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Abstract

Most object-oriented languages seem to have a strong common core, but

also seem to be “verbose” in practice, at least with respect to certain classes

of programs. But this observation is informal and anecdotal. The aim of

this project is to see if some actual empirical evidence could be provided.

The method employed was to reverse engineer an executable language

from a collection of OO languages, and demonstrate that this new language

was expressive enough to succinctly and accurately express a number of

(standard) OO programs. The focus here is explicitly bottom-up, to “dis-

cover” patterns. However, since it was humans doing the discovery, the

patterns found may have been coloured by individual experiences.

The GOOL tool was the end result of this effort. It consists of an in-

ternal/embedded Domain-Specific Language (DSL) to serve as the new OO

language, and a code generator which renders DSL programs into a repre-

sentative sample of OO languages.

The existence of such a language in an accessible and readable form,

together with its deterministic transformation into real OO languages, is

conjectured to be sufficient evidence for this “core”.
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Chapter 1

Executive Summary

The goal of this project is to demonstrate that programming languages of

the object-oriented (OO) paradigm share some central concepts. That is,

there exists a common “core” among OO languages, made up of a set of

fundamental features and patterns.

We have shown this by designing a new programming language that

explicitly models this core. The components and features of the language are

those which we have found to be shared among traditional OO languages. It

has sufficient scope and functionality to accommodate full implementations

of simple programs.

To prove that the language really is representative of mainstream OO

programming languages, we created a software tool in Haskell, called GOOL.

Development began with modification of an existing tool (used to generate

code for story-management modules of video games), since many of its com-

ponents were suitable for reuse and extension.

GOOL implements our language using Haskell data structures, and can

perform a “translation” on code from this language to any of six traditional

OO languages. The output languages are meant to be a representative sam-

ple. The translation process is very straightforward. Each output language

has a “translation dictionary” associated with it, and every component of

our language can be looked up in this dictionary.

We posit that, since compilable code in many different programming
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languages can be “trivially” generated from a single generic representation,

these languages must therefore have a core set of common features, and this

core is accurately represented by our language.
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Chapter 2

Introduction

Object-oriented languages are extremely popular [LLC11]. Even languages

that are not strictly object-oriented still support fundamental OO features

and allow for OO programming. Throughout all the various implementa-

tions, there is a certain general set of core ideas that can be abstracted away

from any one specific language. This is made up of a certain set of patterns

that form the “heart” of the OO style in general, at least as implemented

in mainstream languages.

This project seeks to both demonstrate (empirically) the existence of

this core, and to test its boundaries. It strives to find just how much of the

set of core ideas can be abstracted out by reverse engineering mainstream

languages.

An appealing way to accomplish this is to create a separate language

which is somehow representative of the original OO languages, and anchor

it to mainstream OO programming through some tangible link to compilable

OO code. The link must be substantial and direct enough to prove that the

language is, indeed, representative of identified OO patterns. If these criteria

are met, the resulting system would suffice to demonstrate the existence of

the aforementioned core, as comprised by the patterns represented in the

language.

This serves to summarize the ultimate goal of this project. A more

specific account of what it aims to accomplish can be found in Chapter 3.
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It seemed logical to develop a software tool that could realize this con-

cept. This would be an obvious way to provide practical, concrete evidence.

Based on the requirements, a tool could be designed to explicitly demon-

strate the aforementioned core.

We proposed a specific methodology for this, describing the tool to be

designed and developed. After some deliberation and refinement, we de-

cided to create a new object-oriented programming language, in the form

of an embedded domain-specific language (see Chapter 5 for an explanation

of domain-specific languages). This would allow for the most direct and

straightforward representation of the core. The “link” (acting as proof that

this language really is representative of OO programming) would be the

tool’s ability to translate these programs into traditional OO code, using

several mainstream programming languages. The generated code must be

a direct translation from the input code, and it must follow the same basic

patterns in all output languages. Again, this seemed to be the most logical

and straightforward way to prove a connection. The tool was named GOOL:

a Generic Object-Oriented Language.

In order to jumpstart development, a previously completed tool was

reused as a starting point. This tool, called SAGA, was created for a very

different purpose (generation of story manager modules for video game devel-

opment), but included several components, as well as the basic framework,

that would be needed for GOOL. One of its components was a system for

code generation to various languages. It also defined an intermediate repre-

sentation language (known as AbstractCode), which could be developed and

expanded into the “core” language that GOOL would use. Thus, it was an

obvious choice. Section 8.1 provides a more complete description of SAGA.

The first major phase of GOOL’s development consisted of generalizing

SAGA’s story-specific facilities and transforming it into a tool that could

produce general-purpose code. Once this was accomplished, development

efforts were focused more directly on the requirements of this project.

Some time was given to making various general improvements. These

improvements were largely technical and organizational, primarily benefit-

ting the understandability and maintainability of the code, with regards to
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the tool’s new purpose.

Another phase of development focused on preparation of the Abstract-

Code structure for a DSL. AbstractCode is the root node of a large algebraic

datatype which represents “code” as an abstract syntax tree. Since it was

previously only an intermediate representation, intended to be maintained

and used directly only by the developers of SAGA, a fair amount of effort

needed to be put into making it suitable for use by a wider audience. The

main goal here was to make the DSL code look and feel like a general pur-

pose OO language. As an internal DSL, the code still needed to suit the

rules of the host language (Haskell in our case), but it was found that its

resemblance to traditional code could be vastly increased through various

methods. Chief among these was the implementation of a large number of

“shortcut” functions. These generally represent a sequence of AbstractCode

data constructors in a single keyword, allowing the programmer to greatly

reduce the verbosity of an AbstractCode program. For example, a statement

to print a literal string with a line break:

PrintState True string . litString

can now be abbreviated to simply:

printStrLn

Additionally, a number of custom unary and binary operators were added

to automate the implementation of common expressions and statements.

These are similarly used to eliminate the need for typing out clumsy or ugly

sequences of datatype constructors in order to represent a simple idea. For

instance, a statement to increment the value of a numeric variable:

AssignState $ PlusEquals (Var "x") (Var "y")

can also be written as:

"x" &+= Var "y"

Symbolic operators were implemented for expressions that typically use

such in general purpose languages, like equality comparisons, or arithmetic

operations, as shown above. These, again, served to further the goal of

making AbstractCode seem like a conventional language.
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In this way, much of the structural overhead of the language could be

abstracted out. This task involved the identification of many common or

significant patterns in the code (such as the statements shown above). This

proved to be an ongoing process, continuing throughout development as

more constructs were added to the language and complexity increased.

As an introductory example, the following is a piece of code written

entirely with AbstractCode primitives. It implements a simple class that

represents a geometric circle. Analogous code in traditional languages will

be presented shortly afterwards, for comparison and reference.

circleClass :: Class

circleClass =

let modName = circleClassName

radius = "radius"

diam = "diameter"

modVars = [

StateVar radius Private (Base Float) 0]

in Class modName Nothing Public modVars [

Method modName Public (Construct modName)

[StateParam "rad" $ Base Float]

[ Block [

AssignState $ Assign

(ObjVar Self (Var radius)) (Var "rad")

], Block [

PrintState False (Base String) $

Lit $ LitStr "Circle created with radius ",

PrintState True (Base Float) $

ObjVar Self (Var radius)

] ],

Method "getDiameter" Public (MState $ Base Float) []

[ Block [

DeclState $ VarDecDef diam (Base Float)

(Expr $ BinaryExpr

(Var radius) Multiply (Lit $ LitFloat 2.0)),

RetState $ Ret $ Var diam

] ],

Method "getArea" Public (MState $ Base Float) [] $ oneLiner $

RetState $ Ret $

Expr $ BinaryExpr (Lit $ LitFloat 3.14159)

Multiply

(Expr $ BinaryExpr

(Var radius) Power (Lit $ LitInt 2))

]
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The equivalent code written in GOOL (i.e. employing GOOL’s shortcut

functions and operators):

circleClass :: Class

circleClass =

let modName = circleClassName

radius = "radius"

diam = "diameter"

modVars = [

privVar neverDel float radius]

in pubClass modName noParent modVars [

pubFunc (Construct modName) modName

[param "rad" float]

[ Block [

Self$ ->(Var radius) &=. "rad"

], Block [

printStr "Circle created with radius ",

printLn float $ Self$ ->(Var radius)

] ],

pubFunc (MState float) "getDiameter" []

[ Block [

varDecDef diam float (Var radius #* litFloat 2.0),

return $ Var diam

] ],

pubFunc (MState float) "getArea" [] $ oneLiner $

return $ litFloat 3.14159 #* (Var radius #^ litInt 2)

]

Now, the output code that the GOOL program generates from (either

of) the previous code samples. The C++ header:

class Circle {

public:

Circle(float rad);

float getDiameter ();

float getArea ();

~Circle ();

private:

float radius;

};

And the C++ source file:

Circle :: Circle(float rad) {

radius = rad;
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std::cout << "Circle created with radius ";

std::cout << radius << std::endl;

}

float Circle :: getDiameter () {

float diameter = radius * 2.0;

return diameter;

}

float Circle :: getArea () {

return 3.14159 * (pow(radius , 2));

}

Circle ::~ Circle () {

}

Finally, the equivalent output code in Python:

class Circle:

def __init__(self , rad):

self.radius = rad

sys.stdout.write(str(" Circle created with radius "))

print(self.radius)

def getDiameter(self):

diameter = radius * 2.0

return diameter

def getArea(self):

return 3.14159 * (radius ** 2)

The GOOL syntax seen here is explained in Section 7.3, and more ex-

ample programs can be found in Section 8.5.

Perhaps the majority of development effort was spent on adding features

to the new DSL. Since SAGA had a much more specific purpose, there were a

number of common language features that did not yet exist in AbstractCode,

as they were never needed for the story engine implementation. The need

for several of these, such as simple arithmetic, or a statement to print to the

console, was immediately apparent, in order for the DSL to be relatable to

mainstream languages. Subsequently, an effective, but simple, methodology

for choosing new features to add was designed: examples of small OO pro-

grams were chosen and implemented in AbstractCode. In this way, it was
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natural to discover features used in the examples that would be necessary

or helpful to complete their DSL implementations, but that were not yet

supported by AbstractCode. Additionally, these examples would support

the existence of the link between the AbstractCode core and traditional OO

languages.

