1. At first, to make sure that the data processed by the business layer will be
sane, a developer implements validations and transformations for each parameter
upon the necessity of accessing it in a form controller on the server side.

2. After that, if the input can be further used in a presentation layer or as a
database record, sanitization rules are implemented as a countermeasure to
server attacks. In addition, tamperproofing may be used when the value is
automatically embedded as part of input for other forms.

3. Now, to improve user experience, he will reflect part of the validation logic
in form handlers on the client side using JavaScript, Dart, Objective-C, or some
other programming language.

4. Finally, the developer writes test suites for the validation code for both the
client and server side.

Though imperative style validation described above is quite intuitive and easy to
implement, code created through such a process makes the system more complex
and implicitly compromises security, as well as one of the most crucial parts
of any application that involves human interaction — user experience. In this
chapter we will dwell upon each of these aspects in detail.

3.1 Essential and accidental complexity

First of all, let us define two types of code complexity [16]:

Essential complexity is inherent in, and the essence of, the problem solved by the
application (as seen by the users). In the case of validation code, the essential

10

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

complexity depends only on input constraints imposed by business and security
requirements.

Accidental complexity is complexity non-essential to the problem, and with which
a developer would not have to deal in the “ideal” world (e.g. that is arising from
performance issues, suboptimal design, language or infrastructure).

The use of a general purpose programming language for some problems can
increase accidental complexity of the code because of the absence of semantics
that can express the business logic in an easily comprehensible way, and we
believe that validation systems implemented in such languages provide a good
example of this.

3.2 Accidental complexity of validation code

In most client-server applications, you will find that input values are accessed
in form controllers via a simple key-value map and canonicalized/validated in
the beginning of request processing or just before applying the business logic
that depends on these parameters. As you will see in this chapter, the validation
process often involves satisfying requirements from different layers, since a
specially formed parameter value can pass business logic validation but be
malicious if inserted into a database or an HTML response. Typically, it splits
the implementation of the input validation across different modules, raising its
intellectual overhead. Furthermore, we think that it is also undesirable for a
business logic to validate and convert input values, as it undermines the single
responsibility principle [105]. These factors cause lack of uniformity in application
design, which reduces clarity of the validation model and negatively impacts
comprehensibility of the whole system. This complication quickly becomes evident
when the application’s codebase begins to grow and commonly goes along with
the state explosion problem [67].

If one wants to improve user experience by adding form validation to the
client side, he usually needs to implement the same preprocessing rules that
are run on the server, except in JavaScript, Dart or some other programming
language. Further, he should synchronize the code for all platforms each time
requirements for the input are changed. This certainly breaks the DRY rule (Don’t
repeat yourself) [81] and means that there is no single “source of truth”. For
large projects, such violations induce error-prone conditions and in a long-term
perspective, can make the system difficult to maintain.

Yet another problem with this common way of processing user input is that since
imperative languages like Java, PHP and Python are now dominant in a web
domain, the rules are usually not so expressive as they can be in declarative
representation (expressivity in this context refers to the measure of how readily,
concisely, and humanly understandable the logic can be specified [95]). Besides

11

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

the redundant verbosity this deficiency introduces to the code, imperative style
hampers code generation facilities that can be used for automatic emission
of validation handlers for the client side. And while some frameworks provide
an XML or JSON [3] syntax for defining the validation rules, because of the
limitations in semantics of these languages, they can be used only for simple
cases. Moreover, use of markup languages for the rules declaration raises some
integration issues which reduce application maintainability and testability.

Finally, it is worth noting that by nature, validation code is not particularly
inspirational to write. It can be exciting to develop functionality that dynamically
generates charts or adds some social features, but it is hard to imagine a
coworker boasting of the interesting way she stopped a user from entering a
blank value for a name field [43]. Therefore, we expect that a more agile process
for the writing of tedious validation code should improve the quality of client-
server applications.

As an example of the accidental complexity problem you can study the source
code of ThinkUp, which is the most followed PHP application on Github. You may
find that since there is no systematic approach to preprocessing of input data in
ThinkUp, and because of this some operations are applied on request parameters
without type check, which makes results of evaluation of such expressions prone
to errors. The other example is the MediaWiki [125] project, a core engine of
Wikipedia: while its WebRequest class provides a check for primitive types, all
other validations of HTTP parameters are performed by controllers themselves.
For example, each time a request parameter is used, it is manually checked for
existence. Such design makes it difficult to reason whether all parameters were
properly validated before any business logic was applied. Also, MediaWiki “solves”
the problem of code duplication by validating input only on the server side that
evidently negatively affects user experience.

Combination of all of these factors can notably increase accidental complexity of
the code while reducing its quality and we expect that elimination of the issues
mentioned in this section can in many ways simplify application design.

3.3 User experience

Complexity begets further complexity. Consider a form with poor client-side
validation and imagine a casual visitor trying to go through the registration
process using this form. At first, the potential user of the service fills it out and
submits the input data to the server. However, after a couple of seconds she gets
the same page thrown back in her face and finds that some values are not filled
correctly, the username is already taken, required fields are missing, another
password should be created because the provided one is not strong enough, and,
to top it all off, even the correct values should be selected again as the fields
that contain them were reset to defaults. In some cases, after the failed submit

12

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

a frustrated user might postpone the registration process or even leave the site,
especially if the web site has competitors that offer a similar service or if it is
not so crucial for the user; for those who do proceed with registration, the first
impression may be damaged. A possible solution is to show detailed instructions
on how to fill out each field, but in practice users tend to skip such information
and thus still become annoyed by a rejected input.

According to UX specialists, site input validation is one of the top problems in web
usability issues, and in our opinion, the main reason is the current complexity of
validation systems.

3.4 Security

As opposed to general software engineering, in security, what you overlooked is
more important than what you implemented. Usually, if you understand the basic
syntax and semantics of the given programming language, you can implement
almost any logic given a sufficient amount of time, system specifications, and
relatively mild performance and quality requirements. However, if something
was missing in your security system, consequences can be irreversible. If an
application makes any unfounded assumptions about the content, type, length,
format, or range of input, it can easily become a security hole. When discovered
by an attacker, such false assumptions may help game application business
logic or interpret malicious code on the server to get unauthorized access to site
resources.

One of the main security problems in input validation is that, without a single
checkpoint for all external data, occasionally a parameter might be validated
differently in two places. In the worst case, it may even “slip” through business
rules to a database or presentation layer, which assume that each free variable
satisfies some properties, like being a literal of an expected type. The other
risk is that new kinds of vulnerabilities appear from time to time and keeping
validation rules up to date with all types of attacks requires a special skill set and
incessant time investments. And while gaps in preprocessing of external data
have become the most common web application security weakness, only a minor
part of industrial software engineers has sufficient background in security to
perform verification covering all possible ways of misrepresenting data [91]. From
personal experience, developers often do not take into consideration character
encoding features such as canonical equivalence [11] and multi-byte sequences
[126], or even tend to assume that HTTP parameters which come from navigation
links and hidden inputs will be not altered. Also, sometimes input sanitization
that seems trivial at first sight can be substantially more intricate. For example,
a naive developer can try to remove scripts from HTML code just by stripping the
<script> tag and onEvent attributes, but might miss tricky cases like these:

13

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

<b/alt="1"onmouseover=InputBox+1 language=vbs>test

The other type of malicious exploit of a website is cross-site request forgery
(CSRF) [84]. It allows the attacker to trick a user into performing an action using
his authority and credentials by sending a POST HTTP request from the client
browser to a target web application. When a form is submitted from a malicious
site, the victim’s browser automatically sends the authorization information
stored in the cookie with the request. If the victim is logged into the site, data
submission is performed as the web application does not know that this was a
forged request. To monitor such service misuse, detection of a request origin
should be a part of form submission preprocessing. Because of operational scope
limited to string processing, validation frameworks rarely provide an interface for
implementing CSRF protection, and separate intrusion detection systems (IDS)
designed for this purpose are usually used (for example of IDS see [28]).

There are also some automated tools, such as web robots, developed with the
unique purpose of undertaking illegal activities or achieving goals that are not
in line with the ethic of web utilization. By imitating typical Internet-surfing
human behaviour, such as filling out a form, the robots can perform a series of
actions violating usage policies of online services [47]. Without control over such
requests, a server becomes vulnerable to security threats and spam, therefore
easing their detection is critical to site safety.

Unfortunately, in consideration of human imperfection, software peer review
cannot guarantee that all security flaws will be found, and no code checker
can ever assure us that validation is done properly. To be usable, such a tool
should be sound and complete, which is not yet feasible as the checker should be
aware of all business requirements and understand how the data is used on each
application layer (a complete code checker would find all errors, while a sound
one would report only real errors and no false positives [40]).

The other commonly applied mechanism used to to gauge software security is
penetration testing. Passing software penetration tests may prove that no faults
occur under particular test conditions, but by no means does it prove that no
faults exist. Misunderstanding this point is one of the main problems with today’s
approaches to finding software vulnerabilities [88]. In practice, you will discover
that to provide the best possible security a combination of the described methods
is used, though even then you cannot guarantee that an application is immune to
attack.

If we take a look at the statistics, Gartner Group says that 75 percent of hacks
are at the web-app level and, that out of 300 audited sites, 97 percent were
vulnerable to attack [12], while the WhiteHat Website Security Statistics Report
notes that 64 percent of three thousand analyzed sites have had at least one
serious security hole [110]. This shows that protection from hacker attack is one

14

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

of the hardest parts of web development and advanced security techniques should
be used to shield a product from intrusion.

3.5 Lack of code reuse

One of the most widely used tools for validating input are regular expressions
that constrain entry format to some pattern. Nearly every developer has, at some
point, written his own regex for a postal code, URL, or an email address. Although
such “in-house” rules are usually acceptable for the simplest cases, they are also
frequently prone to reject some exceptional valid value or miss an invalid input.
As proof of this statement, let’s take the example of validation of an email
address — a field present in almost all registration forms. Few software engineers
know that the local-part of an address can be quoted with any ASCII characters
in between the quotes [24], or that the plus symbol (+) can be used to add a
certain label to the message [52] (i.e. an email to me+spam@gmail.com is actually
sent to me@gmail.com but a recipient will see the label spam next to the title). In
order to check if such characters are handled correctly by web applications, we
tested the top twenty sites by world traffic and found that only two of them
accept quotes while more than half do not expect the plus sign in an email
address. While it is always useful to detect as many ill-formed values as possible,
when it comes to entries such as a Social Security Number (SSN), not many web
sites check if a given number can actually exist [113]. Another example is a
regular expression for alphabetic symbols in languages other than English: if one
tries to filter such characters using the [a-z] pattern in Russian ([a-я]) and
some other alphabets, the regex engine can skip some letters from the pattern
[89], which is obviously not intuitive behavior and can cause bugs in the
program. There are also examples that can cause serious security issues, like an
escape function or parser for a file path. Even such a simple mathematical
function as calculating an absolute value in Java can cause troubles if used
unadvisedly as it returns a negative value for Integer.MIN_VALUE (so if you use
it, for example, for conversion of a number of a particular product in a cart, the
total price of an order can be a negative value).

There are innumerable amounts of similar fine points for other common types
of entries (see [112] for a further example). Moreover, the rules can change
with time or some additional data may be required to conduct comprehensive
validation (zipcodes, city names etc). Therefore, the existence of a uniform
validation system that takes into account such subtleties and manages
communication with the data source would undoubtedly simplify development of
web applications and make them more solid.

15

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 4

4 Current Techniques for Input
Preprocessing

This chapter discusses a number of techniques used to improve plain imperative
style validation. All of them substantively differ in the ways and degrees with
which they resolve the problems of code expressivity, security, complexity, and
user experience, so we will provide individual analysis for each solution.

4.1 View level validation

One of the most intuitive ways to make the validation model more expressive
is to explicitly bind the constraints for input values to form elements in HTML
markup. This technique was adopted in ASP.NET Web Forms, JavaServer Faces
[1, 107], and some other frameworks [44]. Here is an example in ASP.NET that
describes how to add a validator that will make a user name input be a required
field:

<form action=”/login.asp” id=”loginForm”>
 <table>
 <tr>
 <td>User name:</td>
 <td>
 <!-- Input field -->
 <input type=”text” runat=”server” id=”usrName”/>
 </td>
 <td>
 <!-- Validator with error message -->
 <asp:RequiredFieldValidator runat=”server”
 ControlToValidate=”usrName”
 ErrorMessage=”User name is required.” />
 </td>
 </tr>
 <tr>
 <td colspan="3">
 <!-- Submit button -->

16

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 <input type=”submit” value="Submit" name=”submit” id=”submit”
 runat=”server”/>
 </td>
 </tr>
 </table>
</form>

And the same form in JSF:

<f:view>
 <h:form id="loginForm">
 <table>
 <tr>
 <td>User name:</td>
 <td>
 <!-- Input field with validator -->
 <h:inputText id="usrName" required="true"
 requiredMessage="User name is required" />
 </td>
 <td>
 <!-- Error message -->
 <h:message for="usrName" style="color:red" />
 </td>
 </tr>
 <tr>
 <td colspan=”3”>
 <!-- Submit button -->
 <h:commandButton id=”submit” value="Submit"
 action=”#{loginBean.login}” />
 </td>
 </tr>
 </table>
 </h:form>
</f:view>

Having validation logic close to the input element declaration has its strong and
weak points. On the one hand, it keeps the object and subject of validation (an
input field and its server handler) in one place, which makes comprehension of
the data preprocessing flow easier than in models that define validation rules
separately from an input form. On the other hand, it leads to duplicated code
— with this method of validation, you need to copy the rules in all of the forms.
While this disadvantage can be insignificant for prototypes or web sites with a
relatively small number of pages, for other projects it is time consuming and
leaves you prone to future errors, as in this case, when making any changes
to your business rule logic, it is easy to forget to update every instance.
Furthermore, this approach can make application design more complex; for
instance, to create a custom validator or converter in JSF, one needs to register it
in several configuration files, then, if multiple fields are used, a backing bean, the
backing bean class, and finally, an extra hidden field must be created to conform

17

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

with the framework API. Due to limitations of the declarative style, combining two
or more validators in a non-linear composition requires defining of a new validator
with all appropriate beans. Last but not least, there is no simple way to reuse
the same approach for HTTP parameters in navigation links, cookies, or headers,
which should be processed as well as form inputs.

The main origin of these problems is the violation of the principle of separation
of concerns. Mixing of validation logic and views causes high coupling of the
business and presentation layers, in particular, form fields become cluttered with
validation code — which is really metadata about the input data itself. Because of
it, any framework that uses view-level validation will have similar problems and
solving them would require rethinking its input data model in toto.

In some frameworks, form view elements and the corresponding validation
rules are both defined using the semantics of the host language. Django [73]
— a framework for developing web applications in Python — is one of the
representatives of such a technique, as shown in this example of a registration
form:

class RegistrationForm(forms.Form):

 “““Input for the username”””
 username = forms.CharField()

 “““Input for the password”””
 password = forms.CharField(widget = forms.PasswordInput())

 “““Input for the password confirmation”””
 confirmPassword = forms.CharField(widget = forms.PasswordInput())

 def clean_password(self):
 “““The method is called for password validation”””
 password = self.clean_data.get('password', '')
 confirmPassword = self.clean_data.get('confirmPassword', '')
 if password != confirmPassword:
 raise forms.ValidationError("Passwords do not match")
 return password

form = RegistrationForm()
Generate the form
form.as_table()

Today it is also used in WebDSL, an experimental domain-specific language for
the development of web applications [60]. The following listing shows how the
same registration form can be validated in WebDSL:

define page register(u: User) {
 var confirmPassword: Secret;
 form {

18

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 group("User") {
 label("Username") { input(u.username) }
 label("New Password") { input(u.password) }
 label("Re-enter Password") {
 input(confirmPassword) {
 validate(u.password == confirmPassword, "Passwords do not
 match")
 }
 }
 action("Save", action{ })
 }
 }
}

Unfortunately, this approach has the same issues as “pure” view level validation,
with the only difference that now the rules can be easily defined using the syntax
and semantics of the main application language, but at the same time, the
customization of the form becomes a more difficult task.

4.2 Field level validation

To deal with issues intrinsic to embedding validation constraints into the view,
some alternative techniques were developed. One of the ideas is to separate
the flow of the application from the web pages. Struts [29] is probably the
most popular Java framework that implements this strategy by using field level
validation. This type of validation consists in specifying a separate rules file that
defines validness criteria for each input parameter. In Struts, these requirements
are written in a domain-specific language based on XML, while custom validators
should be implemented in the Java language. For example, to mark an input
parameter as required and to check that its value is an integer within the range of
10-20, you need to write a snippet similar to this one:

<field property="integer" depends="required,integer,intRange">
 <arg0 key="typeForm.integer.id"/>
 <arg1 name="intRange" key="${var:min}" resource="false"/>
 <arg2 name="intRange" key="${var:max}" resource="false"/>
 <var>
 <var-name>min</var-name>
 <var-value>10</var-value>
 </var>
 <var>
 <var-name>max</var-name>
 <var-value>20</var-value>
 </var>
</field>

An interface of the custom validator should be also defined in the XML format:

19

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

<validator name="equals"
 classname="com.javasrc.struts.validators.StrutsValidator"
 method="validateEquals"
 methodParams="java.lang.Object,
 org.apache.commons.validator.ValidatorAction,
 org.apache.commons.validator.Field,
 org.apache.struts.action.ActionMessages,
 org.apache.commons.validator.Validator,
 javax.servlet.http.HttpServletRequest"
 depends="" msg="errors.equals"/>

While field level validation isolates business logic from a presentation layer, the
way it is implemented still has some critical issues, like inexpressive syntax and
lack of handy integration with controllers [56]. The suggested DSL imposes a
high level of syntactic noise in rule definitions, though, its basing on XML allows
to some degree automate the process of emitting code for validation on the client
side. Also, defining a custom validation rule in Struts requires modification of the
form controller and the configuration file, in addition to adding some JSP code
to display validation error messages back to the user. As such, validation is best
added during the initial design, as including the validation model into existing
code requires changing inheritance trees and could easily break the application
[27].

XML is not the only format used for defining field validation rules in web
applications. Codeigniter [74] — a framework used in building sites with PHP —
uses string based rules with its own format. For example, to define a cascading
rule in Codeigniter one can pipe multiple rules together with the vertical bar:

$this->form_validation->set_rules('username', 'Username', 'trim|
required|min_length[5]|max_length[12]|is_unique[users.username]');

With string literals, you can define any kind of syntax for validation rules as long
as you can parse it in a rule engine, but this resilience does not come for free:
you lose compile time verification, IDE support, and possibility to inline custom
validators using the language the application is written in. Starting from PHP
5.2, you can use built-in validation utilities, but they are limited to string filter
functions that only support processing of primitive types, emails, IP addresses
and URLs [66].

4.3 Form level validation

In form level validation, rules for each form are defined in a separate class which
encapsulates all validation logic. These class methods are called by a controller to
check input parameters before any business logic is applied to their values.

20

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Since in this approach the validation schema is defined using the syntax and
semantics of the application language, in addition to declarative definitions,
one can imperatively express dependencies between form fields and the model,
which adds much more flexibility in comparison to the previously described field
level validation. Let us give an example from Symfony [85], a web application
framework written in PHP. At first, we will describe validation rules for the contact
form fields and a custom validator for the name of a department:

class ContactForm extends sfForm {

 protected static $subjects = array('SubjectA', 'SubjectB');

 public function configure() {
 $this->setValidators(array(
 // a subject value is from the predefined set $subjects
 'subject' => new sfValidatorChoice(array('choices' =>
 array_keys(self::$subjects))),
 // a message size is more than 4
 'message' => new sfValidatorString(array('min_length' => 4)),
 // a department is checked by the department_valdiator function
 ‘department’ => new sfValidatorCallback(array('callback' =>
 array(array($this, 'department_valdiator'))
));

 $this->validatorSchema->setPostValidator(
 // a start date is before the end date
 new sfValidatorSchemaCompare('start_date',
 sfValidatorSchemaCompare::LESS_THAN_EQUAL, 'end_date',
 array('throw_global_error' => true),
 // the error message
 array('invalid' => 'The start date ("%left_field%") must be
 before the end date ("%right_field%")')
)
);
 }

}

/**
 * Validator for the department name field.
 */
public function department_valdiator($validator, $value) {
 if (is_department($value)) {
 return $value;
 } else {
 throw new sfValidatorError($validator, 'Error message');
 }
}

21

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Then we can add a call to the sfForm.isValid() method to the contact form
controller:

class ContactActions extends sfActions {

 public function executeIndex($request) {
 $this->form = new ContactForm();
 if ($request->isMethod('post')) {
 $this->form->bind($request->getParameter('contact'));
 if ($this->form->isValid()) {
 // a redirect to the success page
 $this->redirect('contact/thankyou?'.http_build_query(
 $this->form->getValues()));
 }
 }
 }

}

A careful reader will note that Symfony uses a combination of imperative and
declarative paradigms for defining validation rules. Among other advantages,
this allows framework plugins to parse the declarative part of the schema and
automatically add client side validation to form inputs [86].

Similarly to Symphony, in ASP.NET MVC 3 you can express validation rules both
with imperative code and field attributes. This can be seen in the following class
that validates input from the contact form:

public class ContactMessage :IRuleEntity {

 public string Author { get; set; }

 [RequiredValidator("You must enter a message subject.")]
 public string Subject { get; set; }

 [RequiredValidator("You must enter a message body.")]
 public string Body { get; set; }

 public List<RuleViolation> GetRuleViolations() {
 var validationIssues = new List<RuleViolation>();

 // Validate Author in imperatively
 if (String.IsNullOrEmpty(this.Author)) {
 validationIssues.Add(new RuleViolation("author", this.Author,
 "You must enter an author name."));
 }

 // Validate all attributes
 AttributeValidation.Validate(this, validationIssues);

22

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 return validationIssues;
 }

 ...

}

Here, the Subject and Body properties in the Message class are decorated with
the RequiredValidator attribute which marks them as required, and at the same
time the Author attribute is validated imperatively in the GetRuleViolations
method.

Using a separate class for form declaration allows to reveal fields that are
not properly checked and thus eliminate potential security holes. However,
embedding declarative definitions into an imperative language implies constraints
in the rules’ expressivity, and, as you may have noticed, the definitions can
become too verbose and do not allow to easily compose or in-line validators.

4.4 Model level validation

The alternative approach to considering validation rules as part of presentation
layer would be to define the constraints in relation to an application model and
then bind input parameters to the corresponding fields of data layer entities.
Subsequently, to check input data, the system can run the validators on each
model object that has input parameters bound into it and ensure that all of them
have succeeded.

Some popular Java libraries implemented model level validators leveraging
annotations introduced in JDK 1.5. Most of the frameworks, including Hibernate
Validator [58] and Seam [63], are based on JSR 303 [57] that defines a metadata
model and API for entity validation. The Spring Bean Validation Framework [59]
would be another example that allows to perform validation declaratively using
the annotations, but formally it does not adopt the full specification. Here is the
typical Spring form bean:

public class User {

 @NotBlank
 @Length(max = 40)
 private String name;

 @NotBlank
 @Email
 @Length(max = 40)
 private String email;

23

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }

}

Then in the JSP file you need to define form inputs and where validation errors
will be displayed:

<form:form commandName="user">
 <table>
 <tr>
 <td>Name:</td>
 <td>
 <form:input path="name" size="40” cssErrorClass="err-fld"/>

</td>
<td>

 <div class="err-msg"><form:errors path="name"/></div>
 <td>
 </tr>
 <tr>
 <td>Email:</td>
 <td>
 <form:input path="email" size="40” cssErrorClass="err-fld"/>
 </td>
 <td>
 <div class="err-msg"><form:errors path="email"/></div>
 </td>
 </tr>
 <tr>
 <td colspan=”3”><input type="submit" value="Submit"/></td>
 </tr>
 </table>
</form:form>

Now, in the controller you validate user input via Validator object and then
populate the model with clean data:

24

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

@Controller
public final class ContactController {

 @Autowired
 private Validator validator;

 public void setValidator(Validator validator) {
 this.validator = validator;
 }

 @RequestMapping(value = "/form", method = RequestMethod.POST)
 public String post(@ModelAttribute("user") User user,
 BindingResult result, Model model) {
 validator.validate(user, result);
 model.addAttribute("user", user);
 if (result.hasErrors()) {
 return "form";
 }
 return "redirect:thanks";
 }

 @RequestMapping(value = "/form", method = RequestMethod.GET)
 public ModelMap get() {
 return new ModelMap("user", new User());
 }

}

Also, each possible error message should be defined in a properties file in the
following format:

User.name[not.blank]=Please enter your name.
User.name[length]=Please enter at least {2} characters.
...

Finally, you will also need to add a few beans to your Spring configuration file.

Model view validation via annotations proved to be useful for the checks that
represent certain simple formatting rules, e.g. EmailAddress, and do not require
logic operations or imperative-style expressions to specify the validation criteria.
However, we have found that a process of implementing model level validation
that falls outside trivial constraints is quite cumbersome and imposes a design
that is not easy to maintain.

The multiple standard annotations are not adequate on their own — certain
business rules, like that usernames must be unique, might relate to the
interaction of multiple properties and involve arbitrarily complex logic. And
while the API for defining a custom validator is well standardized by the JSR,

25

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

it requires the creation of several additional Java classes and beans in the XML
files. Annotations are very limited in terms of possible compositions: the only
supported operation is conjunction, which requires creating a separate interface
each time you want to define a validation rule that comprises several constraints.
For example, the only logic implemented by the following annotation is validation
of the parameter value size and non-equality to the null [71]:

@NotNull
@Size(min = 2, max = 14)
@Target({ElementType.METHOD, ElementType.FIELD,
 ElementType.ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy = {})
@Documented
public @interface ConjunctionExample {
 String message() default "{com.foo.constraints.validlicenseplate}";
 Class<?>[] groups() default {};
 Class<? extends Payload>[] payload() default {};
}

Due to the limitations of the Java language, application sequence of property
validators is nondeterministic: the validator that occurs as the first annotation
may be applied after all others. The problem can be fixed using validation groups,
but we found this approach overly verbose. For example, here we define that
the NotNull, NotEmpty, and Length validators must be applied in a strict
sequence:

@GroupSequence({One.class, Two.class, Three.class})
public class Person {

 @NotNull(groups = {One.class})
 @NotEmpty(groups = {Two.class})
 @Length(groups = {Three.class})
 private String name = null;

 // similarly for the date field
 @NotNull(groups = {Two.class})
 @Past(groups = {Two.class)
 private Date date = null;

 public String getName() {
 return this.name;
 }

 public Date getDate() {
 return this.date;
 }

}

26

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Another problem that should be addressed here is that when the fields under
validation are parts of different entities in the application model, a developer’s
responsibility is then to manually annotate each of them with a corresponding
rule even if they are bound to the same HTTP parameter. For example, if a
category identifier is used in several forms across the site, it should be separately
declared as a candidate for validation in each model object that contains this
parameter. In addition to these issues, only a few types of literals are allowed
as annotation parameters [6]. This limitation does not permit to specify dynamic
behavior using annotation parameters and requires encapsulation of validation
logic into a separate class if it has any free variables which values are provided at
runtime.

Ruby on Rails [15] (RoR) is another framework that provides easy-to-use model
level validation system. In RoR, the implementation of validation logic consists
of defining functions that get called when a data model object is saved. Some
of the problems you can find in the implemented mechanism are lack of static
verification of the validation checks and unnecessary verbosity. However, built-
in validation macros, such as testing whether an input is a number or a well-
formed email address, can be declared more concisely. Since there is no similar
incorporated mechanism for a validation check as part of a controller action, RoR
requires wrapping input validation in a data model class and making it a part
of the object-relational mapping session, which clutters the domain model with
artificial entities and business logic. [2]

While some frameworks allow generation of JavaScript code for basic validation
routines, we have found that integration with on-client code is usually not flexible
enough and a lot of boilerplate code still should be written. Nevertheless, model
view validation stays one of the most popular techniques for input preprocessing,
especially in the Java world (for those who are familiar with Scala, you can find a
similar approach used in the Play framework’s Constraints annotation [38]).

4.5 Defining rules using monads

Monads provide many useful general-purpose features and some languages try
to leverage their functional programming nature by performing validation using
this data structure. The monads mechanism helps hide implementation details for
the sequence of function applications which makes validation rules more readable.
Consider the following example that uses Scalaz [48] — one of the most popular
Scala libraries that notably extends its functional programming features:

def person {

 sealed trait Name extends NewType[String]

27

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 object Name {
 def apply(s: String): Validation[String, Name] =
 if (s.headOption.exists(_.isUpper))
 (new Name {val value = s}).success
 else
 "Name must start with a capital letter".fail
 }

 sealed trait Age extends NewType[Int]
 object Age {
 def apply(a: Int): Validation[String, Age] =
 if (0 to 130 contains a)
 (new Age {val value = a}).success
 else
 "Age must be in range".fail
 }

 case class Person(name: Name, age: Age)
 def mkPerson(name: String, age: Int) =
 (Name(name).liftFailNel |@|
 Age(age).liftFailNel){ (n, a) => Person(n, a)}

 mkPerson("Bob", 31).isSuccess assert_= true
 mkPerson("bob", 131).fail.toOption assert_= some(nel1(
 "Name must start with a capital letter",
 "Age must be in range"))
}

Despite the fact that using the monads in Scala you can write validation rules
that are more expressive than their Java counterparts, the verbosity entailed
by static typing makes complex rule definitions and custom validators not very
readable. In addition to human readability issue, this problem can be a barrier for
automatic client side code generation, which makes Scalaz less attractive than its
declarative alternatives.

A similar technique can be also found in the Haskell web library [96]. For
example, the following snippet show how to validate date or time:

validDate (Date m d) = m `elem` [1..12] && d `elem` [1..31]
dateFull = dateComponent `check` ensure validDate "This is not a
valid date"

time = do
 hours <- rangeCheck 0 23 widthTwoNum
 separator <- optionMaybe (oneOf ";,.")
 minutes <- rangeCheck 0 59 widthTwoNum
 return (TimeOfDay hours minutes 0)

28

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Using monads, we are able to validate the date and time variables in this snippet
at one go, without any pattern matching or equivalent bureaucracy such as
conditional statements. The gains for our simple example may seem small, but it
scales up well for more complex situations as well.

Advanced support of functional programming, type inference, and monads
improve comprehensibility of validation code in Haskell. The main disadvantages
we see lie completely outside the language semantics area: they are unpopularity
of the language as a choice for web applications and absence of production-ready
JVM or .NET implementation.

4.6 Business Rules Management Systems

Business Rules Management System (BRMS) is a software system that allows
business rules (i.e. logic) to be abstracted from the application itself and put
into some type of external entity, so that the business rules of an application
may change without affecting the application itself. In addition to a runtime
environment, the system should include a rules repository and tools, allowing
both technical developers and business experts to define and manage decision
logic [118]. Some of the popular solutions are Validation Application Block [114],
IBM WebSphere ILOG [115], and Drools [116]. To express application business
rules an external DSL is usually used. For instance, in Drools, the rules can be
coded in a language called MVEL [117]. You can find the following example in the
JBoss Rules Reference Guide:

package com.company.license;

rule "Is of valid age"
when
 $a: Applicant(age < 18)
then
 $a.setValid(false);
end

To implement input preprocessing similar code should be written for each
validation rule, and a developer also has to create error handlers and help classes
that marshal the response back to a client.

Since such rules management systems aim to operate with business rules in
general, they tend to be much more universal than necessary for expressing
input validation rules. This factor makes BRMS not always the right tool for
implementing the data validation layer unless you are using it already. There are
two other points that one should consider before using these systems: serious
dependency on IDE support that limits development facilities and current absence
of sufficient integration with a web-based client.