Other, larger-scale, additions were made, in the form of supplementary

output languages. The modular design of SAGA and GOOL made it rela-

tively simple to attach additional language generation modules, referred to

as renderers. Each renderer needed to know how to generate output code

for each AbstractCode primitive (and often also for special combinations of

primitives) in its particular language, except where this output overlapped

with that of an existing renderer (which does come up frequently, for some

languages more than others). Therefore, each new renderer increased the

effort required to add a new AbstractCode feature, and vice versa. As a

result, doing either was rarely a trivial task.

GOOL’s development process, added language features, and example

AbstractCode implementations are all discussed in a technical and detailed

capacity in Chapter 8.

It should be noted that there have been various attempts to create a

“semantic core” OO language in the past (for example, Featherweight Java

[IPW01]). However, this project aims to identify a more syntactic core, up

to obvious isomorphism of syntax (while maintaining semantic equivalence).

This document will give a detailed explanation of the software tool that

resulted from this project, the domain-specific language that it defines, and

the story of how it was designed and developed. The chosen goals and re-

quirements of the project are listed in Chapter 3. The methodology used

to meet these requirements is discussed in Chapter 4. Subsequently, some

important background information regarding Domain Specific Languages

(DSLs) and the structure of OO languages is given in Chapter 5 and Chap-

ter 6, respectively. Finally, the actual development of the software can be

discussed. Section 8.1 explains where development was started and the state

of the original tool that was gradually overhauled to become GOOL. Chap-

ter 7 describes the ultimate state of the GOOL program at the culmination

12



of this project. Once this is understood, Chapter 8 falls back to fill in the

gaps in detail, giving a chronological and much more thorough account of

GOOL’s development.
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Chapter 3

Goals

The central goal of this project is to pragmatically demonstrate the existence

of a “common core” among OO languages by explicitly exhibiting it. By

core, we neither mean the intersection of the semantics of all languages (this

would likely be too small), nor the union (too large and unwieldly). We mean

a set of abstract features which are either present or trivially encodable in

a sufficiently large set of (mainstream) object-oriented languages.

Our task, then, is to discover this set of abstract features. The most

obvious place to start would be to take a set of textbooks on programming

languages which cover a wide range of languages (such as [TN02, Seb01,

FWH01, Sco09, Cla00]) to find such a set. But we were curious to see if

that set would be the same as the set that we would find if we tried to

build abstract features by recognizing common patterns in the languages

themselves.

Of course, there is a certain minimum set of features of an OO language

which must be present, and this is discussed in Chapter 6.

To show that the core really is present in multiple mainstream OO lan-

guages, we decided that the most convincing “proof” would consist of trans-

lating what we identify as the core into compilable, runnable code in these

same OO languages. Furthermore, the translation should be “trivial”, in

the sense that it can be performed directly and unambiguously. In the next

chapter, we expand on what we mean by this.
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It is very important to us that we find a core which works in practice. In

other words, our principal measure for whether we have achieved our goals

will be if we can take a set of fairly standard OO programs, write them in

our core language, and automatically translate them to reasonably idiomatic

programs in a set of mainstream OO languages.
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Chapter 4

Methodology

In order to accomplish the project’s goals, a specific method was utilized: we

created a language that (we hope) represents the OO core, and implemented

it as an embedded DSL.

4.1 General Methodology

The primary goal of the project is to find a representation for the “common

core”, consisting of patterns found among OO languages. The first — and

perhaps most important — step, would be, then, to decide on what these

patterns are, and what actually constitutes a “pattern”. The process that

we employed for this is described in Section 4.2.

With the set of essential patterns in hand, we could set about creating a

representation. The most explicit and direct method would be to assemble

this representation in the form of a new, generic OO language. Further-

more, the most direct method to prove that our core permeates mainstream

languages would be to show that a straightforward translation exists. The

constraints and criteria selected for the language are listed in Section 4.4.

To facilitate this process, a software program could be created that would

accept programs in the generic language, and “translate” them to traditional

languages. Requirements for this software are listed in Section 4.5, and a

description of the translation process can be found in Section 4.3.

16



4.2 Discovering Patterns

Beyond simply implementing the software, the language that makes up the

core representation had to be designed. In order to do this, the core needed

to be “discovered”. This was accomplished by “reverse engineering” main-

stream OO languages to find patterns at the heart of OO programming.

A “pattern”, in this context, refers to any language feature that can be

found in common among multiple languages. These patterns were discovered

with simple methods.

The first method was suitable for the most obvious and numerous sort

of pattern to be represented in the DSL — the simple, fundamental fea-

tures (for example, all OO languages make use of variables, conditionals,

and loops). Knowledge of programming was applied to brainstorm a list of

features that would be necessary for any basic program functionality. Nat-

urally, these would need to be part of the core, as per the project goal to

have a functional and practical representation.

In most languages, these sort of patterns would use a nearly identical

structure. An “if” conditional, for instance, always tests a boolean expres-

sion and uses the result to determine whether a code block should be exe-

cuted. Also, there is a provision for more possible branches, in the form of

“else” and “else if” blocks (some languages may include a primitive for the

“else if” parts, like Python’s “elif”, whereas some languages would have to

form this structure by simply chaining together “if-else” statements. How-

ever, the functionality, and the underlying pattern, is identical either way,

and thus this form of the “if” conditional is a valid pattern for our core).

Other patterns may bear less of a syntactic resemblance, but are never-

theless valid. An example of this is collection containers. The most common

container to use for collections in some languages is an array. In some it

is a list. In addition, there are frequently other options that serve similar

purposes (e.g. Vector; ArrayList). However, in the context of this project,

they are extensions of the same pattern. In GOOL’s DSL, the differences are

abstracted out and a single, representative “List” primitive is used instead.

To identify patterns that were less obvious or more esoteric, further
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methods were used. GOOL’s DSL should be capable of expressing simple

and “usual” programs, to better satisfy the project goals described in Chap-

ter 3. Therefore, some representative example programs were written in

GOOL. During this process, roadblocks were sometimes encountered when

GOOL was missing certain feature that were needed. At these points, a new

pattern had to be found and implemented as a feature in GOOL.

For instance, the State example program represents a common Java

design pattern (see 8.5.1). To produce the desired functionality, some of

the classes that comprise this example had to inherit from another class.

GOOL’s DSL did not yet allow for inheritance, but all of the considered

mainstream languages supported it in some form. Thus, an important OO

pattern was naturally rediscovered. Examples of other patterns identified

in this way include various arithmetic operations, list-element modification,

and printing to the console.

4.3 Printing Code

As discussed in Section 4.5, GOOL translates code from the DSL to main-

stream languages. This translation is, by design, very direct and straight-

forward — it may be more appropriate to refer to the process as simply

“pretty-printing” the code in a particular language. This can be taken as a

measure of the “distance” between GOOL’s DSL and mainstream languages.

This was done to meet one of the project’s goals (see Chapter 3). In

particular, the renderer does not perform any inference, and so all relevant

details must already be present in the AbstractCode AST representation.

Therefore, the method for printing code is also straightforward: for each

output language, GOOL has a translation “dictionary” that explicitly de-

scribes how to pretty-print each primitive of the DSL. This dictionary is

consulted for every component of a GOOL program that is to be printed.

See Section 7.4 for a more detailed look at the code generation process.
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4.4 Language Requirements

The language created for this project must meet several criteria in order

to accurately and closely represent the OO core. The following is a list of

requirements that we designed for the DSL.

� The language can be easily written and read by a programmer of

common skill and experience. It should be fairly natural for the pro-

grammer to write code in this language.

� It must accomodate a typical OO structure (what constitutes this

structure will be discussed in detail in Chapter 6), and it must provide,

at least at a basic level, the fundamental features associated with OO

languages and programming languages in general.

� The language must include only such features as could be expected

from a typical OO language.

� The scope of the language should be sufficient to fully represent simple

common or “usual” programs.

� It must be a generic representation. The structure of the language

does not necessarily conform to the structure of any particular existing

language.

4.5 Software Requirements

As mentioned previously, the goals of Chapter 3 were accomplished by cre-

ating a piece of software. This software had to be specifically designed

towards these goals. This section will describe what criteria were required

of the software and its DSL in order to ensure that they were met.

� The software will demonstrate the “common core” of OO languages

explicitly. It will generate object-oriented code in several different

languages from a single representation.
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� The software should accept a code representation in the form of the

OO language described in Section 4.4.

� The process of translation to all languages must be straightforward

and unambiguous.

� The software must transform written generic code into corresponding

mainstream object-oriented code in multiple languages.

� Additionally, the output code must be formatted in such a way as to

facilitate reading and interpretation by humans. It must follow the

usual conventions for whitespace and indentation of written code.

� When compiled and run, the output code should produce semantically

equivalent results across all supported languages.

� The software should generate this output code in several different lan-

guages which support the object-oriented paradigm, in order to exem-

plify the patterns which underly it. When rendering code to a language

that supports additional paradigms, the object-oriented style should

always be preferred.

� Common/popular languages should be chosen as the output languages,

as it is desirable to maximize the proportion of programmers that can

easily comprehend and use the output code.

� The code rendering system must facilitate extension with supplemen-

tary rendering languages.

� In addition, the software should be well-designed with respect to soft-

ware engineering principles and software quality metrics, including

modularity, comprehendability, and maintainability.

We decided that software which meets all of these criteria will suit the aim

of the project, and accomplish the overarching goals.

20



Chapter 5

Domain-Specific Languages

(DSLs)

Before discussing technical details, it would be beneficial for the reader to

have some background knowledge of important concepts. Thus, we briefly

digress to provide an introduction to DSLs, and an explanation of how one

is used in this project.

SAGA (described in Section 8.1) also made prominent use of a DSL.

This chapter in particular is based largely on the report compiled by its

author [Bey11].

5.1 What is a DSL?

A DSL is a language of limited scope which is intended to solve a specific

set of problems. This set is the domain of the language. DSLs are used to

efficiently and concisely express their respective domains. DSLs are typically

not Turing complete, and thus they are generally not used to define entire

systems like general-purpose languages.

DSL design requires a thorough understanding of the domain in ques-

tion. This is because there must be some automated process that can de-

terministically transform a DSL program into some desired representation.

Additionally, since DSLs are frequently used by domain experts to express
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domain-specific ideas, the DSL should incorporate the domain’s standard

representation of problems.