29

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

4.7 JavaScript validation

There are a number of JavaScript libraries that allow you to define validation rules
for the client side in declarative fashion via JSON or some other data structure.
The one we will use in this section is a popular jQuery [4] plugin by Jörn Zaefferer
[77]. First, let us create an example of a simple registration form:

<form id="register">
 <table>
 <tr>
 <td>Name</td>
 <td><input name="name"/></td>
 </tr>
 <tr>
 <td>Email</td>
 <td><input name="email"/></td></tr>
 <tr>
 <td>Gender</td>
 <td>
 <select name="gender">
 <option value=""> -- please choose -- </option>
 <option>Female</option>
 <option>Male</option>
 <option>Other</option>
 </select>
 </td>
 </tr>
 <tr>
 <td>About yourself</td>
 <td><textarea name="about"></textarea></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value”Submit”/></td>
 </tr>
 </table>
</form>

Now we can add constraints for each of the fields:

● Name must exist and cannot have any special characters.

● Email should be in a proper format.

● Gender should be specified.

● About yourself field should be of a reasonable length.

With the validation plugin, that is simple to set up:

$(document).ready(function(){

30

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 $.validator.addMethod("textOnly",
 function(value, element) {
 return /[a-z]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF]
/.test(value);
 },
 "Only alpha characters are valid."
);

 $('#contact_form').validate({
 'rules': {
 'name': {
 required: true,
 textOnly: true
 }
 'email': {
 required: true,
 email: true
 },
 'gender': 'required',
 'about': {
 required: true,
 minlength: 100
 }
 }
 });
});

The validator is activated from the moment you click on the submit button, where
it checks the form, and if validation does not succeed it sets handlers on all the
form elements so that they are checked as a user types the data.

As you can see, the rules format is reasonably expressive and a developer can
effortlessly write his own custom validators. However, to reuse the same rules
on the server, one would need to parse the JSON declaration and JavaScript
validators and then translate them into Java, Python, or some other language
used on the server side. Even if this process were automated, the part of
validation code that requires access to the application model entities should still
be written in a main language. Finally, the plugin lacks conversion and logical
operators, which requires a developer to write custom handlers where they can be
avoided.

4.8 Sharing of validation code on client and server side

Some code duplication relating to validating user-input can be reduced if the
application is built on top of Google Web Toolkit (GWT). GWT is a set of tools
and libraries that allows web developers to create an Ajax applications in Java.

31

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Its most important component is the translator, which enables the translation of
a Java program into browser independent JavaScript code [41]. GWT is a fairly
promising framework but, alas, there are still some reasons why it is not the best
choice for web application:

1. Low performance due to the amount of code that needs to be generated.

2. Integration of custom HTML, CSS or JavaScript libraries in a view is a
nontrivial task if it presupposes tight communication with code generated
by GWT.

3. The framework implies defining markup elements in the Java language

which overloads implementation of simple components with redundant
verbosity.

Though GWT solves one of the main problems — code duplication — just by itself,
it does not settle all other problems described in the previous chapter like code
complexity and security issues.

Thinking from the other direction, one might be tempted to use the client
side language on the server side. For example, node.js is a JavaScript based
framework, that, amongst other things, allows sharing part of the application code
on both sides so most validation rules need not be written twice. However, as
JavaScript was designed for handling HTML pages and not as a general purpose
programming language, it lacks some crucial features which makes development
of enterprise applications less convenient.

4.9 Leveraging Ajax for input validation

Ajax is one of the key underlying concepts behind Web 2.0 which lets you use
JavaScript to send and receive information from the server asynchronously
without page redirection or refreshing, and then partially update the page. Using
server side generated data in the same fashion as it was taken locally allows to
improve user experience, as site visitors are not confronted with waiting for full-
page reloads or a blank form as a reply on submit. This gives a more natural feel
of an application, and in the context of input validation, reduces the amount of
code duplicated on both the client and server sides.

In spite of its extensive usage Ajax still has some disadvantages:

● A round-trip to a server is required. This adds some latency to a user
interface that cannot be eliminated due to limitations imposed by physical
laws.

32

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

● There is some extra load on the application server that can result in
additional resource consumption.

Unfortunately, without a supplementary library Ajax does not fully solve
the problems related to accidental complexity and lack of expressiveness of
imperative validation code. As well, it does not mitigate common security issues.
However, XMLHttpRequest is widely supported even on mobile platforms [76] and
certainly can be used as underlying communication protocol for both in-line and
post-submit validation.

4.10 Web application firewall

Most of the methods described in this chapter require knowledge about
application data flow. But in absence of this knowledge you can still apply some
trivial data sanitization techniques with Web application firewall (WAF). WAF is
a software system or a hardware appliance that sits between a client and web
server and which aim is to shield the server by determining patterns that violate
the security policy in incoming HTTP(S) request/response packets [14]. If the
packet is considered safe, then it is sent to the main server; otherwise, the client
connection is closed. The security policy is usually applied with accordance to
the WAF configuration file and built-in checks. Most of web application firewalls
promise protection from such attacks as XSS, SQL injection, and detection of
abnormal behavior that does not fit the website’s normal traffic patterns. A widely
deployed example of WAF is an open source module to an apache web server —
Mod Security.

Although web application firewalls can be used to guard backend server, their
scope of applicability is limited, mainly because of the low level of integration
with an application itself. This factor makes WAF advisable but not sufficient for
comprehensive website protection.

4.11 Summary

Most input preprocessing techniques for online applications were developed at the
beginning of this century, and in spite of their rapid advancement, there are still
some issues that validation frameworks have in common. In our opinion, one of
the root problems is their focus on initial experience of use of constructs rather
than security and code maintenance characteristics. While adding a validation
rule right to a view and then binding it to a model or business layer is not difficult
to implement, in the long term perspective, this approach does not scale well.
In such a case, changes in requirements demand modification on several layers,
and since request validation is usually splashed all over the codebase, in order to

33

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

grasp how a certain parameter is validated one would need to construct the whole
picture from different places. This introduces notable accidental complexity and is
not acceptable from the code support point of view.

All of the existing solutions that were studied include some set of validation
utility classes that can be utilized for data preprocessing. However, most of them
provide only basic validation/normalization rules and generally do not include a
toolkit that is sufficient enough for rapid application development. Due to lack of
uniformity, developers often need to write boilerplate code and validators which
might not take into account all traits or have security holes.

Most validation frameworks focus only on processing of web form input and do
not support the same interface for a URL path, regular GET/POST parameters,
cookies, and headers which can be also part of the input. Finally, we were not
able to find a solution that, besides its main validation capabilities, facilitates best
practices in usability of data input. As they are quite crucial for providing a good
user experience, ignoring them can result in a direct revenue loss.

34

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 5

5 Framework Requirements

Detailed analysis of existing methods and techniques for server and client side
validation allowed us to define requirements that will reflect the most desired
features of a rule engine for input preprocessing in web applications, and,
consequently, we defined the following objectives for our research:

● Provide a methodology that decreases accidental complexity of validation
code, lessens the effort required to maintain it, and suggests a data
preprocessing mechanism that is transparent for rule developers as well as
external auditors (e.g. security analysts).

● Develop a framework for validating external data both on the client and
server sides. It should cover the whole spectrum of validation stages and
support elaborate rules scenarios without sacrificing much of the code’s
readability.

● Suggest a solution that can improve some aspects of website security

without requiring a solid background in input validation. The framework
should also generate data necessary for monitoring suspicious behavior
and intrusion detection.

● Design an API that allows a client user interface to cleanly integrate with
the rules engine and customize feedback for both inline and on-submit
validation.

● Support 90 percent of the typical input validation tasks out of the box, and
for those validators and converter not included, provide a flexible interface
so that any task not covered by the library will be easy to complete.

We firmly believe that fulfilment of these objectives, along with taking into
account problems in existing schemes, can result in a solution that will radically
change the current approaches to input validation. In the following sections we
will supplement our statements and explain the details.

35

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

5.1 Centralized input preprocessing

The security problems described earlier in this document, in particular possible
slipping of raw data into an application model or view, lend credence to the theory
that there should be a separate layer between a client and page controllers that
encapsulates all required validation and sanitization logic. In this way we can
ensure that whenever a trust boundary is crossed the data is always clean and
secure to use.

One of the methods of isolating a program from unprocessed input is a barricade
pattern described in [5]. Generally, it has the same concept as firewalls in
buildings and designates certain interfaces as boundaries to "safe" areas:

Figure 2: Barricade pattern

The pattern ensures that no external value can get to the application’s internal
classes and bypass preprocessing by the barricade. This includes GET and POST
HTTP parameters, cookies, values embedded in a URL path, and optionally HTTP
headers such as a user agent string and an IP address. Hence, there will be no
slips of the raw values to view or model.

The barricade is a good example of the separation of concerns — the process of
separating a program into distinct features that overlap in functionality as little as
possible [37] — and we expect that applying this practise to our case by isolating
a validation system to an individual tier can notably simplify the design of client-
server applications [72].

First of all, such modularity mitigates security issues described in Chapter 4 by
isolating the business logic from suspicious entities that are possibly malicious
and making a developer explicitly define boundaries for each input value rather
than considering validation as an optional artifact. Secondly, a separate layer
evolves the system into more maintainable as by superseding validation scattered
haphazardly throughout multiple application layers with a common business
and security policy stored in one place, we make input preprocessing more
transparent to the developer. In addition, by abstracting out the validation system
from the markup and model we keep them readable and not cluttered with

36

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

business logic, and at the same time permit to unit-test the rules separately from
controllers and views. This abstraction also allows us to have separate barricades
between different layers, so, for example, on POST request we can apply format
and business rules but escape HTML characters only when data reaches the
presentation layer.

Another important advantage of this pattern is that once preprocessing rules are
separated from other logic, they can be expressed in a way that is independent
from the platforms used by the server and client sides. For instance, one can use
a domain-specific language (DSL) oriented on data preprocessing which would
make the code easier to comprehend and maintain.

On top of that, such a design has many practical benefits. Since the source of
input should not make any difference for the barricade, the same preprocessing
system instance can be used for more than one client or server application, so the
rules can be applied in each place where the target input is used without having
to duplicate any logic. The intermediate tier allows to cut off malicious data before
it reaches the controller, which is crucial when a server is under a DoS attack
that operates at the OSI application layer, as in this case it can be repulsed
more effectively. Owing to this isolation, applications can also take advantage of
service-oriented architecture to ensure near linear system scalability.

While the barricade pattern is a robust way to filter untrusted input, some
clarification to the original McConnell design is necessary to make it flexible
enough for online applications. The original design assumes only a one-way
interaction between a client, the barrier and a main application, however, in some
cases the validation system should have access to a current model state or the
ability to control a page view in order to evaluate part of the rules directly on
the client. Thus we need to define a two-way interface between the barricade,
business and presentation layers to make such interaction feasible. Luckily, it is
easy to achieve with callbacks and asynchronous HTTP requests.

5.2 Whitelist validation

To reduce potential security risks all external values must be checked against
some data type and/or string format validator, so no HTTP parameter without a
corresponding validation rule can pass through the barrier. Furthermore, each
value should be sanitized by a set of default converters. All exceptions to these
requirements must be explicitly defined on a configuration or rule level. In this
way we make sure that the users will not be able to intentionally or inadvertently
bypass the preprocessing provided by the framework and the application will
always operate on clean data.

37

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

We expect that these requirements, along with powerful utilities for validation
and sanitization of text data, will create an environment that will help even
an inexperienced developer to design applications that do not suffer from
vulnerabilities related to incomplete input preprocessing.

5.3 Cross-site request forgery and protection from bots

One of the ways to discriminate human activities from computer-based actions
and prevent a cross-site request forgery attack is to ensure that the client can
execute the JavaScript code and use a system based on securely generated
tokens. Similarly to what is proposed in [47], our approach can be defined as
code execution with the purpose of validation, but in addition to protection
against web robots we also defend an application from CSRF by generating a
token on a server instead of a client. More specifically, the form submission
process is based on a two-phase functioning:

1) At first, the client requests a web page and the server provides a response
with a secure token. A token generation function might calculate hash from some
random value combined with a “salt”, a session cookie and an IP address from
which the user requested the page.

2) When the data is ready for submission, the client library composes a post
request with the obtained token which is then validated on the server side.

The only way to correctly submit a form is to send an XMLHttpRequest with a
validation token, while regular submission without a token will result in a decline
of the request prior to any other operation. Therefore, a web robot without
support for a client side language can be effectively stopped by this strategy
(unless it was specially programmed for the target application, in which case
there is no guaranteed protection [119]).

As a drawback, the described protection will make the site inconvenient for users
with turned off or inaccessible JavaScript. Though, with extensive improvements
of the script language support in modern web browsers (including mobile ones
[50]) it should not be an issue for the vast majority of users. Ultimately, the
framework can allow to disable tokens from the configuration file.

5.4 Expressive language syntax

When it comes to accidental complexity, we strongly believe that one of the main
goals of programming language and framework designers is to eliminate as much
of it as possible. At the same time, from the perspective of the users of these

38

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

tools, choosing one that is particularly designed for solving problems from the
given domain should help to considerably lower application complexity.

One of the benefits of the barricade pattern is the possibility to use a separate
domain-specific language for expressing input preprocessing rules. By providing
notations tailored to the domain under consideration we will be able to share
a common metaphor of understanding between software developers, security
auditors and business analysts, and thus allow them to reason about the rules
as encoded in an application’s infrastructure and verify that they implement
all documented requirements. A DSL that can express the model in a simple
and concise way, i.e. one that is not cluttered with boilerplate code, offers a
substantial gain in development productivity and, if well-designed, induces less
error-prone code in comparison to general programming language counterparts
[54]. One can argue that use of this approach incurs the cost of familiarization
with new semantics of the language, but from our experience these efforts are
actually comparable to learning an analogous framework API.

Declarative DSLs have acquired the reputation of a reasonable choice for rule
engines [30] and generally are the most suitable for static code analysis.
Furthermore, mix of declarative and functional styles makes it possible to write
code in a way that more closely resembles human reasoning and thus is easy to
read and understand. For example, the validation rule expressed in declarative
way:

id[0] stripTags >> toPositiveInt [m.notInt] >> unique [idNotUnique]

has much less syntactic overhead than the same logic implemented in an
imperative language:

String id = stripTags(map.get(“id”));
if (id.isEmpty()) {
 id = “0”;
}
if (!isPositiveInt(id)) {
 throw new ValidationException(m.getString("notInt"));
}
int intId = Integer.parseInt(id);
if (!unique(intId))
 throw new ValidationException(idNotUnique);
}

Hence, we deem that integration of a DSL that supports both functional and
declarative paradigms can be part of a solution of the accidental complexity
problem.

Using our language, one should be able to designate input value constraints and
canonicalization requirements by defining the corresponding rules, and then at
runtime, all external data must checked against these rules under the validation

39

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

system control.

5.5 Client side

One of the goals of this research is to develop a framework that allows a software
engineer with minor experience in designing interfaces to get some improvements
on site forms. The client library should take into account the best practices in user
experience established during the last decade and make their usage as easy as
possible. The ultimate goal is to move user data input from cognitive to fluent
type of user-product interaction [83].

A good example of a UX practice that simplifies filling in of web forms is a
validation technique that provides confirmation whether a suitable value was
provided at a moment when a user enters data within input fields and prompts to
make changes prior to the form being submitted [17]. This technique is called in-
line validation and makes correction of ill-formed entries much more easier — for
instance, Luke Wroblewski [10] claims that this technique accelerates form filling
by two times. According to the results of his research, in comparison to a page
submit/refresh model, it gives:

● 22% increase in completions
● 31% increase in satisfaction ratings
● 42% decrease in completion times
● 22% decrease in errors made
● 47% decrease in number of eye fixations

Besides inline validation, the client library should use flexible mechanisms
for customization of error events triggered on the client side. There are also
some minor features which should be supported to make a user interface more
friendly: feedback on successful validation that increases the user’s sense of
accomplishment [83] (for example, a green tick that appears next to a field)
, disabling the post button to avoid multiple submissions, and setting the right
order of tab navigation [120]. The same preprocessing server should be able to
operate with several types of clients: a browser, an iOS application, and a java
application.

5.6 Library of common converters and validators

According to Microsoft Research [48], 90 percent of validation tasks on websites
are common operations. A provided library of converters and validators should
cover all of these cases and allow to apply rules defined in a DSL script without a
developer having to write a validation code for the client side.

40

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

To make an interface loyal to application users, the system should not impose a
stringent format for the input as a user usually just wants to get something done,
not think about the correct way to type the data. An interface design pattern that
permits a user to enter a value in a variety of syntaxes and makes an application
interpret input data is called forgiving format. In support of this practice,
intelligent converters for the most common data types must be implemented in
the library, so that, for instance, a user should not need to guess a format of a zip
code or telephone number.

5.7 Summary

To recap the functional and nonfunctional requirements that were stated in this
and previous chapters, we expect the following features to be present in the
validation system:

● Preprocessing rules syntax and semantics should be highly expressive.

● Input preprocessing must be extracted to a separate application layer.

● Unsafe patterns must be escaped unless they are explicitly allowed.

● The rules must be applied automatically on the client side.

● There must be in-built protection from CSRF and web bots.

● The system must include a library with common validators and converters.

● The solution must be developed for a relatively popular web platform.

● In-line validation and forgiving format must be used whenever possible.

41

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 6

6 Input Data Flow

Considering the previously defined requirements, in this chapter we suggest a
process that manages request preprocessing for web applications, starting from
generation of a form to creation of submission confirmation page. We will describe
the sequence of events that should occur before a request can be processed by a
business layer both on the client and server sides. The process is described for a
web site, but a similar design can be applied to any client-server application.

6.1 Form validation

The web form validation process consists of the following steps:

1. A client sends an HTTP request with a page URL to a server.

2. The web application generates a cryptographic token for each form on the
requested page that uses the POST method. Then the tokens are stored
in a memory location that can be read by any preprocessing server and a
resultant HTML page with the forms and a library for client side validation
is returned to the user’s browser. The tokens can be created using a
secure random generator and a hash function with salt [106] (e.g. SHA-
256 that depends on username and client IP).

Figure 3: Form validation, steps 1-2

42

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

3. When a page is rendered, the initialization phase begins. During this stage
an XMLHttpRequest with a controller path URL for each form is sent to the
server (the path is taken from an action attribute).

4. The server preprocessor finds the custom client rule for each form element
(see Section 11.3) and returns a result as a JavaScript file. After the
response is received, the client library instruments the HTML document
with callbacks which apply the returned validation rules upon user-input
events.

Figure 4: Form validation, steps 3-4

5. The user enters data, and when some value needs to be validated

(by default when an element loses its focus), the library looks for the
corresponding validation handler on the client side and executes it. If the
rule fails at this stage an error message is shown to the user.

6. If a rule cannot be processed on the client, an asynchronous HTTP request

to the server is made. The request contains the parameter name, all
known input values, and a form controller URL.

43

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Figure 5: Form validation, steps 5-6

7. On the server, at first, the preprocessor evaluates all rules that precede

the rule for the currently validated parameter, and then applies the rule
defined for the parameter under validation (the first step is needed to
ensure that all parameter dependencies will be satisfied). If validation
depends on data from some third-party service, like CAPTCHA, the rule
engine makes an external call.

8. The result of validation is sent back to the client and if the value appears
to be invalid:

a. A focus is set to an element with an invalid value and a client show
error handler is called, following which a user should type another
value that matches the criteria.

b. When the value needs to be validated again, the rule is reapplied

and the error message is hidden using a client clear error handler.
The message is shown again if the new value does not pass
validation as well.

The error message is not shown if the user changed the input value after
the asynchronous request was made or if he changed a value a rule for
which is defined before the rule that is currently applied. Instead, the
client waits for the most recent request response to provide up-to-date
feedback on entered data. Also at this stage, the client library can redirect
the user to an error page or perform other actions based on the server
response.

When the value is proven to be valid, the validation request is sent for all
non-empty inputs, the rules for which are defined after the last applied
rule.

44

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Figure 6: Form validation, steps 7-8

9. On a submit event, form values (as were typed by a user) and the form

token are sent to the server via XMLHttpRequest.

10.The server preprocessor calls an application callback to check the token
validity. If the token is invalid an error message is shown to the user.

Figure 7: Form validation, steps 9-10

11.If the token was valid, the preprocessor reapplies all the rules to ascertain

whether an along-the-wire tampering has taken place, then:

a. In case of any errors during preprocessing of submission data, the
server responds with an error report.

45

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

b. If all inputs have passed validation, a request wrapper substitutes
original parameter values with ones that were validated and
normalized to a form acceptable by the main application. Then
the request is passed to a controller, which processes the data
and creates an HTTP response with a redirect URL, a custom JSON
response, or a list of error messages.

12.In case of a negative server response, in addition to the actions from
the 8th step, a custom client submit error handler is called; otherwise a
success submit handler is called and the page is redirected or substituted
with new content (see Section 11.4 for details).

Figure 8: Form validation, steps 11-12

6.2 Validation of navigation request

Each request should be processed by a validation filter before it reaches a
controller. This allows to efficiently validate not only form input but any GET or
POST request. Assume, for example, that there is an online application where a
user creates a profile and then others can access it under the following URL:

http://example.com?user=<id>

To make sure that the id value is a natural number and corresponds to an
existing profile, type check and business-logic rules can be applied.

The general algorithm for get parameters and cookies is pretty simple and
consists from the following three steps:

46

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

1. A client sends an HTTP request to a server with a page URL.

2. The preprocessor applies a validation rules set that matches the target
controller:

a. If any parameters are invalid, the browser is redirected to a page
with an error description.

b. If the request is valid, normalized data is passed on to an

application.

3. The application responds with page content.

Figure 9: Validation of a GET request

6.3 Summary

We have found the depicted infrastructure to be a suitable solution for the data
input lifecycle as it consistently ensures model integrity and security by storing all
preprocessing rules in one place, and at the same time, it stays resilient in terms
of available customizations and requires a minimum amount of boilerplate code.
By leveraging inline validation via Ajax and custom code on the client side, we
optimize user experience and ensure that application performance stays high. At
the same time, the security tokens increase protection from cross-site request
forgery and web bots.

47

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 7

7 Choice of Groovy DSL

In this chapter we compare internal and external DSLs and justify our choice of
Groovy DSL as a solution that is most capable of meeting our needs.

7.1 Pros and cons of Groovy DSL

One of the challenges we faced during this research was a choice between
external and internal DSL. External DSL is a language that is implemented as a
compiler, translator or interpreter, while an internal one is, essentially, embedded
into some pre-existing general purpose programming language (a host language)
using its subset as the custom syntax for a new abstract language.

While you can define any syntax and semantics for an external DSL, such
languages have one essential disadvantage — lack of symbolic integration, i.e.
that they are not linked into a base language [56]. Take for instance calling a
method implemented in a main application language from a DSL or vise versa. In
the case of external DSL you need to implement a special interface between two
methods, while with internal DSL we get this interface for free. Other examples
would be debugging, autocompletion, and renaming of the class properties — with
a modern IDE they are habitual, but in case of external DSLs, support of these
features require installation of additional tools that understand the semantics of
your language.

After careful consideration of most suitable options, we chose internal Groovy DSL
as a front-end of our rule engine, primarily because Groovy:

● Compiles to JVM bytecode and is compatible with Java which allows to
call main application methods directly from the scripts or vise versa. This
ensures seamless integration of the DSL with an existing Java project and
makes it a suitable choice for many potential deployment servers.

● Allows to write a DSL with minimally intrusive and readable syntax, e.g.:

 // paint(wall).with(red, green).and(yellow)

48

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 paint wall with red, green and yellow

 // check(that: sky).is(blue)
 check that: sky is blue

● Aggressively evolves as a host language for internal DSLs [9], and already
supports most desirable features: flexible syntax, metaprogramming,
compile-time transformations, dynamic types, closures etc.

● Has DSL descriptors [79] that significantly improve content assist in IDEs.

● Permits to limit available types of expressions in the designed DSL and in

this way reduce false-positive compilations.

● Uses BigDecimal instead of doubles for numeric literals [80] which in our
case simplifies handling of decimal values like price, size, and weight.

● Supports static typing and type inference for individual methods and

classes [109]. By using inference-based typing we do not need to sacrifice
the static check available in Java and thus can ensure type safety of
validators and converters. At the same time, we can leverage Groovy
dynamic nature to define an expressive syntax for the preprocessing rules.

● Provides flexible runtime code evaluation via metaprogramming facilities.

● Gives access to abstract syntax tree (AST) during a compilation phase. It
allows to compile scripts to Java bytecode in advance and automatically
emit new client code each time a new rule is added or an existing one
modified.

● Supports scripts and has a script engine that complies to JSR-223 [8]. This
eliminates the need to install a Groovy runtime environment.

● Has an increasingly popular web framework called Grails (according to

Google Trends [122]). Integration of the DSL in this framework will make
it accessible for many web developers.

However, there are still some disadvantages of using internal Groovy DSL:

● Internal DSLs are limited by the syntax and structure of a host language.

● While certain types of expressions can be prohibited by a language
designer, because of non-exhaustiveness of this method a user is still able
to write expressions that go outside of the DSL grammar boundaries.

● Error-reporting messages can be unsatisfactory for understanding the

original source of the error (it is a common problem of internal DSLs [55]).

49

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

●The Groovy metaprogramming model requires dynamic method
dispatching which is relatively slower than Java invokevirtual instruction
[61]. However, recent benchmarks show notable improvements in this
area [69], so we expect that performance will not become a stumbling
block for our users.

With internal DSL we have gained all the benefits and drawbacks Groovy affords
us, and after examining them we decided to proceed with this choice as, in our
opinion, the capabilities of the language mitigate most of the existing problems.
Other factors that supported our decision were successful integration of Groovy as
a language for a rule engine in Oracle Fusion Middleware [7] and its employment
for expressing pre- and post-conditions in OVal [13], a popular object validation
framework in Java.

7.2 Other considered options

The main competitors of Groovy in the DSL for JVM sector are Scala and Clojure.
We have studied both of these options and found that, in terms of our problem,
we would not be able to implement a language with such an expressive syntax.
In the case of Scala, its static typing limits us in terms of dynamic features, while
Clojure’s Lisp syntax is not compatible with Java, which is inconvenient for writing
inline closures.

We also had a look at the third kind of DSLs, which are language workbenches.
The main reason why we have not chosen them are additional tools that need to
be installed to leverage their functionality. This makes language workbenches an
option only for languages aimed at narrow domains.

50

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 8

8 DSL Syntax and Semantics

Considering the requirements in Chapters 5 and 6, we have come up with a DSL
called Grules [108] that is simple, expressive, and flexible enough to support the
necessary features. We have analyzed many existing frameworks and visited a
large number of web pages to determine the sort of scenarios preprocessing rules
needed to be able to handle. In this chapter we define fundamental terminology,
introduce the proposed language grammar, and describe the types of rules that
can be declared in grules DSL.

8.1 Rules and functions scripts

There are two kinds of files that can be defined in grules DSL:

Rules script — a script that contains specification of preprocessing rules that must
be applied to incoming data. The main purpose of a rules script is to ensure that
all external values have been properly preformatted and sanitized before updating
an application model. Subsequently, after the input is processed by a rules script
it may be considered clean.

Functions script — a class that defines validation and conversion functions used
by the rules scripts.

To be evaluated as a rules script, the file name should end with the suffix
Grules. As a functions script you can specify any Java or Groovy class with static
methods. For convenience, you can use the class-level @Functions annotation,
which adds the static modifier to all class methods at compile time, for example:

@Functions
class StringFunctions {
 String trim(String value) {
 value.trim()
 }

 String contains(String value, String text) {

51

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 value.contains(text)
 }
}

8.2 Validators

A validator is a function that examines its input with respect to some
requirements and produces a boolean result which indicates whether the input
successfully passed the validation. This snippet shows how to implement a
validator that tests if the supplied value is even:

boolean even(long value) {
 value % 2 == 0
}

As grules is the internal Groovy DSL, the return keyword is optional at the end of
a function body. The return type of a validator should be boolean or Boolean. The
other option to indicate a failed validation result is using a ValidationException
(see Section 10.3).

The first validator parameter is called a processed value parameter, as it
represents a value of a parameter processed by a current rule (you will learn
more about rules in the next chapter).

8.3 Converters

Converter is a function that sanitizes a value of a parameter according to the
context in which it will be used and/or reduces the value to a canonical form
acceptable by a main application or another converter. The simplest example
would be a trim function that removes spaces before and after the value:

String trim(String value) {
 value.trim()
}

Another example would be a converter for a postal code that, for example,
transforms k1A 0j9 into K1A0J9.

A converter can also take regular parameters:

String formatDate(String date, String format) {
 //...
}

52

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

A converter can return a value of any type including dynamic (def). Both
converters and validators can be overloaded or overridden.

8.4 Rule application

In grules, a rule defines a sequence of converters and validators that must be
applied to an input value before it can be processed by a controller.

The syntax for rule application declaration is:

parameterName rule

where parameterName is a valid Groovy variable name that starts from a
lowercase letter.

For example, this grules script normalizes categoryid and login parameters:

categoryid trim //categoryid - parameter name, trim - converter
login isAlnum

If a function (validator or converter) is of arity one, its single argument is
implicitly equal to the value of a parameter processed by a current rule, so
categoryid trim actually means: call the function trim with a categoryid entry
content and supersede the original value with a trimmed one. Analogously to
the first rule, the isAlnum validator is called with the string value of the login
parameter. The only difference is that if the function returns false, a validation
error occurs.

To use a function with more than one parameter, just omit the first argument in
the function call. For example:

id add(id, 10)

in grules is written as:

id add(10)

8.5 Empty subrule

If some value must be passed to the program in its “raw” form without any
conversions or validations, one can use the nop (no operation) subrule:

53

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

message nop

In this case, grules will skip validation for the message parameter and leave the
value unchanged (checks for non-blank entries and default converters/validators
are still applied).

8.6 Composite rules

An input value frequently requires the application of more than one validator or
converter. For example, you might want to check whether or not a string in a text
box is a valid date, and if it is, whether it comes before some deadline. Composite
rules provide a simple function chaining mechanism by which multiple functions
may be applied to a single datum in a defined order. If an input value does not
meet requirements, the system provides information about which part of the rule
it did not pass. For example, if a chosen date does not satisfy one or both of the
requirements, the system will let the client know which of them it fails to meet.

Validators can be combined via conjunction, disjunction and negation operators
(&&, ||, !). Rule evaluation is done in compliance with the precedence of logical
operators in propositional logic — conjunction has higher precedence than
disjunction. Also, similarly to Java logical AND and OR operators, grules uses
short-circuit evaluation [6]. Further, we will call a rule built only from validators
and logical operators a validation rule.

The chain operator (>>) is similar to a Unix pipeline [65] and divides a rule into
independent parts, where each subrule can be either a single converter or a
validation rule. Subrules are applied from left to right and if one of them fails, the
rest are not checked.

Let’s look at some examples. In each case we will explain how a parameter value
is normalized and validated by the rule engine:

1. id trim >> stripTags

This rule is defined as composition of two subrules and says that a value of
the id parameter at first must be normalized by the trim function and then
the result must be passed to the second subrule, the stripTags converter.
After that the main application is guaranteed to use a clean value of the id
parameter.

2. login trim >> !isAdmin >> stripTags

54

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Here we have three subrules: trim, !isAdmin, and stripTags, so the
result of trim application is checked against the !isAdmin validator upon
which the value is passed to the stripTags converter.

3. login isAlnum && (isLengthMore(6) || eq(‘admin’)) >> toLowerCase

There are two subrules in this rule: isAlnum && (isLengthMore(6) ||

eq(‘admin’)) and toLowerCase. Here, the parameter value is checked
against the isAlnum validator and the isLengthMore(5) || eq(‘admin’)
validation rule. If both validation rules succeed, the value is transformed to
lowercase by the corresponding converter.

Such a rule syntax eliminates syntactic noise that is present in many imperative
programming languages and uses a straight sequence for function applications.