The purpose of employing a DSL is usually to simplify the program-

ming involved in creating a solution for a domain-specific problem — if it

can be accomplished just as easily in a general-purpose language, then the

effort involved in creating the DSL may not be worthwhile. Using a DSL

should generally increase productivity. Sometimes, however, this is not the

case, and the main benefits of the DSL lie elsewhere. These might include in-

creased quality of software with respect to various metrics such as reliability,

understandability, maintainability, testability, and efficiency. Additionally,

the DSL could facilitate implementation of ideas by domain experts who are

not programmers.

DSLs may employ various programming styles. Some DSLs are ”solution-

oriented”. This means that the form of the desired solution is described al-

gorithmically. Others are ”problem-oriented”, meaning that the code is used

to describe only what the program should accomplish, but not how to do it.

These styles are analagous to, respectively, the imperative and declarative

paradigms of general purpose languages. The declarative paradigm is used

by many DSLs, and as such they are oriented towards describing the prob-

lem. This is often because DSLs are intended to be simpler to program in

(within their own domain), and the declarative style is usually appropriate

for this purpose.

One primary goal of a DSL is to greatly simplify the expression of com-

mon tasks within the domain, with respect to how these tasks would be

expressed in conventional languages. Another goal is to reduce the difficulty

of implementing complex domain problems.

5.2 Internal vs. External DSLs

Internal/embedded DSLs can be distinguished from external DSLs. Each

type of DSL has benefits and drawbacks in various scenarios. Choosing

between an internal and an external DSL requires consideration of several

factors.
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A DSL that is embedded within some general purpose host language is

referred to as an internal DSL. Programming is done in the host language,

but with the help of some integrated constructs so that the DSL code is es-

sentially a ”new” language within the host language, without being entirely

distinct.

The effort required to create an internal DSL is relatively low, since the

code can be processed by the host language’s compiler. Additionally, the

developer of the DSL can take advantage of the host language’s established

capabilities. One drawback of an internal DSL is that, since it must be

written within the constraints of the host language’s syntax and grammar,

its expressiveness may be limited by the rules of the host’s parser. The

severity of this limitation can vary greatly between host languages. Another

potential problem is that the domain experts will be programming in a (host)

language with which they might not be familiar.

External DSLs are not embedded in a host language. As such, they will

not be processed by an existing compiler, and the syntax and grammar can

be freely customized. This will generally allow for a more natural interface

with the DSL, making it easier for domain experts to express ideas. However,

this type of DSL will be more difficult to implement, as a compiler must be

created for it. This can be a complex task, as the compiler must parse

the code, possibly create an intermediate representation, and then generate

output code.

5.3 Project Domain

As can be inferred from previous chapters, the domain relevant to this

project is that of object-oriented languages in general. The result is a rather

special case of a DSL, whose domain is comparable to general purpose lan-

guages, and whose “domain experts” are programmers. It is still very much

a DSL, as it is specialized to favour typical OO problems, and its capabilities

are limited to those most fundamentally required in typical OO languages,

while still being Turing-complete.

An internal DSL was chosen to reduce the complexity of development,
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and expedite the process. As this is primarily an academic exercise, we

decided that an internal DSL would suffice to accomplish the goals of the

project and demonstrate the desired patterns. Since the intended users are

programmers, ease of development could be prioritized over giving the DSL

a fully customized syntax, facilitating the implementation of more advanced

features and patterns.

The choice of host language is discussed in Section 7.1.
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Chapter 6

Concepts of an OO Language

At this point, before GOOL’s DSL is discussed in detail, the reader should

understand what was taken to be the fundamental structure of a “typical”

OO language. This structure drove much of the design of the language. As

such, a brief dissection of this structure is provided here.

Note that this is a description of the structure as specifically imple-

mented in this project’s DSL — obvious concepts which are ignored (e.g.

the protected scope in Section 6.2) are simply not supported by the language

at this time.

6.1 Classes and Objects

A class is an OO construct which is a template for instances of itself [MSD12].

Instances are objects of a class, and the class, in that sense, is often called

the type of these objects. In general, a class must be instantiated as an

object before any of its contents can be accessed or used.

A class definition can contain a local set of variables, called instance

variables. The class can also include its own set of methods (see Section 6.3).

All of these members are used to associate a certain state and behaviour with

objects of that class. Each member is associated with a certain scope (see

Section 6.2).

Multiple objects can be declared as instances of the same class. In this
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case, each object maintains its own independent collection of data. Modi-

fying the values of the instance variables of one object will not change the

variables of any other.

Within a method of a class, this or self refers to the current object —

i.e., the object whose method is being called.

There may also be a hierarchy to classes. A class can “inherit” from

another class. If class D inherits from class C, then C is called the parent or

superclass of D, and D is a child or subclass of C. Inheritance enables code

reuse and sharing. Subclasses inherit the methods and variables of their

parents.

Any program that creates a variable (object) of type C is called a client

of class C.

At a high level, an object-oriented program can be viewed simply as a

set of interacting objects [TN02].

6.2 Scope

The scope of a method or variable is its level of visibility with respect to its

class.

If a variable or method is declared public, it will be visible outside of the

class. That is, that variable or method can be accessed by any clients of the

class.

If a variable or method is declared private, it will only be visible within

the class. It can be accessed by other methods of the class, but not by clients

or subclass objects [TN02].

6.3 Methods

A method is a special function that is a part of an object. It can take

a certain set of arguments as input. It may also return some value of a

particular type (if not, its return type is “void”). The argument types and

return type make up the method’s signature. In a sense, a method represents

an action that the object can perform [Sla08].
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A special method without a return type, called a constructor, is used to

initialize a new object of its class. Execution of the constructor performs

memory allocation for the object, and can initialize the instance variables.

A constructor is typically not mandatory; if one is not explicitly provided in

a class definition, then a simple one (with no parameters) will be implicitly

generated. For example, in Java, an object of type C would be initialized in

the following way:

C x = new C(<arguments >);

This would call the class constructor and pass it the specified arguments.

Any public method or variable of x can now be referenced by the client code.

Communication among objects is achieved by calling each others’ meth-

ods — this is called message passing. The calling object passes the appro-

priate parameters for the desired method and waits for a response from the

callee, in the form of a return value [TN02].

6.4 Statements

Any block of code is composed of statements. A statement is the smallest

element of code which actually performs some action. Simple statements

may involve assignment to a variable, or calling a function. Compound

statements can contain other statements (for example, an “if” statement can

contain one or more blocks of simpler statements to execute when certain

conditions hold) [Net11].

Control structures are statements, construction patterns, rules, or com-

binators which affect the flow of execution. These include conditionals (like

the “if” or “switch” statements) and loops (“while”, “for”, “forEach”).

6.5 Expressions

An expression is some arrangement of constants, variables, function calls,

and operators which is well-constructed with respect to the rules of the
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particular language, and can be evaluated (e.g., 5 / 0 cannot generally be

evaluated). An expression can be evaluated to a value [Inc00].

6.6 Values

A value is considered to be an object or an expression of the language which

is in normal form (i.e. it cannot be evaluated any further). Values inhabit

types [Mit96].

6.7 Base Types

Base types are the simplest types natively supported by a language. Vari-

ables of a base type are not objects; they simply hold a value of the relevant

type. In the case of GOOL’s DSL, these are integers, floats, characters,

strings, and booleans.

6.8 Compound Types

Compound types are constructed from simpler types (e.g., the type of a

certain list object could be List of Lists of Integers). In GOOL, the only

compound types are lists and iterators.
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Chapter 7

The GOOL Program

This chapter details the final state of the GOOL software tool and the

AbstractCode language.

7.1 Overview

The GOOL program is a code generator. The programmer writes DSL code

as an AbstractCode data structure, and GOOL can print equivalent code in

one of the supported output languages.

When run, it first parses a text configuration file and uses this to set

some user-defined options in an internal data structure, and to determine

in which language to render code. It then passes an AbstractCode data

structure (containing the DSL implementation) and any relevant settings to

the rendering module of the chosen language. From there, the DSL code

structure is evaluated recursively to determine how each component should

be rendered, and source files are created containing the resulting code.

GOOL is implemented entirely in Haskell [web11]. Haskell is a purely

functional language with several advantages for this type of program. GOOL

makes frequent use of higher-order functions, particularly when choosing a

function to render a given term in AbstractCode. Haskell handles these in

a natural manner which is wholly integrated with the way it handles other

sorts of functions. Haskell is also excellent at tree processing (which is what
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ASTs are), and is thus an ideal choice for implementing DSLs.

Also, Haskell has a very streamlined syntax which encourages superior

readability [Dro09]. There is something of a learning curve for programmers

who are inexperienced with functional languages, but once this has been sur-

mounted, concise, clear, and effective code can be written with ease. Haskell

provides powerful constructs, like folding and pattern matching, which are

particularly effective in facilitating GOOL’s implementation. Language def-

initions in the style of, for example, the Lambda Calculus, naturally lend

themselves to functional languages like Haskell (as functional languages are

generally, at their cores, augmented forms of the Lambda Calculus [Mig]),

which helps to increase understandability and decrease the complexity of

designing a system around such a language.

7.2 Currently Supported Output Languages

Renderers for six languages exist in the current version of GOOL. These

languages are C#, C++, Java, Objective-C, Python, and Lua.

We chose C#, C++, and Java because they are some of the most popu-

lar general purpose languages [LLC11], and are particularly popular among

object-oriented languages. This relates back to the requirement about use-

fulness of the output code. Additionally, this provided a good basis for a

representative sample of OO programming. As an added benefit, C# and

Java are very similar in style and syntax — which means that their renderers

are also very similar. It usually required little additional effort to render a

feature in one language once it had been implemented in the other.

We chose Objective-C for its popularity [LLC11], and its current rele-

vance as the primary language of the Cocoa API, used for Mac OS X and

iOS (operating system of the iPhone and iPad) programming [Inc11].

Python was chosen for its popularity as well [LLC11], but also because

it is a multi-paradigm language that supports object-oriented programming

and is not always used to write OO programs. The idea here was to show

that, if Python code could be generated alongside other, more “pure” OO

languages, the patterns demonstrated would be inherent to OO program-
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ming and not just OO languages.

Lua may seem like a strange choice, as it does not have any built-in

support for the concept of classes and objects [Lit11]. However, it is pos-

sible to simulate this feature using Lua’s tables [Lit11, Ier96]. It is even

possible to implement OO concepts like inheritance with some effort and

overhead [Ier96]. Lua is supported by GOOL in order to take Python’s idea

much further — if the same common core of an OO language can be found

and implemented in this feigned OO environment, then it is likely to be a

legitimate observation.