One may note analogy with monads [87] in our rule semantics, and indeed the
chaining (>>) is a bind operation which takes a parameter value and function
that encapsulates preprocessing logic and passes the result of the validator or
converter application to the next function or constructs a validation error. We can
prove that subrules satisfy three monad axioms:

● Right unit:
f >> {return it} ≡ f

● Left unit:
{return it} >> f ≡ {f it}

● Associative:
m >> f >> g ≡ m >> {g(f it)}

8.7 Optional parameters

By default a grules rule implies that a subject input is required and can not be
blank or absent. To define an optional parameter you can add a default value in
square brackets to the start of a rule, for example:

id[defaultValue] toPositiveInt

Where a defaultValue is any Groovy expression that evaluates to a non-void
type (can be an empty string). Now, each time a client leaves the parameter
blank its value will be substituted with defaultValue. Please note that default
values are evaluated on each script run which may be relevant for a variable that
relies on an object like an instance of java.util.Date. For example, one can

55

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

easily use a current date to fill an optional transactionDate field:

transactionDate[new Date()] toDate(‘yyyy-MM-dd’) >> isBirthDate

This Date object will be created each time the parameter transactionDate is
validated.

8.8 Type conversion

The logic for conversion of a parameter value from String to one of the other
supported types is defined by type converters: toInt, toBoolean, toBigDecimal,
toChar, toLong, and to<Type>List, where <Type> is Int, Boolean, BigDecimal,
Char, or Long (you can find more about type converters in Section 13.2). The job
of these converters is to check that a value of a parameter can be transformed to
a target type and then return a result of the conversion. A converter throws the
ValidationException if the value can not be casted to the corresponding type.
As an example, to validate an integer parameter that has to be greater than ten
you can use the combination of functions toInt and gt (greater than):

id toInt >> gt(10)

8.9 Accessing other parameters values

All rules that we went over above accessed only one parameter. However, to
test whether an input satisfies all preconditions sometimes you need a rule that
is defined as coordination constraints between two or more parameters and
hence requires access to multiple entries at once. A simple example would be the
requirement that, in a registration form, an original password must match the
value supplied in the confirm field:

passwordConfirmation eq(password)

Another example would be a rule that compares travel start and end dates:

arrivalDate isBefore(departureDate)

A multi-input rule can refer to a parameter already checked and normalized
by a previously applied rule (clean data), as well as to a parameter value
before any preprocessing (raw data). A clean value can be accessed by just a
parameter name, while a raw value should be referred as $parameterName. If
a clean value is not available because the accessed parameter failed validation,

56

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

any access to it will cause the current rule to be skipped. If a corresponding
rule has not been applied yet, the engine throws the runtime exception
InvalidParameterNameException (this exception is ignored for inline validation).

8.10 Rule groups

Grules supports groups that can represent different types of parameters. Each
type is defined in a separate section marked by the appropriate label. For
example, for web applications grules predefines six groups: GET, POST, COOKIES,
HEADER, URL_PATH, and a PARAMETERS group, which combines both GET and
POST parameters (the last group should be used only when a list of allowed
request methods is explicitly set, see Grails controllers for an example).

Here is an example of a rules script for a login form that uses groups:

GET:
id toNaturalInt

POST:
username isAlnum
password isPasswordFor(username)

COOKIES:
sessionid isSessionIdFor(username)

HEADER:
referer isUrl

If the POST section is not empty or the parameter’s type is not defined, then only
POST requests are valid for this rules script. Most likely, you will only need the
HEADER section on occassion, but if you do use any header parameters, make sure
they are validated properly as these values can be easily modified by a malicious
user. For example, an attacker can modify the referrer HTTP header field which
contains the URL of the web page from which the request originated, or set the
Content-length header to some unduly big value [32, 33] (you will read more
about the URL_PATH parameters in Chapter 9).

One can have more than one section of each type to satisfy cyclic dependencies
between groups, for example:

POST:
user isAlnum

GET:
page !empty(POST.user) && (eq(PageNames.HOME) || eq(PageNames.ADMIN))

57

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

POST:
if (GET.page == PageNames.ADMIN)
 password isPasswordFor(username)

By default, the rule engine looks for the referenced parameter only in the current
section. To access other parameters use the section name prefix followed by a
dot, for example:

COOKIES:
lastUsername eq(GET.username) // GET.$username for a raw value

A developer can also define custom sections and divide parameters into groups on
the client side:

TOUR_INFO:
country isCountry >> toISOCountry
city isAlnum
...

PERSONAL_DATA:
name isAlnum
surname isAlnum
...

8.11 Closures

When a function is not expected to be used more than once and is simple enough
to fit in one statement, you can define such a validator or a converter as a
closure, for example:

guestsNum toInt >> {it > 1}

The it variable inside the closure refers to a value passed from a previous
subrule (here toInt). Also, since closures are part of the rules you have an
access to all input parameters, e.g.:

adminsNum toInt
guestsNum toInt >> {guestsNum + adminsNum < maxUsersNum}

You can also use a closure validator or converter to explicitly define all function
parameters, for example, to run a function against a parameter that is not the
default for a current rule.

58

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Validator and converter calls that occur in a closure body are handled as general
Groovy method calls and thus all function arguments must be specified. For
example:

// expectedChildrenNum is a method that takes one argument
expectedGuestsNum toInt >> {it + expectedChildrenNum(it)}

Using a closure you can easily assign a constant value to a parameter, for
example:

tempParameter {7}

8.12 Combined parameters

It is often reasonable to process several input values, like radio buttons or
checkboxes, as a group. To define such behavior you can wrap parameters in a
list and specify it as the rule’s target value. For example, the following line checks
that both accept and subscribe check boxes are selected:

[accept[‘’], subscribe[‘’]] toBooleanList >> every

8.13 List parameters

The rule engine supports the use of list parameters, which usually represent a
check box group or a list of inputs with the same name. For example, in HTML
you can specify the latter using the name[] expression:

<input type="text" name="options[]" value=""/>

The syntax for list parameters does not differ from other parameters, so for
instance, to set a validation constraint for the above field you can use the rule like
this:

options every(eq(‘confirm’))

In this case the eq function is applied to each element of the options list, and the
rule fails if at least one member of the list does not pass validation (see also any
and collect functions).

59

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

8.14 Custom parameters

While browsing the Internet you may find that it is common for a web form to
contain a value based on entries from multiple fields, such as a birth date or a
full name. To define such an assembled parameter one can use the @Parameter
annotation, e.g.:

@Parameter
fullName = {name + ‘ ‘ + surname} >> isAlphaSpace(it)

Here, the parameter fullName is constructed from two other parameters (a name
and a surname) and then validated by the isAlphaSpace validator. The only
difference with the usual rule statement is that the first closure-subrule does not
take any parameters, and each method call explicitly specifies the first argument.

An assembled parameter is available to a main application along with other
parameters.

8.15 Conditional rules

In case your validation checks depend on values of other parameters or
environment variables, it might be required to trigger a validator or converter
only if a certain condition is met. To implement such behavior one can use a
Groovy ternary operator enclosed in parentheses:

// createCheckBox is a boolean parameter name
username (createCheckBox ? isUniqueUsername >> ... : nop) >> ...

For more complex conditions you can use an IF statement. For instance, to
process a username and email field only if a createCheckBox is selected and a
signature field is non-blank the following snippet can be used:

if (createCheckBox && !empty($signature)) {
 username isUniqueUserName
 email isEmail
} else {
 ...
}

The predicate expression can contain any expression that is valid in terms of
Groovy semantics.

60

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

8.16 Default converters and skip function

In an effort to improve code usability and security, some preprocessing functions
like trim are applied by default to all input values. Thus, a developer is able to
implement whitelist validation (see Section 5.2) by explicitly marking parameters
for which security checks can be deactivated or apply certain canonicalization
converters to all input values.

To adjust the preprocessing policy you can either change a grules configuration
file or apply the skip utility function. This function can be used on a per rule basis
and indicates which default converters and validators have to be skipped for a
certain parameter. As an example, the following rule says that the trim function
need not be applied for the parameter message:

message skip(‘trim’) >> sizeLessThan(1000)

Skip function must always lead subrules and not be preceded by converters or
validators, otherwise a runtime error will be thrown.

8.17 Reuse of preprocessing rules

Any subrules composition can be stored in a variable and then used as a part of
other rules. Such variables can be defined using the method rules, for example:

rules {
 formatPost = trim >> stripTags
 toGroup = {Enum.valueOf(Groups, it)}
}

message formatPost >> isLengthLess(100)

8.18 Rule extension

Any rule can be extended to perform additional processing of a parameter
value. This might be helpful, for example, when there are several preprocessing
stages or a certain constraints should be applied if, and only if, some condition is
satisfied:

username isAlnum
if (!debug) {
 username isUniqueUsername

61

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

}

Here the isUniqueUsername validator is applied in addition to isAlnum only when
the debug variable is coerced to false [80].

8.19 Multi-line rule

For better readability, a rule can span across multiple lines:

id trim >> ... >>
 splitTags >> maxLength(10)

To conform to Groovy syntax, while splitting make sure that the last token in each
line is an operator.

8.20 Boolean converters

By default functions and closures that return values of type Boolean are evaluated
as validation expressions, but you can easily tell the rule engine to treat them as
converters by applying the tilde operator:

inverseParameter toBoolean >> ~{!it}

or
// inverse return type is Boolean
inverseParameter toBoolean >> ~inverse

Another way of implementing boolean converters is a @Converter annotation.
It can be used for any method and exempts a developer from prefixing each
validator call with the tilde-operator. For example:

@Converter
boolean inverse(boolean value) {
 !value
}

inverseParameter toBoolean >> inverse

62

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

8.21 Variables

Grules rules scripts support a variable declaration. The syntax is identical to what
is used in usual Groovy scripts, for example:

a = 1
id gt(a)

final b = ValidationUtils.MALE
gender !eq(b)

8.22 Not logged rules

For some sensitive data, such as a credit card number or an answer to a security
question, you may not want a parameter value to appear in a log file. In this
case, you can use the nolog block and grules will never include values of the
parameters from this block into a log record or send them to the client side. The
following is one example of the use of the nolog block:

nolog {
 creditCard isCreditCard([CreditCard.VISA])
 password isValidPassword(username)
 ...
}

8.23 Block validation

Regardless of the DSL expressivity, you may still have preprocessing logic that
cannot be defined as a grules rule. Such logic can be always placed in a validate
block which should return a map of clean values processed by this block or throw
a ValidationException if any of the values fail validation (you can find more
about the exception in Chapter 10). For example:

GET:
id toInt
...
name trim

validate {
 def sum = ($options.collect { // options is an HTTP array parameter
 it == ‘Yes’ ? 1 : 0
 }).sum()

63

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 if (sum <= 1) {
 throw ValidationException(‘Please choose more options’,
 element: ‘options’)
 }
 // return two clean parameters
 [options: $options, chosenOptionsNum: sum]
}

POST:
...

validate {
 ...
}

8.24 Security validator

A security validator checks for signs of client malicious intentions, which can be
usually determined from value syntax. To indicate that a certain function serves
this purpose, use the @Security annotation. For example:

@Security
boolean isSelect(String sqlValue) {
 sqlValue.contains(‘SELECT‘)
}

Actions that should be performed when a security validation fails can be defined in
the configuration file.

64

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 9

9 Script Management

This chapter will provide an overview of the operations that can be applied to
script files, including a description of how to reuse grules scripts and interact with
rule engine API. We will also cover the conventions that should be followed to
ensure the successful integration with a popular Grails Framework.

9.1 Script inclusion

Oftentimes you will find some common rules that might be shared between
several scripts, so to not duplicate the code you can incorporate one rule script
into another using the include <RuleScriptClass> statement. For example, if
we have two forms: create and edit profile, they probably will be almost identical,
so we can include common rules in both scripts.

We can place shared rules in ProfileGrules:

name isAlpha
email isEmail
...

Rules unique for a create profile page in CreateProfileGrules:

include ca.mcmaster.ProfileGrules

username isAlnum >> isUnique(username)
...

And rules unique for an edit profile page in EditProfileGrules:

include ca.mcmaster.ProfileGrules

userId trim >> toPositive
...

65

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Also note that rules can be included in any part of the script, e.g.:

if (!debug) {
 include RegistrationSecurityGrules
}

For a functions script one can use a standard Java import static feature:

import static IntValidators.*

boolean isOdd(Integer num) {
 !isEven(num) // isEven is defined in IntValidators
}

9.2 Grails plugin

A grules plugin for Grails follows the convention over configuration design
principle [123], which simplifies integration with the framework. By convention,
rules scripts should be located in the same directory as a controller, and have
the same name except the Controller part. So, for example, a rules script
for LoginController should have a name LoginGrules. There are no any
restrictions for path or name of function scripts.

9.3 Rule engine API

With grules you are able to apply preprocessing rules not only to request
parameters but to any arbitrary map that contains variable names
and their values. You can apply a rules script to such an input via the
Grules.applyGroupRules method. The method takes a script class, a parameters
map, and an optional environment functions and variables as its parameters. Here
is an example of unit tests for a rules script that validate two parameters, id and
name (for the sake of readability we use the Groovy test framework Spock [90]):

def "Test method for rules script with one group"() {
 when:
 def r = Grules.applyRules(MyFormGrules, [id:1, name:‘Bob’])
 then:
 r.cleanParameters == [id:1, name:‘Bob’]
}

def "Check that rules are applied to group parameters"() {
 when:
 def r = Grules.applyGroupRules(MyGrules, [GET: [id:1, name:‘Bob’]])

66

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 then:
 r.cleanParameters == [GET: [id: 1, name: ‘Bob’]]
}

Similarly, you can call Grules from Java:

Map<String, Object> parameters = new HashMap<>();
parameters.put("id", new Integer(1));
Grules.applyRules(MyGrules.class, parameters);

You can also pass additional custom functions as a third method argument:

def functions = [isJohn: {it == ‘John’}]
def result = Grules.applyRules(FunsGrules, [name:‘Bob’], functions)

FunsGrules file:

name isJohn

Converters and validators can be tested as regular Groovy code, e.g.:

expect:
CommonFunctions.trim(‘ test’) == ‘test’

The other example where you might need to explicitly call the rule engine is for
preprocessing of non-query string parameters. In addition to GET/POST request
parameters and cookies, a part of the input data can be passed to an application
via a URL path. For instance, the popular site StackOverflow.com uses a schema
where a question id and canonical title are placed after a module name in a URL
path. Here is a typical address of a question page:

http://stackoverflow.com/questions/111102/javascript-closures-work

Similarly to tampering with HTTP parameters, an attacker can perform a request
manipulation and modify a URL to conduct a path traversal or injection attack.
For example, in the URL above one can easily falsify the question id, and if the
value is then inserted into the web page without any validation, site visitors may
be exposed to an XSS attack. To keep application data secure a site need to be
protected from such evasion.

In grules preprocessing of values from a URL path can be performed by applying
script rules to a URL_PATH group which includes path parameters that require
validation. For our Stackoverflow.com example the code in a page controller
might look like this:

def questionId = getQuestionId(url)
def questionTitle = getQuestionTitle(url)
def parameters = [URL_PATH: [id: questionId, title: questionTitle]]

67

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

def r = Grules.applyGroupRules(QuestionGrules, parameters)

Then in the QuestionGrules:

id toPositiveInt
title match(/[\w\-]/)

As a future work, we are also going to parallelize processing of each parameter to
leverage multi-core CPUs.

68

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 10

10 Error Handling

In addition to guaranteeing data consistency, the integration of a validation model
in a client-server application requires a system for reporting constraint violations
to the user, indicating the origin of the violation in the UI with a sensible error
message or styling of control elements [2]. In this chapter we will cover how
these errors can be specified and then processed in an application that uses the
grules rule engine.

10.1 Basic error handling

The framework contains an error handling mechanism that catches validation
exceptions on the server side and coordinates their transfer to the client, where
each error is subsequently processed by the client library. Validation error
messages are defined on a subrule level which allows a more specific and thus
more helpful description of failure:

parameterName converter1 [errorMessage] >> validationRule1
[errorMessage1] >> validationRule2 [errorMessage2] >> ...

You can use any Groovy expression that evaluates a String object as an error
message, for example:

nights trim >> isEven [‘Number of nights cannot be odd’]

To localize a message, you can use fields of the object m and the rule engine will
read the property with the corresponding name from a resource bundle specified
in a configuration file, for example:

nights isEven [m.notEven] // notEven property from a resource bundle

If no error message was defined for some subrule, then it is taken from the
nearest subsequent subrule with a message, and if there is no such subrule, an
empty string is used instead. In this way the error message can cover multiple

69

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

subrules simultaneously.

In order to define an error message that must be used when a required
parameter is blank, you can specify a special property in the configuration file
(requiredErrorMessage) with the error message or add a resource bundle
properties of a form required.<formName>.<parameterName>=<message> in
which case a custom error message will be used for each parameter.

10.2 Custom error parameters

In addition to an error message one can define custom error parameters that
will be passed to a client side. For example, to change the input element next to
which the error has to be shown an element parameter can be used:

pswdConfirm eq(pswd) [e(‘Passwords do not match’, element: ‘pswd’)]

Here e is a method that takes an error message as the first argument, a map of
custom parameters as the second, and constructs a validation exception that will
be thrown in case of unsuccessful validation. If an error message is not needed
the first parameter can be skipped:

pswdConfirm eq(pswd) [e(element: ‘pswd’)]

10.3 Validation exception

Besides returning the boolean value false from a validator, there is one
more way to indicate invalid input — the ValidationException. This class
contains several constructors: the first one takes a map with error properties
(Map<String, Object>), the second, an error message represented by a String
object, and the third constructor takes no parameters. You can pass any key/
value pairs to the constructor, but the following error property names have a
special meaning:

● url is a redirect URL

● element is the element next to which an error message will be shown

● msg is the error description

For example, the exception can be thrown from a converter to indicate that some
precondition required for successful normalization of an input value is violated:

int toInt(String value) {

70

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 try {
 Integer.valueOf(value)) {
 catch (NumberFormatException e) {
 throw new ValidationException(e.message)
 }
}

Another usage example would be a validator for password strength:

boolean isStrongPassword(String value, List<String> mediumRegexps,
 List<String> strongRegexps) {
 if (!mediumRegexps.every({value.matches(it)})) {
 throw new ValidationException(PasswordStrength:
 PasswordStrength.WEAK)
 } else if (!strongRegexps.every({value.matches(it)})) {
 throw new ValidationException(PasswordStrength:
 PasswordStrength.MEDIUM)
 } else {
 true
 }
}

All property values are converted to strings using the toString() object method
before sending to a client.

10.4 Redirect URL

Apart from preprocessing values of form inputs, grules can be responsible for
the validation of any request parameters. In that case, one may want to redirect
a user to an error page when some request parameter fails validation. This
behavior can be implemented by adding a ONERROR_REDIRECT_URL constant
before rule definitions,for example:

ONERROR_REDIRECT_URL = ‘http://example.com/error.html’
id isNaturalInt
email isEmail
...

or

ONERROR_REDIRECT_URL = Urls.ERROR_URL
id isNaturalInt
...

To override the error URL for a certain parameter you can use a custom property
url, for example:

categoty isNaturalInt >> isCategory [e(url:Urls.WRONG_CATEGORY)]

71

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

10.5 Value placeholder

To include a current parameter value into an error message one can use an
underscore token. For example:

date isDate [‘_ is not a date’]

The token can be escaped by a backslash. Please note that to avoid injection
attacks all HTML characters inside a parameter value are escaped before
conveying an error message to a client (you can change this behavior in a
configuration file).

10.6 Handling of grules exceptions in main application

Sometimes, passing the preprocessing barrier can be insufficient condition
to consider a value valid, as part of the value’s properties might be revealed
only after business logic from a main application is applied. For example, a
value can appear to be invalid in regard to the current model state or causes a
runtime error. To communicate such an error to a client one can use the method
buildResponse(Map error) from the ValidationResponseHandler class. This
method builds a response that can be processed by the grules library on the
client side. Here is a snippet that creates a validation response from a main
application:

String getResponse() {
 ...
 if (!error) {
 // build confirmation page
 } else {
 return ValidationResponseHandler.buildResponse([
 // clean values
 [:],
 // invalid values
 POST: [
 // get the property invalidaCaptcha from the resource bundle
 captcha: ValidationResponseHandler.getErrorMessage(
 ‘invalidCaptcha’)
]
]
)
 }
}

72

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

10.7 Handling of non-validation exceptions

As grules is a Groovy internal DSL, it inherits its semantics including the exception
handling machinery. Hence, a validator or converter can throw an exception that
is not directly related to the input preprocessing rules but that still needs to be
caught (for example, IOException). To handle such exceptions a developer can
provide an implementation for a handleNonValidationException closure and
point to it from the configuration file. The closure is called each time a DSL script
triggers an exception that was not handled by the grules framework. Below is an
example that shows a simple non-validation exception handler:

String handleException(Throwable e, String parameterName) {
 Logger.error(e.getMessage())
 return ValidationResponseHandler.buildErrorResponse([
 parameter: 'form',
 message: e.message])
 }
}

73

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 11

11 Client Library

While most of the code needed to associate preprocessing rules with interface
control elements is generated by the framework, some customization of client-
side validation may still be necessary to enhance user experience. In this
chapter we will describe the grules library that manages the rules on the client
side and explain how to create handlers triggered on certain validation events.

11.1 Initialization

Each page that contains a form with preprocessing rules should include the grules
client library; for example, it can be added in the HTML header section:

<head>
 ...
 <script src="/js/grules.js" type="text/javascript"></script>
<head>

This library contains the core functionality needed for managing form input, such
as Ajax validation handlers, and implementation of the most common rules.

After an input form is processed by a browser rendering engine, the
Grules.init(config, formIds) function should be called. The function fetches
rules from a server, binds generated event handlers to form elements, and
adds required [18], maxlength and other attributes to applicable inputs. For
example, the initializer can be called on a document.ready event:

$(document).ready(function(){
 Grules.init(config, formIds);
 ...
});

The config parameter is a configuration object that has the following fields (each
of them has a default value and can be left undefined):

● locale — a locale for an error messages resource bundle (default is en)
74

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

● input<EventName> — input validation handlers (see Section 11.3)

● form<EventName> — pre-submission validation handlers

● inlineValidationEnabled — a boolean value which controls whether

inline validation is enabled (default is true)

● keyUpDelay(milliseconds) — the pause between a keystroke and value
validation in case of an onchange event (default is 0)

For example:

config = {
 locale: ‘en’,
 inputValidationError: onInputValidationError,
 formBeforeValidation: onFormBeforeValidation,
 inputErrorClear: onInputErrorClear,
 ...
};

You can change any of the parameters after initialization via a global Grules
object — for example, the locale can be modified by calling the method
Grules.setLocale(locale).

The formIds parameter is optional and specifies that only forms with the given
ids can be set up. If this parameter is omitted, all forms on the page will be
processed by the client library. This parameter allows handling of dynamically
created elements and pages with several forms where only some of them should
be validated by grules.

11.2 In-line validation

To check if an entry violates any validation constraints, the client library delegates
evaluation of a rules script to a preprocessing server: an asynchronous server
request with form data is sent each time a user inputs a new field. Upon such a
request, the server runs a rules script and responds with a detailed error report
which is then parsed on the client side. This communication is implemented
via Ajax technology that allows us to inform users about input errors without
interrupting their activity. It makes the validation process fairly transparent from
a user’s perspective as there is no difference between a validation error caught on
the client and server side (except a slight delay in UI).

If you target mobile users, the amount of client-server traffic can be a crucial
factor. To address this issue and improve feedback from a user interface, you
can implement some preprocessing functions on the client side. In this way, it is

75

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

possible to significantly reduce number of server requests.

Each time a validation event occurs the library looks for a method in the Grules
object on the client side that satisfies the following requirements:

1. It has the same name as the function used on the server side.

2. It takes zero or one parameter (a processed parameter value).

In case of a composite rule, subrules are evaluated until a corresponding client
function can not be found.

For example, consider the following grules function and the rule that uses it:

MathFunctions:

boolean isPrime(int n) {
 ! (2 ..< n).any { p -> n % p == 0}
}

MainGrules:

num toInt >> isPrime

Now we can implement the same logic in JavaScript:

Grules.isPrime = function(n) {
 if (isNaN(n) || !isFinite(n) || n % 1 || n < 2) {
 return “Not a number”;
 }
 for (var i = 2; i < m; i++) {
 if (n % i == 0) return false;
 }
 return true;
}

For the given rule grules will use the JavaScript function isPrime instead of an
asynchronous server request and in this way eliminate the handoff latency of
client-server communication.

11.3 Client validation events

The framework manages preprocessing of input data both on the client and
server sides. In addition, the grules JavaScript library already contains default
event handlers that provide basic feedback to a user about failed and successful
validations. Sometimes you may need to override these handlers to adjust the

76

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

process for your design and functional needs, for example, you can define how
error messages should be displayed on a web page or extend logic applied on a
form submission event.

To perform actions before validation of an input value occurs or to handle a result
returned by the rules engine, the following callbacks can be defined:

● inputBeforeValidation(inputElement) — the function is called before
the DOM element input is checked by the rule engine. If it returns false,
element validation is cancelled.

● inputFailedValidation(inputElement, error) — the function is
called when a given input fails validation. error is an object with three
fields: message, errorName, and errorProperties. message is an error
description, errorName is a property name that represents the message
in a resource bundle (null if the error message is defined as a string
literal), and errorProperties is a string to string map with custom error
parameters.

● inputSuccessValidation(inputElement) — the function is called if a
value passes validation. This event can be used to hide content added by
the inputValidationError function or display feedback about successful
validation of the input field.

In the inputBeforeValidation function you can check if some property holds
on each firing of a validation event. For example, if a client should go online to
perform validation, you can use the following function:

function inputBeforeValidation(inputElement) {
 if (!window.navigator.onLine) {
 showNotification(messages[“browserOffline”]);
 }
 return false;
}

As an example of inputFailedValidation/inputSuccessValidation actions
could serve logic that adds/removes a red border around a validated element.
If the inputFailedValidation callback is not defined, a default error handler
displays a message tooltip near the element (its position is absolute in order to
not change a form’s layout):

Figure 10: Error tooltip

To ensure that there are no race conditions all values are processed sequentially
in order of the events that triggered validation.

77

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

11.4 Form submission

After a user submits a web form, the client library checks that no required
fields are blank, and then, if there are no errors, it sends data to a server via
XmlHttpRequest.

To control a form submission process one can define the following callbacks:

● formBeforeValidation(formElement) — the function is called before
validation of a form represented by a formElement DOM element. If it
returns false, form submission is cancelled.

● formFailedValidation(formElement, errors) — the function is called
if a form fails validation. errors is a map where each key is a DOM
element that failed validation (can be a form element) and a value is a
corresponding error object (see the previous section). One of the use
cases for this function would be displaying all error messages at a specific
location on the page.

● formSuccessValidation(formElement, xhr) — the function is called if
a form passes client and server validation without any errors. The second
parameter is an XMLHttpRequest object [35] that contains data about a
submission request and response. In the body of this function you can
take any actions to indicate a successful result using a JSON object from a
server response.

11.5 Validate function

By default, a field is validated on a blur event which is fired when a user tabs or
clicks away from a control element, causing it to lose focus. To check an input
value beyond this event you can use the Grules.validateInput(id) method
which performs validation upon an element with the given id, returning true
if its value contains a valid entry and an error object otherwise. Similarly, the
Grules.validateForm(id) method validates a whole form and returns a map of
error objects as a result.

78

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

11.6 Managing of validation events

To control on which events validation should be run or disable it for certain fields
one can use the following methods in the global Grules object:

Name Description

disableValidation() Turns off client side validation for a current
page.

disableValidation(element) Turns off validation for the given input
element or form.

disableValidation(element,
eventName)

Turns off validation for the given
input element on eventName
event. Usage example:
disableValidation(“ssn”, “onchange”)

enableValidation() Turns on validation for a current page (turned
on by default).

enableValidation(element) Turns on validation for the given input
element or form.

enableValidation(element,
eventName)

Adds validation for the given input element
on event eventName. If any other callback is
already bound to the event it will be called
before validation.

You can use the special “onValueChange” event name in the
enableValidation(element, eventName) method to validate an element each
time its value is changed either by direct user input or from JavaScript code. The
event can be helpful, for example, to validate a jQuery UI date picker since we
lose focus on this element before any data is entered in it and thus an onBlur
event cannot be used. Please note that some delay between a value change and
validation may occur in case of binding to the onValueChange event.

11.7 W3C standards support

With increasing support of HTML5 by all major layout engines, leveraging built-in
browser validation features that implement the new standard [23] in combination
with h5Validate [78] fallback makes the client library much more practical. In
addition, we use a jQuery framework to assure cross-browser compatibility of a
DOM model [45], and its form plugin [46] to automate Ajax form submission.

79

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

11.8 Summary

As you can observe, the grules client library gives freedom to react differently for
different validation events via a callback mechanism. It does not limit a developer
in terms of actions that can be taken on each event and allows to implement
UI feedback handlers using both a template engine and pure JavaScript DOM
manipulation.

80

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 12

12 Configuration

This chapter covers the format of the grules configuration file, all supported
properties, as well as how to setup a logger used by the rule engine to record the
results of rule application.

12.1 Configuration file format

We chose the ConfigSlurper [80] tree format for a grules configuration file as one
that allows to use Groovy expressions as property values. File example:

log {
 dev {
 path = "create-drop"
 ...
 }
 ...
}
error {
 runtimeExceptionHandler = myproject.RuleEngineExceptionHandler
 ...
}

12.2 Properties

Here is a list of properties that can be defined in a configuration file:

● default preprocessing rules

● log settings

● actions to be taken for @Security rules

● a name of a resource bundle with error messages (messages by default)

● a maximal acceptable query string length

81

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

● a default parameters group

● a callback for tokens validation

● an uncaught exception handler

● an error message for blank but required fields

● a default date format

12.3 Logging

Grules can produce a log record with the results of rule evaluation for each
parameter. By default it will log a client IP, validator name, value, query,
and request time, but you can always adjust this output using configuration
properties. In addition, you can specify a separate log file for requests that
do not pass security checks. For example, you can have the following logging
configuration:

Grules.Log.with {
 columns = [DATE_TIME, IP, VALUE, QUERY, DATE]
 securityFile = “/path/to/log/file”
 events = [SECURITY_FAIL, SUCCESS]
}

82

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 13

13 Built-in Functions

The framework includes a library with validators and converters based on the
most common parameters types and tasks related to normalization of their
values. The list of included functions was built after careful analysis of many
popular validation frameworks [1, 4, 29, 31, 57, 62 - 68, 73, 85, 121] and partly
based on our own experience in development of online applications. The library
is loosely coupled with other framework modules, which eases its integration into
another project.

Reuse of the library code will ensure that rules are applied consistently, relieve
developers from writing custom code for common preprocessing tasks, and
reduce maintenance efforts.