7.3 AbstractCode

AbstractCode is, as mentioned above, an abstract syntax tree representing

the GOOL DSL. The language definition is comprised of a multi-tiered data

structure, which, at its top-level, encapsulates a complete software program.

This program is comprised of modules. Each module is made up of member

variables and transformations (methods). The decomposition continues like

this down to the level of literals and variables.

The full definition of the AbstractCode language is given in Section A.5.

Here, the most central primitives of the language will be shown and ex-

plained.

data Class = Class {

className :: Label ,

parentName :: Maybe Label ,

classScope :: Scope ,

classVars :: [StateVar],

classMethods :: [Method ]}

data StateVar = StateVar Label Scope StateType Int

data Method = Method Label Scope MethodType [Parameter] Body

A Class in GOOL is equivalent to a class in Java or other mainstream

OO languages. The “parentName” field allows a Class to inherit from an-

other class by providing its name/label. The member variables and methods

of this class are contained in the lists “classVars” and “classMethods”, re-

spectively.
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Hence, StateVars are class variables and Methods are just class meth-

ods. A StateVar requires a name, scope, and type. The integer field is for

the “deletion priority”, explained in 8.4.1. A Method requires a name, scope,

type, list of parameters, and body of code.

data BaseType = Boolean | Integer | Float | Character | String

data ListType = Static | Dynamic

data StateType = List ListType StateType

| Base BaseType

| Iterator StateType

| EnumType Label

| Type Label

data MethodType = MState StateType

| Void

| Construct Label

The type of a state variable can fall into a few different categories, defined

by StateType. If it is a list, it must specify whether the list is static or

dynamic, and the type of its elements. Base types include the simple or

standard primitive types. An iterator must specify the types of the elements

it iterates over. EnumTypes and “custom” Types are selected by providing

the name of the desired type. These are typically intended for miscellaneous

types defined elsewhere in the same program. For example, if a programmer

has defined a class C, and then later wants to create an object of type C,

this object could be declared as:

StateVar "c_obj" Public (Type "C") 0

This would be equivalent to a declaration in C++ or Java as follows:

public C c_obj

MethodTypes define the possible types for a GOOL Method. Methods

have a few more possibilities than variables do, so they require a separate set

of types (of which the StateTypes are a subset, since a Method can return a

value of any StateType). Unlike StateVars, they can be Void, meaning that

they do not return a value. They can also be Constructors of a particular

class, which are considered special Method types in GOOL.

type Body = [Block]

data Block = Block [Statement]
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data Statement = AssignState Assignment

| DeclState Declaration

| CondState Conditional

| IterState Iteration

| JumpState Jump

| RetState Return

| ValState Value

| CommentState Comment

| FreeState Value

| PrintState {newLine :: Bool , valType :: StateType ,

printVal :: Value}

| ExceptState Exception

| PatternState Pattern

These primitives begin to represent the code on a lower level. A State-

ment is a single instruction or control structure. A Block is just a series

of Statements, and a Body is just a group of Blocks (Bodies are only used

for aesthetic purposes — so that related Blocks of code can be split up).

Statements are very important to the language as a whole, since they

are where the programmer specifies what is actually to be done. They

encapsulate a variety of purposes.

JumpStates are used for loop control statements: Break and Continue

(with their traditional meanings).

RetStates are used for returning values from method calls.

ValStates are used to just evaluate values or expressions, without assign-

ment (typically for their side effects).

There is also a Statement included for comments (CommentState), which

would not normally be included in a language definition alongside functional

primitives. This illustrates an interesting point about the limitations of in-

ternal DSLs. In the case of AbstractCode, an internal DSL, any information

that should be carried through to the printed output must be specified within

one of the Haskell data structures that comprise a program representation.

Thus, comments had to be incorporated into the syntax of AbstractCode.

FreeStates are used to free memory by deallocating variables.

PrintStates are used for printing to the console.

ExceptStates are used for throwing and handling exceptions. They are

described further in Section 8.2.
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PatternStates are explained in Section 8.3.

The other Statement types will be demonstrated shortly.

data Assignment = Assign Value Value

| PlusEquals Value Value

| PlusPlus Value

Assignment Statements are used to assign a value to a variable. For

example,

Assign (Var "x") (Lit $ LitInt 5)

is equivalent to the Java assignment:

x = 5

The Var and LitInt primitives will be shown later.

Specialized addition or incremental Assignment operations are also pro-

vided for convenience. The corresponding Minus operators are not included

in AbstractCode, but are supported by GOOL with operators &-= and &~-

(&--, as may have been expected, is not used because “--” starts a com-

ment in Haskell code, and thus could not be used as part of an operator in

AbstractCode — this is representative of one drawback of internal DSLs).

data Declaration = VarDec Label StateType

| ListDec ListType Label StateType Int

| ListDecValues ListType Label StateType [Value]

| VarDecDef Label StateType Value

| ObjDecDef Label StateType Value

| ConstDecDef Label Literal

Declaration Statements are used to create new variables, lists, objects,

or constants. The “Dec” versions just declare, while the “DecDef” versions

allow the programmer to declare and initialize to a certain value at the same

time.

data Conditional = If [(Value , Body)] Body

| Switch Value [(Literal , Body)] Body

The Conditional Statements use a list of (Value, Body) pairs to allow

for an unlimited number of conditional branches. The Value serves as the

condition to check, and is expected to evaluate to a boolean. The final Body
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of code is used as the “default” branch, executed when none of the others

hold true. For example,

CondState $

If [( Expr $ BinaryExpr (Var "x") Less (Lit $ LitInt 5),

[ Block [ RetState $ Ret (Var "x") ] ] ),

( Expr $ BinaryExpr (Var "x") Greater (Lit $ LitInt 7),

[ Block [ RetState $ Ret (Lit $ LitInt (-1)) ] ] )

] [ Block [ RetState $ Ret (Lit $ LitInt 0) ] ]

Is equivalent to:

if (x < 5) return x;

else if (x > 7) return -1;

else return 0;

To demonstrate the language in its purest form, the code examples above

use only AbstractCode primitives, and do not utilize the many shortcut

functions defined by GOOL. While GOOL is still more verbose than a typical

language, use of these shortcuts can greatly reduce the overhead and simplify

programming. For example, the following code is equivalent to the last

example:

ifCond [( Var "x" ?< litInt 5,

oneLiner $ return (Var "x") ),

( Var "x" ?> litInt 7,

oneLiner $ return (litInt (-1)) )

] (oneLiner $ return (litInt 0))

A few examples of these can be seen in 8.4.4. Shortcut functions are also

demonstrated in a more practical way through example implementations in

Section 8.5.

data Iteration = For {initState :: Statement , guard :: Value ,

update :: Statement , forBody :: Body}

| ForEach Label Value Body

| While Value Body

Iteration Statements are loops. AbstractCode supports For, ForEach,

and While loops, all of which implement their traditional behaviour. Note

that the initialization and update components of the For loop are just State-

ments. It is up to the programmer to use meaningful Statements here, e.g.
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a loop index declaration for “initState”, and an assignment that increments

the index for “update”.

data Value = EnumElement {enumName :: Label , elemName :: Label}

| EnumVar Label

| Expr Expression

| FuncApp Label [Value]

| ObjAccess Value Function

| Lit Literal

| Const Label

| Self

| StateObj StateType [Value]

| ObjVar Value Value

| Var Label

| ListVar Label StateType

| Arg Int

| Input

Values make up the most common low-level component of Abstract-

Code. The definition encompasses not only the traditional things that would

be called values in a programming language (like literals) but also terms that

would evaluate to a traditional value (like expressions or function calls). It

essentially includes any component that can ultimately be assigned to a

variable.

One thing to note here is how different kinds of variables have separate

primitives for referencing. In a mainstream language, a variable that rep-

resents a list or an enumeration element can typically be referred to in the

same way as, say, an integer variable. However, when GOOL prints code in

a particular language, it sometimes needs to make simple adjustments that

cannot be explicitly specified in the AbstractCode program (since, by design,

it performs no inference during translation). Take, for example, enumeration

elements. In some output languages, these are really just named integers.

In others, like Java, they are a separate entity. Hence, if an AbstractCode

program attempts to reference an EnumVar like an integer (say, using it as

a list index), then the generated Java code must explicitly cast the variable

to an integer, whereas the generated C++ code does not need to do this.

So GOOL’s Java-printing module must know to insert the casting during

code generation. Since GOOL truly just pretty-prints the code, and does
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not perform any sort of complex inference, the nature of the variable must

be explicitly denoted to facilitate this step. Thus, we have an EnumVar

primitive to allow for differentiation. See 8.4.6 for an account of a similar

situation with ListVars.

data Literal = LitBool Bool | LitInt Int | LitFloat Float

| LitChar Char | LitStr String

Literals wrap Haskell literals (of the base types) to allow them to be

used within an AbstractCode program, as seen in the previous examples in

this section.

A few additional AbstractCode features that were added during devel-

opment are discussed in Section 8.2.

7.4 Code Generation

Code generation is performed by a set of Haskell “language renderer” mod-

ules. One module is required for each output language. These modules

define how AbstractCode is translated to their respective languages.

There is also a primary code generation module called LanguageRen-

derer. This module defines the Config data structure, which serves as an

explicit dictionary for a specific language — i.e., it contains a set of functions

which define a direct translation from each component of the AbstractCode

language to the target language. Each specific language renderer must pop-

ulate the fields of the Config structure with these “translation” or rendering

functions for the various components of AbstractCode. Additionally, there

are several fields with simpler types for certain keywords and properties of

the language which do not require full rendering functions. The Config struc-

ture completely defines how AbstractCode programs should be rendered in

a given language.

Listing 7.1: Partial Haskell Definition of the Config Data Structure

data Config = Config {

renderCode :: [Label] -> AbstractCode -> Code ,

argsList :: Doc ,
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bitArray :: Doc ,

commentStart :: Doc ,

ext :: Label ,

include :: Label -> Doc ,

inherit :: Doc ,

iterForEachLabel :: Doc ,

iterInLabel :: Doc ,

...

top :: FileType -> Label -> Doc ,

body :: FileType -> Label -> [Class] -> Doc ,

bottom :: FileType -> Doc ,

assignDoc :: Assignment -> Doc ,

bodyDoc :: Body -> Doc ,

conditionalDoc :: Conditional -> Doc ,

declarationDoc :: Declaration -> Doc ,

exprDoc :: Expression -> Doc ,

funcDoc :: Function -> Doc ,

iterationDoc :: Iteration -> Doc ,

litDoc :: Literal -> Doc ,

classDoc :: FileType -> Label -> Class -> Doc ,

scopeDoc :: Scope -> Doc ,

statementDoc :: StatementLocation -> Statement -> Doc ,

valueDoc :: Value -> Doc ,

...

}

The Doc type here is used by the HughesPJ pretty printer, and represents

an assembled document or piece of text that can be written to an output

file [Ter12]. All generated code is formatted with appropriate spacing and

line breaks to make it human-readable.

The other major component of the LanguageRenderer module is made

up of default implementations for every necessary rendering function. Each

rendered language has some components that are represented the same way

in another language. Java and C#, for example, can use identical implemen-

tations for the majority of their rendering functions. Even for very dissimilar

languages, like Lua, many elements, such as lists of parameters or function

calls, would overlap with those found in other languages. Thus it was a

natural decision to have a pool of rendering functions that can be shared

amongst the individual renderers. These shared implementations help to
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avoid a great deal of unnecessary effort and repeated code. Some functions

have secondary or tertiary shared implementations, when there is more than

one implementation that can be shared amongst two or more languages.

Often, however, a language’s way of representing a certain component

does not overlap with any others. In these cases, the language renderer must

provide its Config structure with a custom implementation of the matching

type signature.

The naming convention that has been adopted for rendering functions

is as follows: the Config-structure field for a function is suffixed with just

“Doc” (e.g. “conditionalDoc”). LanguageRenderer’s default implementa-

tion ends with DocD (“conditionalDocD”). Apostrophes are appended for

any secondary and tertiary shared implementations (“conditionalDocD′”,

“conditionalDocD′′”), as is the standard Haskell convention for denoting a

modified version of a function [Lip11]. Language-specific implementations

end with “Doc′” (“conditionalDoc′”); again, a nod to the Haskell convention.

Some representative rendering functions will be shown below, as exam-

ples. Section 7.3 can be referenced for the meaning of any AbstractCode

primitives used below.

assignDocD :: Config -> Assignment -> Doc

assignDocD c (Assign v1 v2) = valueDoc c v1 <+> text "=" <+>

valueDoc c v2

assignDocD c (PlusEquals v1 v2) = valueDoc c v1 <+> text "+=" <+>

valueDoc c v2

assignDocD c (PlusPlus v) = valueDoc c v <> text "++"

This is the default implementation of a rendering function for Assign-

ment statements. This function is particularly straightforward. Haskell’s

pattern matching is used to differentiate among the possible Assignment

constructors. Some of the pretty printer’s functions are used to form the

returned Doc: the “text” function isomorphically transforms a String into

a Doc, the “<>” operator concatenates two Docs, and “<+>” concate-

nates and inserts a space [Ter12]. Thus, a simple assignment would have

the printed form value1 = value2, a “PlusEquals” assignment would have the

form value1 += value2, and a “PlusPlus” assignment would look like ++value.

bodyDocD :: Config -> Body -> Doc
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bodyDocD c bs = vibmap (blockDoc c) blocks

where blocks = filter (\b -> not $ isEmpty $ blockDoc c b) bs

blockDocD :: Config -> Block -> Doc

blockDocD c (Block ss) = vmap (statementDoc c NoLoop) statements

where docOf s = statementDoc c NoLoop s

notNullStatement s = (not $ isEmpty $ docOf s)

&& (render (docOf s) /= render (end c NoLoop))

statements = filter notNullStatement ss

These functions are responsible for pretty-printing Bodies and Blocks of

code, respectively. Since a Body is just a collection of Blocks, the “vibmap”

combinator is used to intersperse line breaks between all Blocks. Any empty

Blocks are filtered out and ignored. The blockDocD function prints a Block

as a sequence of Statements — again, filtering out blank Statements.

conditionalDocD :: Config -> Conditional -> Doc

conditionalDocD c (If (t:ts) elseBody) =

let ifSect (v, b) = vcat [

text "if" <+> parens (valueDoc c v) <+> ifBodyStart c,

oneTab $ bodyDoc c b,

blockEnd c]

elseIfSect (v, b) = vcat [

elseIf c <+> parens (valueDoc c v) <+> ifBodyStart c,

oneTab $ bodyDoc c b,

blockEnd c]

elseSect = if null elseBody then empty else vcat [

text "else" <+> ifBodyStart c,

oneTab $ bodyDoc c elseBody ,

blockEnd c]

in vcat [

ifSect t,

vmap elseIfSect ts ,

elseSect]

conditionalDocD _ (If [] _) = error "If with no body encountered"

This is the portion of the default Conditional-rendering function that

deals with If conditionals (the Switch part uses a similar approach).

Components like “ifBodyStart”, “blockEnd”, and “elseIf” are defined in

the Config structure for each language. By having simple keywords specified

separately, we can avoid having to rewrite the conditionalDoc function for

a certain language just because, say, other languages use “else if” while this

one uses “elif”. The same pattern still holds, albeit with slight differences
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in syntax.

The first (Value, Body) pair is taken to be the “if” branch, and any

subsequent pairs are “else if” branches. Each “if” or “else if” branch uses a

similar format:

[else] if (condition) {

<code Block to execute if condition holds >

}

All branches (including the “else” branch, as long as it is not empty) are

concatenated to form the final Doc.

The second pattern-matching case catches If Conditionals with empty

(Value, Body) lists. These are invalid, since an “if” statement must check

at least one condition, so an error is thrown and the printing process fails.

statementDocD :: Config -> StatementLocation -> Statement -> Doc

statementDocD c loc (AssignState s) = assignDoc c s <> end c loc

statementDocD c loc (DeclState s) = declarationDoc c s <> end c loc

statementDocD c _ (CondState s) = conditionalDoc c s

statementDocD c _ (IterState s) = iterationDoc c s

statementDocD c loc (JumpState s) = jump s <> end c loc

statementDocD c loc (RetState s) = retDoc c s <> end c loc

statementDocD c loc (ValState s) = valueDoc c s <> end c loc

statementDocD c _ (CommentState s) = comment c s

statementDocD c loc (FreeState v) = text "delete" <+> valueDoc c v <>

end c loc

statementDocD c loc (PrintState newLn t v) = printDoc c newLn t v <>

end c loc

statementDocD c loc (ExceptState e) = exceptionDoc c e <> end c loc

statementDocD c loc (PatternState p) = patternDoc c p <> end c loc

This function makes more use of Haskell’s pattern-matching. A differ-

ent implementation is required for each Statement type. In most cases,

the statementDocD function just refers to a more specific rendering func-

tion for that kind of Statement and applies the end-of-statement symbol (a

semicolon, for languages that use such a symbol).

The interesting point in this case is that, since it is so general, every

output language uses this version of the Statement-rendering function. It is

illustrative of a recurring theme in the code-generation system: refer back to

the language-specific Config structure wherever possible, so as to maximize

generality.
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7.5 Configuration File

A simple configuration file must be provided to GOOL at runtime. Its main

purpose is to specify the desired code generation language (this is the only

mandatory setting), and to tell GOOL to render one of the included Ab-

stractCode example implementations, if desired. If an example implemen-

tation is not specified, GOOL attempts to render the default AbstractCode

implementation.

There are a few language-specific options that can be set as well. A

default setting is specified for each one in the relevant language renderer.

These design choices are provided merely as an example of possibilities;

if GOOL’s development were to be continued, there are numerous other

configuration settings that could and should be supported.

An EBNF listing of the syntax of the configuration file can be found in

Section A.4.

The configuration file options are:

� Generation Language: the desired output language for code genera-

tion. Supported choices are C#, C++, Java, Objective-C, Python,

and Lua. This option must be set in the configuration file, or GOOL

will not run. All others are elective.

� ExampleImplementation: if this option is set, then code for the chosen

example will be generated instead of the default implementation mod-

ule. Available choices are Patterns, QuickSort, State, and StateV2.

� JavaListType: the container type to use for lists in pretty-printed Java

code. If Java is not the chosen Generation Language, then setting

this option will have no effect. Supported list types are ArrayList,

LinkedList, and Vector. If this is not set, GOOL will default to using

Vectors.

� CppListType: the type to use for lists in pretty-printed C++ code.

This option will have no effect if C++ is not the chosen Generation
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Language. Supported list types are deque and vector. The default

choice is vector.

� ObjCStaticListType: the type to use for lists in pretty-printed Objective-

C code that are declared Static (Dynamic lists must be NSMutableAr-

rays). This option will have no effect if Objective-C is not the cho-

sen Generation Language. Supported list types are NSArray and NS-

MutableArray. The default choice is NSArray.
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Chapter 8

Detailed Development

History

At this point, the reader has hopefully gained a reasonable understanding

of what GOOL does and how it works. This chapter serves to provide

the educated reader with a more detailed summary of what work was done

to transition from SAGA to GOOL in its current form, throughout the

duration of this project. This includes major changes, additions, and a few

of the notable issues that were faced. The account is roughly chronological,

though some related efforts have been grouped for the sake of readability.

8.1 Starting Point

In order to properly explain the development of GOOL, it must first be

understood where development began.

GOOL, the tool developed to meet the requirements of Chapter 3, was

built off of a previous DSL-centric project, known as SAGA (Story as an

Acyclic Graph Assembly) [Bey11, BC11]. SAGA implemented a text-based

DSL which allowed non-programmers to easily and efficiently create a “story

engine” for a video game that could be integrated into real-world game

projects. The SAGA program served as a compiler: It parsed a “story

description file” (DSL code), created an intermediate representation of the
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story engine, and then generated the actual code in a user-selected general

purpose language.

As mentioned in Chapter 2, SAGA provided much of the framework

needed for GOOL. For example, SAGA already included the necessary facil-

ities for code generation in C#, C++, and Java. The main benefit to start-

ing from SAGA was its intermediate representation language. In SAGA,

the intermediate representation was an algebraic data type which effectively

modelled the basic structure of source code (i.e. abstract syntax trees).

GOOL’s DSL began to take shape from the roots of SAGA’s intermediate

representation, called AbstractCode.