13.1 Validators

Function name Requirement to processed value
parameter

areIn(List values, List
list)

is a list which values are equal to any member
of the specified list

areIn(List values, Set
set)

is a list which values are equal to any member
of the specified set

contains(String value,
CharSequence substring)

contains the specified the specified sequence
of char values

endsWith(String value,
String suffix)

ends with the specified suffix

hasNotCRLF(String value) does not contain a carriage return or a line
feed character (see CRLF attack [26])

83

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

isAfter(Date value, Date
minDate)

is a date after the specified one

isAfterNow(Date value) is a date after now

isAlnum(String value) is a string that matches /[a-zA-Z0-9]+/

isAlnumSpace(String
value)

is a string that matches /[a-zA-Z0-9\s]+/

isAlpha(String value) is a string that matches /[a-zA-Z]+/

isAlphaSpace(String
value)

is a string that matches /[a-zA-Z\s]+/

isAny(List values) is a list whose at least one member is true
according to the Groovy Truth

isAny(List values,
Closure closure)

is a list whose at least one member is valid
according to a predicate

isBefore(Date value,
Date maxDate)

is a date before the specified one

isBeforeNow(Date value) is a date before now

isBetween(Number value,
Number min, Number max)

falls within the specified range of decimal
values

isBetween(Integer value,
IntRange min..max)

falls within the specified integer range (uses
HTML5 min and max attributes for the client
side [18])

isBirthDateAlive(Date
value)

is a date before the current year (or the
current year) but not more than 120 years in
the past [53]

isBirthYearAlive is a year before the current year (or the
current year) but not more than 120 years in
the past

isColor(String value) is a CSS color [22]

isCountryCode(String
value)

is a country code [39]

isCurrencyCode(String
value)

is a currency code (ISO 4217)

84

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

isEmail(String value) is an email address compliant to RFC [21] (uses
the HTML5 email input type for the client side)

isEmpty(List values) is an empty list

isEmpty(String value) is a string that matches /\s*/

isEqual(value, object)
(alias eq)

is equal to the specified object

isEven(Long value) is an even number

isEvery(List values) is a list whose members are true according to
the Groovy Truth

isEvery(List values,
Closure closure)

is a list whose members are valid according to
a predicate

isFalse(value) coerces to boolean false

isFileExtensionIn(FileI
tem value, List<String>
extenstions)

has an extension from the specified list (by
default no extensions are allowed)

isFileSizeLess(FileItem
value, Integer size)

is a file whose size is less than specified (in
bytes)

isGreater(Number value,
Number number)
(alias ‒ gt)

is a number greater than the specified number

isGreaterEq(Number
value, Number number)
(alias ‒ gte)

is a number greater or equal to the specified
number

isHostname(String value) is a host name: DNS host name (e.g. bit.ly),
IP address, or local host name (e.g. localhost)

isIn(value, List list) is equal to any member of the specified list

isIn(value, Set set) is equal to any member of the specified set

isInternalUrl(String
value)

is a URL that belongs to the same domain as
the current request (can be useful for redirect
URL)

isISBN(String value) is ISBN [64]

isIPv4(String value) is an IP address version 4

isIPv6(String value) is an IP address version 6

85

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

isLengthEq(String value,
Integer length)

has the specified string length

isLengthBetween(String
value, Integer min,
Integer max)

is within the specified range of string lengths
(the range is inclusive)

isLengthLess(String
value, Integer length)

has a string length less than specified value

isLengthLessEq(String
value, Integer length)

has a string length less or equal to specified
value

isLengthMore(String
value, Integer length)

has a string length more than specified value

isLengthMoreEq(String
value, Integer length)

has a string length more than or equal to the
specified value

isLess(Number value,
Number number)
(alias: lt)

is a number less than the specified number

isLessEq(Number value,
Number number)
(alias: lte)

is a number less than or equal to the specified
number

isMonth(Integer value) is an integer between 1 and 12

isMonth(String value) represents a month for the current locale or is
an integer between 1 and 12

isName(String value) contains only characters that occur in human
names, i.e. [77]: [a-Z]|[\u00A0-
\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF]

isNotSqlInjection(String
value)

tests to see if the value appears to be an
explicit SQL Injection attack (uses OWASP
AppSensor [34])

isOdd(Long value) is an odd number

isPhone(String value) is an international phone number [77]
(validator follows the forgiving format, thus
parentheses, dots, spaces and hyphens are
allowed)

isPostcode(String value,
String countryCode)
(alias isZipcode)

is a postcode valid for the specified country
code (US and CA are supported [39])

86

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

isSSN(String value,
String countryCode)

is social security number valid for specified
country code [39]

isState(String value) is a US or Canadian state or province in two
letter format

isStrongPassword(String
value, List<String>
mediumPasswordRegexes,
List<String>
strongPasswordRegexes)

is compliant with a strong password policy

A password is:
- weak if it does not match some of
mediumPasswordRegexes

- medium if it does not match some of
strongPasswordRegexes

- strong if it matches all the given regexes

Password is invalid if it is not strong, in this
case ValidationException’s parameters
field contains password strength (WEAK or
MEDIUM), which then can be read on the client
side

isTimeZone(String value) is a ISO 8601 time zone [36]

isTrue(value) coerces to boolean true

isUrl(String value) is a well-formed URL [58]

isWeekDay(String value) represents a day of the week for the current
locale

matches(String value,
String regexp)

is a string that matches the specified regex
(uses HTML5 attribute pattern for the client
side [25])

startsWith(String value,
String prefix)

starts with the specified prefix

Credit card number:

● isCardNumber(String value, List<String> types)

The validator checks a credit card number against the Luhn algorithm[49]
and the specified list of type codes. The function follows the forgiving
format pattern and allows to use spaces or hyphens in any place.

Possible type codes: AMEX, BANKCARD, DINERS, DISC, ELECTRON, JCB,
LASER, MAESTRO, MC, SOLO, SWITCH, VISA, VOYAGER.

87

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

13.2 Converters

Base type converters:

● toBigDecimal (uses current locale)

● toBoolean (returns a boolean value according to the Groovy Truth)

● toChar

● toEnum

● toDouble

● toFloat

● toInt

● toLong

● to<Type>List, where <Type> is any type that has a predefined converter

Other type converters:

● toNaturalInt (convert value to a non-negative integer number)

● toNaturalLong

● toNonnegativeBigDecimal

● toPositiveInt

● toPositiveLong

● toPositiveBigDecimal

● likewise, for float and double types

Date-time converters:

● toDate(String value, String pattern, Locale locale =
 Locale.default)

The converter tests a date against the given date format using the default
locale and time zone and creates a java.util.Date instance. Usage
example:

toDate(‘yyyyMMdd’)
toDate(‘MMMM, yyyy’)

The pattern parameter specifies the order in which the year, month and
day values are passed (see the java.text.SimpleDateFormat class for
the list of supported patterns). The converter can be used to process
HTML5 input of type datetime [25, 70].

88

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

● toMonthYear(String value)

The converter tests a month and year against the ISO 8601 using the
default time zone, then transforms it to a date instance. The function can
be used to process HTML5 input of type month [25, 70].

● toTime(String value)

The converter tests a time against ISO 8601 (00:00:00 - 24:00:00), then
transforms it to a date instance. The function can be used to process
HTML5 input of type time [25, 70].

● toWeekYear(String value)

The converter tests a week and year against ISO 8601, then transforms
it to a date instance. The function can be used to validate HTML5 input of
type week [25, 70].

Other converters:

Function name Action taken

abs(Integer/Long/Float/
Double value)

returns the absolute value of a int, long, float,
or double value.

add(Number value, Number
number)

adds number to the value (same as {it +
number})

capitalize(String value) capitalizes the first letter

ceil(Number value) rounds fractions up

collect(List values,
Closure transform)

transforms each list member into a new value
using the transform closure

decimalFormat(String
value, String pattern)

calls DecimalFormat.applyPattern with the
value and the pattern [97]

div(Number value, Number
number)

divides the value by the given number

escapeUrl(String value) escapes URL characters

escapeHtml(String value) escapes HTML characters

escapeJavascript(String
value)

escapes the characters using JavaScript string
rules

89

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

escapeSql(String value,
org.owasp.esapi.codecs.Co
dec codec)

escape input SQL characters, according to the
selected codec (uses ESAPI [34])

This converter is not recommended, use
prepared statements when possible [103].

floor(Number value) rounds fractions down

format(String value,
String format, List args)

formats the value using the specified
format string and arguments, see
String.format(String format, Object...

args) for more details [97]

mod(Long value, Long
number)

returns the value modulo number

minus(Number value,
Number number)

subtracts number from the value (same as {it
+ number})

mult(Number value, Number
number)

multiplies the value by number

replaceAll(String value,
String regexp, String
replacement)

replaces each substring of the value that
matches the given regular expression with the
given replacement

round(Number value) rounds to the nearest integer

setLowerLimit(Number
value, Number min)

substitutes the value with min if it is less than
min

setUpperLimit(Number
value, Number max)

substitutes the value with max if it is greater
than max

sha512(String value,
String salt)

generates a SHA-512 [75] hash for the value
prefixed by salt

stripTags(String value) strips HTML tags (a default rule)

substring(String value,
int beginIndex)

converts to a new string that is a substring of
value; the substring begins at the specified
beginIndex and extends to the end of the string

substring(String value,
int beginIndex, int
endIndex = -1)

converts to a new string that is a substring of
the value; the substring begins at the specified
beginIndex and extends to the character at
index endIndex - 1

90

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

subtract(Number value,
Number number)

subtracts number from the value

toLowerCase(String value) converts the value to lowercase (using the
default locale)

toUpperCase(String value) converts the value to uppercase (using the
default locale)

91

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 14

14 Example

To assess the solution presented in this document, we have tried to implement
validation for the NBC.com registration form in grules. This example will cover
conversion and validation use cases at a basic level and give you a flavour of what
can be done using our framework.

The registration process at NBC consists of two stages. Initially, a user has to
enter his email address:

Figure 11: NBC.com Sign Up Form, step 1

After the user enters the email address, a few more fields, such as a username
and password, must be filled in:

92

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Figure 12: NBC Sign Up Form, step 2

Now, for the sake of simplicity, let’s assume that HTML for the first form looks like
this:

<form data-token=”6bae9a6c8a8c06cbda25c12c6af48517fbc2e00b...”>
 <input type=”email” name=”email” class=”email”/>
 <input type=”submit” value=”Sign Up” class=”submit”/>
</form>

The validation script for this step would then be pretty trivial and have just three
lines of code.

SignUpStageOneGrules:

package rules

import static rules.SignupFunctions.*

email isEmail [m.invalidEmail] >> isUniqueEmail [m.notUniqueEmail]

Here, invalidEmail and notUniqueEmail are properties from the messages file,
and isUniqueEmail is a custom function defined in the SignupFunctions file:

package rules

import dao.UserDao // A data access object class for a user entity

@Functions
class SignupFunctions {

 boolean isUniqueEmail(email) {
 !UserDao.where(email: email)
 }

93

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 ...
}

An alternative solution would be to call the UserDao.where(email: email)
method as a closure:

email isEmail [m.invalidEmail] >>
 !{UserDao.where(email: it)} [m.notUniqueEmail]

At the second stage of form validation, we need to check each input, including the
hidden one with the email address.

SignUpStageTwoGrules:

package rules

import static rules.SignupFunctions.*
// include the rules script from the first stage to check the email
include rules.SignUpStageOne

username isAlnum [m.invalidUsername]

password isStrongPassword([/.*\w.*/, /.*\d.*/, /.{5,}/],
 [/.*\+.*/]) [m.weakPassword] >>
 isLengthLess(20) [m.passwordTooLong]

month isMonth [m.invalidMonth]

day toInt >> isDay [m.invalidDay]

year toInt >> toFourDigitYear >> isBirthYearAlive [m.invalidYear]

@Parameter
date = createDate(year: year, month: month, day: day) [m.InvalidDate]

gender toEnum(Gender) [m.wrongGender]

postCode[‘00000’] isPostCode(‘US’) [m.invalidPostCode]

termsConditionsCheckbox toBoolean

if (termsConditionsCheckbox) {
 subscribeCheckbox toBoolean
}

Then in SignupFunctions:

/**

94

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

 * Converts a two-digit year to a four-digit year,
 * assuming that we operate with a date that falls
 * between last 99 years and the current year.
 */
int toFourDigitYear(int twoDigitsYear) {
 if (!(twoDigitsYear in 0..99)) {
 throw new ValidationException(‘Invalid year’)
 }
 def year = Calendar.instance.get(Calendar.YEAR)
 def firstCenturyYear = year - year % 100
 if (twoDigitsYear > year % 100) {
 firstCenturyYear - 100 + twoDigitsYear
 } else {
 firstCenturyYear + twoDigitsYear
 }
}

An attentive reader will see that the rules script code is self-explanatory but
dense, especially in comparison with the amount of code that needs to be written
in Java to implement the same logic. These language features ensure that
complexity of preprocessing code is reduced by a significant factor, which makes
the application easier to maintain and increase its ability to evolve.

95

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Chapter 15

15 Conclusion and Future Work

15.1 Conclusion

In this thesis, we have argued that absence of a deliberate way to preprocess
external data in large client-server applications causes complexity, security,
and user experience problems. In order to attempt to resolve these issues, we
proposed a technique that considers input preprocessing as an independent stage
and that allows to express rules which must be applied to external data via the
domain-specific language. We have shown that it solves the aforementioned
problems more effectively than unstructured adoption of any single general
purpose language or a declarative language like XML, and in making this
argument we briefly surveyed existing common approaches to input validation,
paying attention to the strengths and weaknesses of each method. By providing a
working prototype, we have proven that following the reasons mentioned in this
document, building a rules engine that is based on a DSL that supports syntax
and semantics of the host application’s language, has built-in preprocessing
functions and a front-end library would be a tangible step in a direction of less
complex, but more secure, scalable, and user friendly applications.

Despite the fact that we used a web site as an example, the DSL is equally
applicable to other domains like mobile software or enterprise bank systems.
grules provides the rules semantics that can be leveraged in various ways to
support a broad range of preprocessing scenarios: from simple string trimming to
complex conditions that protect an application from hacker attacks. The proposed
framework allows for a quick and easy start during the prototyping stage (rich
converters and validators library, out of the box event handlers), as well as
complex data preprocessing in a production environment (custom functions,
internalization, customization of error feedback). With DSL scripts, dispersion
of input requirements throughout the codebase is minimized as they can now
be separated from business logic and organized according to the subdomains
to which they apply. Finally, by using JVM as an execution platform, grules
benefits from the existing community and code libraries, while implementing it
as a Groovy DSL allows seamless integration of the rule engine into an existing
project.

96

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

However, all these strengths do not come without limitations. The main
drawbacks are a lack of complete control over expressions used in the rules
scripts and the exceptions reporting apparatus that operates at a lower level and
does not always take the DSL semantics into account.

Nevertheless, we observe an appreciable trend in the software engineering
community toward such solutions [19, 20] and hope that our work would be
useful to others studying the same problems in data processing.

15.2 Future work

In our project we used asynchronous XMLHttpRequest to implement inline
validation on the client side. This approach allows to avoid code duplication
but imposes some performance overhead which can lead to delays in the user
interface (especially on mobile platforms). In order to mitigate this issue, a key
goal for future work is to implement a Groovy to JavaScript translator that can
convert simple expressions, such as constants and arithmetic operations, to
corresponding client code. In this way we would be able to significantly reduce the
number of client/server requests needed for the inline validation.

97

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Appendix

Core rules script grammar

Notations:

● .r — regular expression

● {} — zero or more occurrences

● [] — optional

● ‘’ — string literal

name ::= ‘[a-zA-Z_]\w*’.r

error ::= ‘[‘ GroovyExpression ‘]’

subrule ::= (conversion_subrule | validation_subrule) [error]

rule_exp ::= subrule | rule_exp ‘>>’ subrule

rule_application ::= param_name [‘[‘ GroovyExpression ‘]’] rule_exp

conversion_subrule ::= [‘~'] (function_call | GroovyClosure)

validation_subrule ::= validation_factor ‘||’ validation_factor |
validation_factor

validator_factor ::= validator_factor ‘&&’ validator_factor
| ‘!’ validator_factor | function_call | GroovyClosure | ‘(‘
validation_exp ‘)’

exp_list ::= GroovyExpression {‘,’ GroovyExpression}

function_call ::= function_name [`(´ [exp_list] `)´]

98

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

Bibliography

[1] Ed Burns editor, JavaServer™ Faces Specification Version 2.2, Oracle America
Inc, June 2011

[2] Danny M. Groenewegen, Eelco Visser, Integration of data validation and user
interface concerns in a DSL for web applications, Delft University of Technology,
Software Engineering Research Group, 2010

[3] D. Crockford, The application/json Media Type for JavaScript Object Notation
(JSON), Network Working Group, July 2006

[4] David Sawyer McFarland, JavaScript & JQuery: The Missing Manual, 2nd
Edition, O'Reilly Media, Inc., November 2011

[5] Steven C. McConnell, Code complete (2nd Edition), Microsoft Press, July 2004

[6] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, The Java™ Language
Specification, 3rd Edition, Addison-Wesley, May 2005

[7] Ralph Gordon, Walter Egan, Peter Jew, Kathryn Munn, Landon Ott, Robin
Whitmore, Oracle® Fusion Middleware, Oracle, April 2010

[8] Mike Grogan, JSR-223 Scripting for the Java TM Platform, Sun Microsystems,
December 2006

[9] Fergal Dearle, Groovy for Domain-Specific Languages, Packt Publishing, June
2010

[10] Jenifer Tidwell, Designing Interfaces, 2nd Edition, O’Reilly, December 2010

[11] Paco Hope, Ben Walther, Web Security Testing Cookbook, O'Reilly Media Inc.,
October 2008

[12] Stuart McClure, Hacking Exposed: Network Security Secrets & Solutions,
Sixth Edition, McGraw-Hill Osborne Media, January 2009

99

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

[13] Kristina Boysen Taylor, A specification language design for the Java Modeling
Language (JML) using Java 5 annotations, Iowa State University, 2008

[14] Elizabeth Fong and Vadim Okun, Web Application Scanners: Definitions and
Functions, Information Technology Laboratory, National Institute of Standards
and Technology, Gaithersburg, 2007

[15] S. Ruby, D. Thomas, and D. Heinemeier Hansson, Agile Web Development
with Rails, Third Edition. Pragmatic Programmers, 2009

[16] Ben Moseley, Peter Marks, Out of the Tar Pit, February 2006.