For a full discussion and report on SAGA, please see [Bey11] and [BC11].

8.2 Added AbstractCode Features

This section will discuss a select few of the primitives that were implemented

in the AbstractCode language during development of GOOL.

Listing 8.1: Binary operators, with symbolic versions.

data BinaryOp = Equal | NotEqual | Greater

| GreaterEqual | Less | LessEqual

| Plus | Minus | Multiply

| Divide | Power | Modulo

Equal: v1 ?== v2

NotEqual: v1 ?!= v2

Greater: v1 ?> v2

GreaterEqual: v1 ?>= v2

Less: v1 ?< v2

LessEqual: v1 ?<= v2

Plus: v1 #+ v2

Minus: v1 #- v2

Multiply: v1 #* v2

Divide: v1 #/ v2

Power: v1 #^ v2

Modulo: v1 #% v2
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We added several binary operators to the language, each with a symbolic

shortcut operator. Equal, Less, and LessEqual had already been included

in SAGA’s version, but the rest are new. Since there was also a unary Not

operator, supporting the other logical operators was not strictly necessary.

These are an example of a feature that was added because it is expected in

any full-featured programming language, for the programmer’s convenience.

The arithmetic operators, on the other hand, are representative of fea-

tures that were added because they are strictly necessary. Mathematical

operations are a fundamental component of programming.

Listing 8.2: Two of the primitives for an AbstractCode Module.

data Class = Enum {

className :: Label ,

classScope :: Scope ,

enumElements :: [Label]}

| MainClass {

className :: Label ,

classVars :: [StateVar],

classMethods :: [Method ]}

| ...

data Method = MainMethod Body

| ...

Usage example (defines an Enum for the days of the week, and in the

MainMethod, declares a variable named “today” and initializes it to the

Enum element for Tuesday):

daysEnum :: Class

dayEnum =

Enum "Days" Public ["Mon","Tue","Wed","Thur","Fri","Sat","Sun"]

testClass :: Class

testClass = MainClass "Test" [] [

MainMethod [

Block [

varDecDef "today" (EnumType "Days") ("Days" $: "Tue")

]

]

]
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SAGA only supported one standard Class type. GOOL added Enum

Classes as a useful feature. They are not truly necessary (in fact, some of the

output languages do not have built-in Enums; in these cases, GOOL simu-

lates them with regular integers). The feature was inspired by SAGA’s Story

Manager, which would communicate about a specified list of story events

using hard-coded strings. This seemed inefficient and ugly, and having an

Enum type would have allowed for a better, while still human-readable, solu-

tion. We assumed that similar cases could occur in AbstractCode programs.

The MainClass Class and MainMethod Method are somewhat represen-

tative of the transformation into a robust, executable language. SAGA’s

Story Manager was meant to be integrated into larger programs, but GOOL

is intended to generate standalone programs. Different languages specify

Main in different, specific ways (for example, C++ and Java require a

method with a specific name and signature, while Python and Lua pro-

grams simply begin execution at code that is not encapsulated within meth-

ods or classes), and thus it is necessary to explicitly specify which module

and method are the Main ones in AbstractCode. Many components of the

language have similar reasons for their existence.

Listing 8.3: AbstractCode exception-throwing and -handling primitives.

data Exception = Throw {excMsg :: String}

| TryCatch {tryBody :: Body , catchBody :: Body}

Exceptions were incorporated into AbstractCode because error-handling

is an important part of programming. All output languages supported this

construct in one form or another, so it seemed natural that AbstractCode

should as well. While this approach is very simplistic (TryCatch will only

catch exceptions thrown explicitly by an AbstractCode Throw statement,

not those that may be thrown when, say, a list is accessed out of bounds;

also, there is only one type of exception to throw), it demonstrates the

concept well enough to be suitable for the language. Additionally, since

different categories of exceptions may be represented in various ways between

languages, they would all need to be defined explicitly in AbstractCode in

order to be used (but one could certainly imagine defining a set of exception-
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type primitives).

8.3 Gang of Four Design Pattern Statements

Listing 8.4: The Pattern Statements of AbstractCode.

data Pattern = State StatePattern

| Strategy StratPattern

| Observer ObserverPattern

data StatePattern = InitState {fsmName :: Label , initState :: Label}

| ChangeState {fsmName :: Label , toState :: Label}

| CheckState {fsmName :: Label ,

cases :: [(Label ,Body)], defaultBody :: Body}

data StratPattern = RunStrategy {stratName :: Label ,

strategies :: Strategies , assignResultTo :: Maybe Value}

data Strategies = Strats {strats :: [(Label , Body)],

returnVal :: Maybe Value}

data ObserverPattern = InitObserverList {observerType :: StateType ,

observers :: [Value]}

The Pattern Statements are different from most of the others — they are

in no way expected or fundamental. They were added as a more experimen-

tal feature. State, Strategy, and Observer are three examples of the Gang

of Four design patterns (specifically, they are behavioural patterns) [Jav08],

which are a well-known set of patterns that are used solve common OO

programming problems.

Even though they do not have directly analogous primitives in the target

languages, these patterns can still be implemented rather simply, and do not

require any deviation from our goal of maintaining a “trivial” translation

process (see 3). In fact, these patterns do not even need to be explicitly

translated — all of their rendering functions utilize existing AbstractCode

features to create a new implementation. For example, the following Haskell

code shows the rendering functions for the Observer Pattern statements.

patternDocD c (Observer (InitObserverList t os)) = declarationDoc c $

ListDecValues Dynamic observerListName t os

patternDocD c (Observer (AddObserver t o)) = valueDoc c $

obsList $. ListAdd last o

where obsList = observerListName ‘listOf ‘ t

last = obsList $. ListSize
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patternDocD c (Observer (NotifyObservers t fn ps)) = iterationDoc c $

For initv (Var index ?< (obsList $. ListSize)) ((&++) index) notify

where obsList = observerListName ‘listOf ‘ t

index = "observerIndex"

initv = varDecDef index (Base Integer) $ litInt 0

notify = oneLiner $

ValState $ (obsList $. at index) $. Func fn ps

The Pattern Statements prove that patterns do not need to be an explicit

part of OO languages in order to be a part of their common core — many

patterns can be built from fundamental elements that are implicit to the

nature of object-oriented programming. These serve as an illustration of

the scope of our language, and thus, the discovered core.

8.4 Changes, Problems, and Improvements

8.4.1 Objective-C

Among the first changes made was the addition of more language renderer

modules. SAGA supported only Java, C#, and C++. These languages

would not be sufficient for GOOL’s goal, due to a lack of both quantity

and variety. The Objective-C renderer was produced first, as it was ex-

pected that this would be the simplest of the new languages to implement.

This perception was, however, due to our initial unfamiliarity with the lan-

guage. Throughout development, Objective-C was generally the source of

more difficulty than any other language, typically when trying to implement

a new AbstractCode feature. More than a few of these problems stemmed

from memory management. Objects that needed to be explicitly released

in Objective-C often did not need this in C++, and vice versa. Thus a

feature had to be devised that would allow the “deletion priority” to be ex-

plicitly specified in the AbstractCode. This was an unfortunate concession

to make, as it is a language-specific parameter, but we deemed it necessary

(short of ignoring memory management altogether, which, while possibly

still allowing for functional programs, would obviously be incorrect).

It may be enlightening to know of a few representative examples. NSAr-

rays were used as the default “list” type in Objective-C since C-style arrays
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would not be sufficient for some of AbstractCode’s list-manipulation func-

tions. This choice came with a bit of complexity, as NSArrays cannot hold

primitive types. Thus, whenever a primitive is added to a list in an Ab-

stractCode program, the Objective-C rendering must wrap that primitive

with an appropriate object (usually an NSNumber) before adding it. Simi-

larly, when reading a list element, the object must first be unwrapped back

into a primitive.

Another specific, and curious, example of an Objective-C difficulty was

found in dealing with NSNumbers. The rendered implementation would

crash when intializing an NSArray with a series of NSNumbers. We found

that, when using integers 0 thru 12, the intialization worked as desired.

However, using any other number resulted in a crash. We eventually discov-

ered that Objective-C includes some sort of optimization for small integers

only. This optimization would somehow prevent a memory issue that would

otherwise occur [Ove11]. This assymmetric behaviour was surprising. We

eventually solved the problem by using an NSAutoreleasePool to automati-

cally handle the release of the non-optimized NSNumbers.

8.4.2 Python

The Python renderer was added shortly thereafter. In comparison to Objective-

C, there were no specific or large categories of problems that came up.

Defining a direct translation proved to be relatively straightforward. Some

modifications/generalizations did need to be added to AbstractCode. For

example, Python needed to know when a statement was referring to a mem-

ber of “this”, as opposed to a locally-defined variable. Thus the “Self”

value was added to the language, and all member variables now had to be

referenced appropriately.

To illustrate, when a Statement within a class had previously looked like:

(Var "x") &= (Var "y") #+ litInt 5

Where x and y are class member variables, it would now need to be

explicit that x and y are members of Self, like so:

Self$ ->(Var "x") &= Self$ ->(Var "y") #+ litInt 5
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8.4.3 Structure

At this point, we made some improvements to the structure of the code.

Previously, the Config data structure had only contained a few specific op-

tions and smaller language features. There was a LanguageRenderer class

which defined an assortment of rendering functions that might be used by

some of the language-rendering modules. Each specific language renderer

would instantiate the LanguageRenderer class and define any supplementary

functions that were needed. This was a bit haphazard and inflexible. Some

new languages might need more control over rendering than was allowed by

the current setup. Thus, we modified the Config structure to serve as an

explicit, complete dictionary for a language (this is explained in Section 7.4)

— all rendering functions for a language simply had to be referenced in this

dictionary; they could be defined or reused as desired. The LanguageRen-

derer module’s purpose was now mainly to define the general Config struc-

ture. This resulted in a great deal of repeated code, until LanguageRenderer

became the repository for shared rendering functions.

Many of the function implementations were extremely similar between

different languages, but had very small differences that would prevent them

from being shared. For example, several of the AbstractCode Function state-

ments had the same basic form in most languages ( <object>.<function

name>(<parameters); ), and differed only in the name of the actual func-

tion. Specifically, in Java, say, getting the length of a list would look like:

list.size();

Whereas in Objective-C, we would use:

list.count ();

To avoid this redudancy, we generalized many rendering function imple-

mentations. The keyword or component that might differ was added as a

field in the Config structure, and then the general implementation refer-

enced this field. In this way, more languages could use the shared/default

implementation, and this minimized code repetition. While we undertook a

focused effort towards generalization after expanding the scope of the Config
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structure, this principle was applied many times throughout development of

GOOL, and represents an ongoing process.

We put the naming convention for rendering functions (described in Sec-

tion 7.4) in place at this point, to help with organization and clarity of the

new structure.

8.4.4 Combinators

We then put some work into increasing the language’s resemblance to tra-

ditional code. SAGA’s design had accounted for this to a certain degree,

as had subsequent additions during development of GOOL, but there was

a fair amount of room for improvement. To this end, symbolic operators

were added and standardized. We created more shortcut functions, and

generalized some existing ones, or split them into common derivations.

Some illustrative examples follow.

Using only primitives Using shortcut

functions/operators

Expr $ BinaryExpr (Lit $ LitInt 5) Minus (Lit $

LitFloat 3.2)

(litInt 5) #- (litFloat 3.2)

AssignState $ PlusPlus (Var "i") (&++)"i"

ObjAccess (Var "list") (ListAccess $ ObjVar Self

(Var "idx"))

(Var "list") $. at (Self$ ->(Var "idx"))

If [(Expr $ BinaryExpr (Var "x") Less (Lit $

LitInt 3),

[ Block [ PrintState True (Base String) (Lit $

LitString "OK") ] ] )] []

ifCond [( (Var "x") ?< (litInt 3),

oneLiner $ printStrLn "OK" )] noElse

52



This was another process which would continue throughout GOOL’s

development, requiring some consideration each time more features were

added to AbstractCode.

8.4.5 Splitting

Until this point, the AbstractCode definition had remained integrated with

SAGA’s Story Manager implementation. The program was of an adequate

level of complexity, and had provided a suitable testing ground for any

changes and additions made thus far. In order to add and test any signifi-

cant new features, however, it would soon be necessary to take the defining

step of detaching the Story Manager from the language. Due to the con-

siderations made in earlier steps, this was much simpler than expected and

took little effort — primarily, it involved moving a few blocks of code into a

new module. Also, a few datatypes used for story elements were abstracted

out, and replaced with generic type-definition constructors (e.g. instead of

having the language natively supporting a “NodeTransition” type, the Story

Manager code defined an object type with a label of “NodeTransition”). In

some cases, modules that should be generic still required the use of some

functionality of the story-specific module, but this was soon eliminated.

More important was the creation of “generic mode”, which gave GOOL

a way to use and render any AbstractCode representation. This had not

been possible previously because some extra functionality — namely, the

parsing of a story scipt, and the data structures that were subsequently cre-

ated — was tied in to the representation. Thus, we added a short procedure

at the beginning of execution (after the Config file was read and parsed)

which decided whether to run GOOL in generic mode or in story mode (es-

sentially, if a Story script was provided, run story mode, else run generic

mode). We generalized higher-level code generation instructions to allow

for this. Story mode would parse the script as usual and pass the associ-

ated data to the dedicated Story Manager implementation module. Generic

mode would simply render the implementation found in the default imple-

mentation module. This step also did not require significant effort, but was
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an important milestone nonetheless.

8.4.6 Special Cases

Concurrently, a few “special cases” that were coded into the language ren-

derers had to be eliminated. These were typically implementations of a

rendering function that would check for a certain statement or label that

appeared in the Story Manager implementation, and then render it in a

specific way for a specific language.

For instance, the following Value-rendering function from Objective-C

demonstrates such a “special case”:

valueDoc ’ (ObjAccess v@(Var vlbl) f@(ListAccess _)) =

if vlbl == "eventData" then

brackets $ objAccessDoc v f <+> innerFuncAppDoc "boolValue" []

else objAccessDoc v f

This case is just intended to print the accessing of a list element (typi-

cally, this would only amount to something like list[0]). However, it first

checks to see if the name of the list being accessed is the same as a specific

hard-coded list name used in the Story Manager implementation, and prints

an extra function call if so. This is a symptom of the problem described in

8.4.1, where primitive types had to be wrapped and unwrapped when used

in lists. The list “eventData” happened to be the only list that coincided

with this issue in the Story Manager, and so the problem was temporarily

fixed with the patch shown here.

Obviously, this did not suit the aim of GOOL. These special cases were

merely a symptom of a more general case that needed to be accounted for.

The vast majority of the work involved in fixing these consisted of identifying

the general case. For example, the case above was solved by adding the

ListVar primitive to AbstractCode. This is used whenever referencing a

variable representing a list — as opposed to Var, which would still be used

for non-list variables. ListVar requires a type parameter, and thus knows the

type of its list elements (whereas Var only requires the label of the variable).

This is required in some places to render different list types in different ways,
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such as in the Objective-C NSArray issue described above, where primitive

types must be unwrapped every time they are accessed from a list.

The new, more general solution to the given example is shown here:

valueDoc ’ c (ObjAccess v@(ListVar _ t) f@(ListAccess _)) =

getValueDoc t $ objAccessDoc c v f

getValueDoc :: StateType -> Doc -> Doc

getValueDoc t d = let integer = "integer" in

case t of EnumType _ -> valFrom integer

Base Boolean -> valFrom "bool"

Base Integer -> valFrom integer

Base Float -> valFrom "float"

Base Character -> valFrom "char"

otherwise -> d

where valFrom typeName =

brackets (d <+> text (typeName ++ "Value "))

Whenever a ListVar with a base type is accessed, the “unwrapping”

function for the relevant type is automatically appended.

It should be noted that a more sophisticated type-driven compiler would

be able to infer the relevant information. However, in the case of GOOL,

this would go against our goal of having a direct, straightforward translation

(see Chapter 3 for project goals).

8.4.7 Lua

Subsequently, we implemented the Lua renderer. Since Lua does not na-

tively support object-oriented code, some work was involved in adapting its

renderer to the AbstractCode language. However, this was not as difficult

as might be expected, since there has been much previous work on imple-

menting OO in Lua. Once this aspect was working correctly, no specific or

complex problems were faced.

8.4.8 Extras

We then implemented a few example programs in AbstractCode. These

served multiple purposes — intially, the act of creating them was used as a

method of identifying important missing features of AbstractCode. After the
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language became suitably functional, the implementation modules of these

examples were permanently integrated into GOOL, and can now be ren-

dered into compilable code at any time with a Config-file option. They now

serve as demonstrations of GOOL’s execution, and as examples of finished

AbstractCode programs, suitable for reference as necessary. Additionally,

they act as proof of the accomplishment of this project’s goals. Some of

these examples are discussed in detail in Section 8.5.

We devoted most of the remainder of GOOL’s development effort to

adding to AbstractCode and making it a more full-featured language. Since

SAGA’s AbstractCode was an intermediate representation used solely for

the Story Manager implementation, it had originally lacked any function-

ality that the Story Manager did not require. For example, it included a

“PlusPlus” statement for incrementing an integer variable by one, but other-

wise did not support any sort of algebra. As mentioned previously, GOOL’s

meta-language would need to include a reasonable level of functionality in

order to achieve its goals. Thus, we added a multitude of features to the

language. Some, like algebra, were fundamental and necessary; others, like

“ForEach” loops or “Switch” statements, were not strictly needed (Abstract-

Code already included For loops and nested If statements), but made the

language more robust and programmer-friendly. A selection of the more

interesting additions are discussed in Section 8.2.

8.5 Example Implementations

Note that the examples discussed here are only a selection of those which are

complete or relatively polished — many other informal examples were used

during development to test various language features. While somewhat sim-

ple, one can extrapolate the possibility of larger or more complex programs

from these proofs of concept.
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8.5.1 State

This example is based on the Gang of Four’s State design pattern [Jav08].

The State example demonstrates fundamental AbstractCode features and

constructs.

The Controller module is the most important component. Note that the

definitions of the terms “accounting”, “sales”, “management”, and “connec-

tion” are shown in Listing 8.7 below.

Listing 8.5: AbstractCode implementation of the Controller module.

controllerClass :: Class

controllerClass =

let modName = "Controller"

acctVar = "acct"

salesVar = "sales"

mgmtVar = "manage"

current = "current"

open = "open"

close = "close"

log = "log"

modVars = [

pubVar alwaysDel accounting acctVar ,

pubVar alwaysDel sales salesVar ,

pubVar alwaysDel management mgmtVar ,

privVar neverDel connection current]

setCurrent n = oneLiner $

Self$ ->(Var current) &= Self$ ->(Var n)

doMethod n = oneLiner $

ValState $ Self$ ->(Var current) $. Func n []

in pubClass modName noParent modVars [

pubFunc (Construct modName) modName [] [

Block [

Self$ ->(Var acctVar) &= litObj accounting [],

Self$ ->(Var salesVar) &= litObj sales [],

Self$ ->(Var mgmtVar) &= litObj management [],

Self$ ->(Var current) &= Self$ ->(Var acctVar)

]

],

pubFunc Void "makeAccountingConnection" [] $

setCurrent acctVar ,

pubFunc Void "makeSalesConnection" [] $

setCurrent salesVar ,
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pubFunc Void "makeManagementConnection" [] $

setCurrent mgmtVar ,

pubFunc Void open [] $ doMethod open ,

pubFunc Void close [] $ doMethod close ,

pubFunc Void log [] $ doMethod log

]

For easy comparison, the Java code generated for the Controller module

follows.

Listing 8.6: Output Java code for the Controller module.

public class Controller {

public Accounting acct;

public Sales sales;

public Management manage;

private Connection current;

public Controller () {

acct = new Accounting ();

sales = new Sales();

manage = new Management ();

current = acct;

}

public void makeAccountingConnection () {

current = acct;

}

public void makeSalesConnection () {

current = sales;

}

public void makeManagementConnection () {

current = manage;

}

public void open() {

current.open();

}

public void close() {

current.close ();

}

public void log() {

current.log();

}
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}

The example also illustrates how the embedded nature of the DSL can be

leveraged to produce useful program-specific shortcuts when writing code.