[17] Inline Validation in Web Forms, http://www.alistapart.com/articles/inline-
validation-in-web-forms/ (last visited May 2011)

[18] Michael Smith, HTML: The Markup Language, Unofficial Editor’s Draft 15
February 2012, http://dev.w3.org/html5/markup/

[19] How to use the validation rules on both client side and server side, http://
stackoverflow.com/questions/2606283 (last visited September 2011)

[20] JavaScript validation issue with international characters,
http://stackoverflow.com/questions/1073412 (last visited September 2011)

[21] RFC-compliant email address validator, http://blog.dominicsayers.com/2009/
01/28/rfc-compliant-email-address-validator/ (last visited September 2011)

[22] Color state, http://www.whatwg.org/specs/web-apps/current-work/
multipage/number-state.html (last visited September 2011)

[23] Mark Pilgrim, Dive into HTML5, http://diveintohtml5.appspot.com (last
visited September 2011)

[24] J. Klensin, Simple Mail Transfer Protocol, Network Working Group http://
tools.ietf.org/html/rfc5321, October 2008

[25] Ian Hickson, HTML5, A vocabulary and associated APIs for HTML and XHTML,
W3C Working Draft 25 May 2011, http://www.w3.org/TR/html5/

[26] CRLF Injection attacks and HTTP Response Splitting, http://
www.acunetix.com/websitesecurity/crlf-injection.htm (last visited September
2011)

[27] ASP.NET and Struts: Web Application Architectures,
http://msdn.microsoft.com/en-us/library/aa478961.aspx (last visited September
2011)

100

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

[28] Michael Scheidell, Intrusion Detection System, Patent US20100100961, April
2010

[29] Struts Validator Guide, http://struts.apache.org/1.x/faqs/validator.html (last
visited September 2011)

[30] Business rules engine, http://en.wikipedia.org/wiki/Business_rules_engine
(last visited May 2011)

[31] Design Guidelines for Secure Web Applications, Microsoft, MSDN,
http://msdn.microsoft.com/en-us/library/ff648647.aspx (last visited June 2012)

[32] Chen Lei, DoS and DDoS Attack's Possibility Verification on Streaming Media
Application, Software Sch., FUDAN Univ., Shanghai, 2008

[33] Robert A. Martin, Common Weakness Enumeration Version 1.3, The MITRE
Corporation, 2009

[34] The Open Web Application Security Project, https://www.owasp.org (last
visited October 2011)

[35] Anne van Kesteren, XMLHttpRequest Level 2, W3C Working Draft 17 January
2012,
http://www.w3.org/TR/XMLHttpRequest/

[36] Time zone abbreviations, http://www.timeanddate.com/library/
abbreviations/timezones/ (last visited October 2011)

[37] Walter L. Hürsch and Cristina Videira Lopes, Separation of Concerns, 1995

[38] Alexsander Reelsen, Play Framework Cookbook, Packt Publishing,
Birmingam, Mumbai, July 2011

[39] Country names and code elements, ISO, 2011, http://www.iso.org/iso/
country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

[40] Louridas, P., Static code analysis, Greek Res. & Technol. Network, August
2006

[41] Maggie Johnson, Syntax Directed Translation, Summer 2008.

[42] Nikolay Georgiev, A Web-Based Environment for Learning Normalization of
Relational Database Schemata, September 2008

[43] ASP.NET Validation in Depth, http://msdn.microsoft.com/en-us/library/
aa479045.aspx (last visited October 2011)

101

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

[44] Alexander Kolesnikov, Tapestry 5: Building Web Applications, Packt
Publishing, UK, January 2008

[45] jQuery API, http://api.jquery.com, 2010 The jQuery Project

[46] jQuery Form Plugin, http://jquery.malsup.com/form/ (last visited October
2011)

[47] Alessandro Basso, Protecting Web resources from massive automated
access,
University of Torino, Italy, 2008

[48] Scalaz: Type Classes and Pure Functional Data Structures for Scala http://
code.google.com/p/scalaz/ (last visited October 2011)

[49] Chiyuan Li, Zhiqiang Yao, The Validation of Credit Card Number on
Wired and Wireless Internet, North China Institute of Aerospace Engineering,
Langfang, China, March 2011

[50] Comparison of web browsers, http://en.wikipedia.org/wiki/
Comparison_of_web_browsers (last visited November 2011)

[51] Web Form Validation: Best Practices and Tutorials, http://
www.smashingmagazine.com/2009/07/07/web-form-validation-best-practices-
and-tutorials/ (last visited November 2011)

[52] K. Murchison, RFC-5233, Sieve Email Filtering: Subaddress Extension,
Network Working Group, Carnegie Mellon University, January 2008, http://
tools.ietf.org/html/rfc5233

[53] Robine, J.-M., Allard, M., The oldest human, France, Science 279, 1998

[54] Tomaz Kosar, Pablo Martınez Lopez, Pablo Barrientos, A preliminary study
on various implementation approaches of domain-specific language, University
of Maribor, Slovenia, Universidad Nacional de La Plata, Facultad de Informatica,
Argentina, April 2007

[55] M. Bravenboer, R. Vermaas, J. Vinju, E. Visser, Generalized type-
based disambiguation of meta programs with concrete object syntax, Fourth
International Conference on Generative Programming and Component
Engineering, Springer-Verlag, 2005

[56] Martin Fowler, Language Workbenches: The Killer-App for Domain Specific
Languages, 12 Jun 2005

[57] Emmanuel Bernard, JSR 303: Bean Validation, Red Hat Middleware LLC,
2007 November 14, http://jcp.org/en/jsr/detail?id=303

102

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

[58] JBoss community, Hibernate Validator, http://www.hibernate.org/
subprojects/validator.html (last visited November 2011)

[59] Juergen Hoeller, Alef Arendsen, Colin Sampaleanu, Rob Harrop, Thomas
Risberg, Overview of Spring Framework 3.1, Rod Johnson, 2011 SpringSource

[60] WebDSL, http://webdsl.org/home (last visited November 2011)

[61] The Java™ Virtual Machine Specification, 1999 Sun Microsystems, http://
java.sun.com/docs/books/jvms/second_edition/html/Instructions2.doc6.html (last
visited November 2011)

[62] HTML5Pattern, http://html5pattern.com/ (last visited November 2011)

[63] The Seam Framework - Next generation enterprise Java development, http:/
/seamframework.org/ (last visited November 2011)

[64] Zend Validate, Zend Technologies Ltd., 2006 - 2011,
http://framework.zend.com/manual/en/zend.validate.html

[65] Pipeline (Unix), http://en.wikipedia.org/wiki/Unix_pipe (last visited June
2012)

[66] The PHP Group, Data Filtering, http://php.net/filter (last visited November
2011)

[67] Antti Valmari, The State Explosion Problem, Lecture Notes in Computer
Science, Tampere University of Technology, Finland, 1998

[68] Jeffery Winesett, Agile Web Application Development with Yii 1.1 and PHP5,
Birmingham - Mumbai, 2010 Packt Publishing

[69] Guillaume Laforge, What’s new in Groovy 2.0, 33rd Degree Conference,
Krakow, Poland, March 2012

[70] Regular Expressions Cookbook, O'Reilly Media, Inc., May 2009

[71] Hibernate Validator, JSR 303 Reference Implementation Reference Guide,
4.0.1.GA, 2009 Red Hat Middleware, LLC. & Gunnar Morling

[72] Simple Made Easy, Rich Hickey, Oct 20, 2011, © C4Media

[73] Adrian Holovaty, Jacob Kaplan-Moss, The Definitive Guide to Django: Web
Development Done Right, 2nd Edition, Springer, 2009

103

http://www.hibernate.org/subprojects/validator.html
http://ca3.php.net/filter

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

[74] Adam Griffiths, CodeIgniter 1.7 Professional Development, Packt Publishing,
2010

[75] Tom St Denis, Syngress, Cryptography for Developers, January 2007

[76] Programming the Mobile Web: Ajax Support, http://programming4.us/
mobile/2010.aspx (last visited November 2011)

[77] jQuery plugin: Validation, http://bassistance.de/jquery-plugins/jquery-
plugin-validation/ (last visited November 2011)

[78] Eric Hamilton, h5Validate - HTML5 Form Validation for jQuery, http://
ericleads.com/h5validate/ (last visited November 2011)

[79] DSL Descriptors for Groovy-Eclipse,
http://groovy.codehaus.org/DSL+Descriptors+for+Groovy-Eclipse (last visited
November 2011)

[80] Groovy Language Specification, SpringSource,
http://groovy.codehaus.org/jsr/spec/ (last visited December 2011)

[81] Dave Thomas, David Heinemeier, Agile Web Development with Rails, 2nd
Edition, Hansson Pragmatic Programmers 2006

[82] jQuery 1.3 with PHP, Kae Verens, Birmingham - Mumbai, 2009 Packt
Publishing

[83] Jodi Forlizzi, Katja Battarbee, Understanding Experience in Interactive
Systems, Carnegie Mellon University, in Proceedings of DIS 2004 (Designing
Interactive Systems)

[84] Konstantin Kafer, Cross Site Request Forgery, Hasso-Plattner-Institut,
Potsdam

[85] François Zaninotto, Fabien Potencier, A Gentle Introduction to symfony 1.4,
Sensio SA SA, May 2010

[86] Symfony Jquery form validation plugin, http://www.symfony-project.org/
plugins/sfJqueryFormValidationPlugin, Symfony (last visited December 2011)

[87] Wadler, Philip, Comprehending Monads, 1990 ACM Conference on LISP and
Functional
Programming, Nice, 1990

[88] Brad Arkin, Scott Stender, Gary Mcgraw, Software Penetration Testing,
Security & Privacy, IEEE, 2005

104

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

[89] Regular Expressions, The Single UNIX Specification, The Open Group, 1997

[90] Peter Niederwieser, Spock ‒ the enterprise ready specification framework,
http://code.google.com/p/spock/

[91] Rodrigo Werlinger, Kirstie Hawkey and Konstantin Beznosov, An integrated
view of human, organizational, and technological challenges of IT security
management, University of British Columbia, Vancouver, Canada, November 2008

[92] Clifford Lynch, Canonicalization: A Fundamental Tool to Facilitate
Preservation and Management of Digital Information, Coalition for Networked
Information, D-Lib Magazine, 1999

[93] Almudena Alcaide Raya, Jorge Blasco Alis, Eduardo Galán Herrero, Agustín
Orfila Diaz-Pabón, Cross-Site Scripting, University Carlos III of Madrid, Spain,
2011, IGI Global

[94] Jose Maria Alonso, Antonio Guzman, Marta Beltran, Rodolfo Bordon, Rey
Juan, LDAP Injection Techniques, Informatica 64, Carlos University, Madrid,
Spain, July 5, 2009

[95] William M. Farmer, The Seven Virtues of Simple Type Theory, McMaster
University, December 2007

[96] Web/Libraries/Formlets, HaskellWiki, http://www.haskell.org/haskellwiki/
Formlets, (last visited December 2011)

[97] Java Platform Standard Edition 7 Documentation, 2011, Oracle and/or its
affiliates

[98] J.D. Meier, Alex Mackman, Blaine Wastell, Prashant Bansode, Andy Wigley,
How To: Use Regular Expressions to Constrain Input in ASP.NET, Microsoft
Corporation, May 2005

[99] J.D. Meier, Alex Mackman, Blaine Wastell, Prashant Bansode, Andy Wigley,
How To: Prevent Cross-Site Scripting in ASP.NET, Microsoft Corporation, May
2005

[100] R. Snake, XSS (Cross Site Scripting) Cheat Sheet, http://ha.ckers.org/
xss.html (last visited December 2011)

[101] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso, A Classification
of SQL Injection Attacks and Countermeasures, College of Computing, Georgia
Institute of Technology

105

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

[102] Jeongseok Seo, Han-Sung Kim, Sanghyun Cho and Sungdeok Cha, Web
Server Attack Categorization based on Root Causes and Their Locations, Division
of Computer Science, Department of EECS, KAIST and AITrc/IIRTRC/SPIC, 2004

[103] Stephen Thomas and Laurie Williams, Using Automated Fix Generation to
Secure SQL Statements, Department of Computer Science, North Carolina State
University, USA, 2007

[104] J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray
Escamilla and Anandha Murukan, Improving Web Application Security: Threats
and Countermeasures,
Microsoft Corporation, June 2003

[105] Alan Shalloway, James Trott, Design Patterns Explained: A New
Perspective on Object-Oriented Design, 2nd Edition, Addison-Wesley Professional,
2004

[106] David Hook, Beginning Cryptography with Java, Wrox Press, 2005

[107] Java™ Platform, Enterprise Edition 6, API Specification, Oracle Corporation
and/or its affiliates, Generated on February 2011

[108] Grules. Rule engine for input preprocessing. http://grules.org

[109] GEP 8 - Static type checking, http://docs.codehaus.org/display/GroovyJSR/
GEP+8+-+Static+type+checking (last visited October 2011)

[110] Measuring Website Security: Windows of Exposure, 11th Edition, WhiteHat
Security Inc., December 2011

[111] Andrew Troelsen, Pro C# 2010 and the .NET 4 Platform, Apress, May 2010

[112] Jeff Moser, Does Your Code Pass The Turkey Test?
http://www.moserware.com/2008/02/does-your-code-pass-turkey-test.html (last
visited January 2012)

[113] Social Security Online, Invalid or impossible Social Security numbers
(updated 09/21/2011), http://ssa-custhelp.ssa.gov/app/answers/detail/a_id/425

[114] The Validation Application Block, Microsoft, MSDN http://
msdn.microsoft.com/en-us/library/ff664356 (last visited January 2012)

[115] Brett Stineman, IBM WebSphere ILOG Business Rule Management
Systems: The Case for Architects and Developer, IBM Software Group, November
2009

[116] Michal Bali, Drools JBoss Rules 5.0 Developer's Guide, Packt Publishing, July
2009

106

Master Thesis — Vitalii Fedorenko McMaster University — Computing and Software

[117] MVEL, Language Guide for 2.0, The Codehaus, http://mvel.codehaus.org/
Language+Guide+for+2.0 (last visited January 2012)

[118] Business rule management system, http://en.wikipedia.org/wiki/BRMS (last
visited January 2011)

[119] Vidyasagar Potdar, Farida Ridzuan, Pedram Hayati, Alex Talevski, Elham
Yeganeh, Nazanin Firuzeh, and Saeed Sarencheh, Spam 2.0: The Problem Ahead,
Anti Spam Research Lab, Curtin University of Technology, Australia, Springer-
Verlag Berlin Heidelberg 2010

[120] J.A. Bargas-Avila, O. Brenzikofer, S.P. Roth, A.N. Tuch, S. Orsini and K.
Opwis, Simple but Crucial User Interfaces in the World Wide Web: Introducing
20 Guidelines for Usable Web Form Design, University of Basel, Faculty of
Psychology, Switzerland, 2011

[121] Bashar Abdul-Jawad, Groovy and Grails Recipes, Apress, December 2008

[122] Google Trends, Google Inc., http://www.google.com/trends/ (last visited
January 2012)

[123] Convention over configuration, http://en.wikipedia.org/wiki/
Convention_over_configuration (last visited May 2012)

[124] The Dart Team, Dart Programming Language Specification (Draft Version
0.07, January 20, 2012), http://www.dartlang.org/docs/spec/dartLangSpec.pdf

[125] Daniel J. Barrett, MediaWiki, O'Reilly Media, Inc., 2008

[126] U.F. Yergeau, UTF-8, a transformation format of ISO 10646, Network
Working Group, November 2003

107