Several variable names and types have been assigned to names using the

Haskell “let ... in” construct. Thus repeated use of string literals can be

avoided. Additionally, repeated code can be generalized with parameters, as

seen with the “setCurrent” and “doMethod” combinators above. Shortcut

functions can also be defined at a more global level, to be accessible within

all modules:

Listing 8.7: Sample shortcut function definitions from State.

connectionName , acctName , salesName , mgmtName :: String

connectionName = "Connection"

acctName = "Accounting"

salesName = "Sales"

mgmtName = "Management"

connection , accounting , sales , management :: StateType

connection = Type connectionName

accounting = Type acctName

sales = Type salesName

management = Type mgmtName

The program shown above represents a simple class named “Controller”

with four member variables (“acct”, “sales”, “manage”, and “current”). The

“$->” operator is used to reference member variables of an object. “&=”

is standard assignment, and “$.” is used to call methods of an object.

Controller does not inherit from another class (indicated by “noParent”)

and has eight public methods. The first is its constructor, which takes no

parameters (indicated by the empty list: []) and consists of one block of code.

This block contains four statements, each initializing one of the member

variables. The first three are initialized to a new object of type Accounting,

Sales, and Management, respectively. The last, “current”, defaults to the

value of “acct”. Looking at the list of members variables (“modVars”),

“current” is of type Connection. The Connection class is defined elsewhere

as the parent of Accounting, Sales, and Management, thus “current” can

hold a value of any of those three types.

59



The next three methods are used to change the state of the “current”

member to either Accounting, Sales, or Management (the “oneLiner” short-

cut function indicates that a Body of code consists of only one statement).

The final three methods call some methods “open”, “close”, and “log” on

the object held by “current”.

These methods are defined in the Accounting class as follows.

Listing 8.8: AbstractCode implementation of the Accounting module.

acctClass :: Class

acctClass =

pubClass acctName (extends connectionName) [] [

pubFunc Void "open" [] $ oneLiner $

printStrLn $ "open database for Accounting"

pubFunc Void "close" [] $ oneLiner $

printStrLn "close the database"

pubFunc Void "log" [] $ oneLiner $

printStrLn "log activities"

]

Inheritance is indicated by the “extends” parameter, in place of “noPar-

ent”. Sales and Management are defined analogously. Each method simply

prints a string to the console.

See the example module for the full, working implementation (module

listing in A.2.3), including all class definitions. To generate code for this

example, put the option “ExampleImplementation = StateV2” in the Con-

figuration file.
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8.5.2 QuickSort

This example implements an in-place version of the well-known sorting al-

gorithm. Specifically, the algorithm described by [Alg] was referenced.

Listing 8.9: AbstractCode implementation of QuickSort.

qsClass :: Class

qsClass =

let list = "arr" ‘listOf ‘ int

partition = "partition"

recQs = "rec_quicksort"

arr = "arr"

list = arr ‘listOf ‘ int

left = "left"

right = "right"

tmp = "tmp"

i = "i"

j = "j"

pivot = "pivot"

index = "index"

in pubClass "QuickSort" noParent [] [

privFunc (typ int) partition

[param arr (List Dynamic int), param left int , param right

int] [

Block [

varDecDef i int (Var left),

varDecDef j int (Var right),

varDec tmp int ,

varDecDef pivot int $

list $. ListAccess ((( Var left #+ Var right) #/

litFloat 2.0) $. Floor $. Cast int)

],

Block [

while (Var i ?<= Var j) [ Block [

while ((list $. at i) ?< Var pivot) $

oneLiner $ (&++)i,

while ((list $. at j) ?> Var pivot) $

oneLiner $ (&~-)j,

ifCond [(Var i ?<= Var j,

-- then

[ Block [

tmp &.= (list $. at i),

ValState $

list $. ListSet (Var i) (list $. at j),

ValState $

list $. ListSet (Var j) (Var tmp),
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(&++)i,

(&~-)j

] ] )

] noElse

] ]

],

Block [ returnVar i ]

],

privFunc Void recQs

[param arr (List Dynamic int), param left int , param right

int] [

Block [

varDecDef index int $

Self $. Func partition [list , Var left , Var right

],

ifCond [(Var left ?< (Var index #- litInt 1),

oneLiner $ ValState $ Self $. Func recQs [list ,

Var left , Var index #- litInt 1])]

noElse ,

ifCond [(Var index ?< Var right ,

oneLiner $ ValState $ Self $. Func recQs [list ,

Var index , Var right])]

noElse

] ],

pubFunc Void "quicksort" [param arr (List Dynamic int)] $

oneLiner $

ValState $ Self $. Func recQs [list , litInt 0, (list $.

ListSize) #- litInt 1]

]

This implementation might appear complex to a reader who is unfamiliar

with AbstractCode. It may be helpful to compare it to the generated output.

In Java:

Listing 8.10: Output Java code for the QuickSort module.

public class QuickSort {

private int partition(Vector <Integer > arr , int left , int right) {

int i = left;

int j = right;

int tmp;

int pivot = arr.get((int)(Math.floor ((left + right) / 2.0)));

while (i <= j) {

while (arr.get(i) < pivot) {
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i++;

}

while (arr.get(j) > pivot) {

j = j - 1;

}

if (i <= j) {

tmp = arr.get(i);

arr.set(i, arr.get(j));

arr.set(j, tmp);

i++;

j = j - 1;

}

}

return i;

}

private void rec_quicksort(Vector <Integer > arr , int left , int

right) {

int index = partition(arr , left , right);

if (left < (index - 1)) {

rec_quicksort(arr , left , index - 1);

}

if (index < right) {

rec_quicksort(arr , index , right);

}

}

public void quicksort(Vector <Integer > arr) {

rec_quicksort(arr , 0, arr.size() - 1);

}

}

For further reference, the generated Python code:

Listing 8.11: Output Python code for the QuickSort module.

class QuickSort:

def partition(self , arr , left , right):

i = left

j = right

pivot = arr[int(math.floor ((left + right) / 2.0))]

while (i <= j) :

while (arr[i] < pivot) :

i = i + 1

while (arr[j] > pivot) :
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j = j - 1

if (i <= j) :

tmp = arr[i]

arr[i] = arr[j]

arr[j] = tmp

i = i + 1

j = j - 1

return i

def rec_quicksort(self , arr , left , right):

index = self.partition(arr , left , right)

if (left < (index - 1)) :

self.rec_quicksort(arr , left , index - 1)

if (index < right) :

self.rec_quicksort(arr , index , right)

def quicksort(self , arr):

self.rec_quicksort(arr , 0, len(arr) - 1)

The QuickSort module contains a private Partition method (three pa-

rameters, the first being a dynamic list of integers, and the others being

left and right bounds; returns an integer), a private Quicksort method for

performing the recursive calls (same parameters as Partition; void return

type), and a public Quicksort method (the only parameter is a list; void

return type) for initiating the sorting process.

This example makes use of various comparison operators (beginning with

“?”) and assignment operators (beginning with “&”). Arithmetic operators

(beginning with “#”) are also used for the pivot index calculation.

Some notable statements and functions: “varDecDef” declares and ini-

tializes a variable, while “varDec” just declares it. “listOf” is used infix to

indicate the element type of a ListVar. “litFloat” and “litInt” are used to

indicate float and integer literals, respectively. “ifCond” begins an If condi-

tional. “at” is a function called on a ListVar to access an element. “&++”

and “&∼-” are incremental and decremental assignment operators. “&.=”

is standard assignment, but assumes that the left operand is the label of

a Var. “Floor” is the mathetical floor operation, and “Cast” is used for

explicit typecasting.
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See the example module for the full, working implementation (module

listing in A.2.3). To generate code for this example, put the option “Exam-

pleImplementation = QuickSort” in the Configuration file.

It speaks well to the purpose and goals of GOOL that the generated Java

code for this example matches the original Java (which the AbstractCode

was written against) very closely (other than intended differences, such as

how the recursive method was hidden from the module interface).
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Chapter 9

Conclusions

The results of this project demonstrate common core of the selected, current

OO languages. The fact that several disparate languages with OO elements

can be generated equally well from a single, non-trivial, reasonably concise

DSL implementation suggests that the DSL must exemplify many patterns

that are shared between all languages.

Designing the transformation from AbstractCode to real object-oriented

code was not, in fact, particularly difficult. A fair amount of program-

ming effort was certainly required, but the design and decisions involved

were mostly straightforward. This, of course, could have been a much more

complex task, had the DSL not been designed accordingly.

The most complex aspect of GOOL’s development was the design of Ab-

stractCode. The language needed to balance conciseness and simplicity with

robustness and sufficient generality to support all of the output languages.

At times, this was a challenge. For example, C++ and Objective-C both

require explicit destructors for objects. Additionally, the pieces of memory

that need to be released in these destructors often differ between the two

languages. Therefore, GOOL needed to be able to differentiate between

variables which must be explicitly freed in only C++, only Objective-C,

both, and neither. Ultimately, the problem was solved by introducing a

manually-specified “deletion priority” factor to each member variable of a

class — resulting in a small (but still unfortunate) increase in complexity,
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yet preserving the generality of the DSL, as well as its expandibility to addi-

tional future output languages. There were any number of similar situations

throughout GOOL’s development, where one of GOOL’s qualities had to be

prioritized over others.

Fortunately, in many situations, these sorts of decisions could be smoothed

over by creating helper functions to abstract over the most common cases.

This process proved to be beneficial, as the resulting DSL code can be very

simple and flexible, while still providing important language-specific details.

In the end, the design decisions made for the DSL meant that implementa-

tion of the code generation procedures would be relatively natural.

Many relevant and interesting ideas became apparent during develop-

ment to support our central goal. For instance, as touched upon in Section

7.4 the Java and C# code-rendering modules use nearly identical imple-

mentations. There are a few small syntactic differences, to be sure (e.g. C#

must use “Count” for list sizes, where Java uses “size”; Java must use a

“String.equals()” method to check for equality in strings, while C# can use

the regular == operator). But by and large, the C# and Java “dictionaries”

are evidently quite similar (at least up to the level that is considered by our

DSL).

In fact, all the language renderers can share some portion of their im-

plementations. Even the most “out-of-place” language that we considered

(Lua) shares a sizeable amount of rendering functions. We have, for instance,

the Block, Body, and Assignment default rendering functions — all seen in

Section 7.3 — shared between all output languages. In part, this is due

to the generalized design of the rendering modules. But at a higher level,

this can only be possible because of inherent, common patterns between

the languages. A short distance from the generic language of AbstractCode

implies a small syntactic/semantic measure of “deviation” from a certain

central core. This directly supports the point we set out to prove.

The GOOL program is likely not appropriate for use in real-world sce-

narios. Few realistic use cases exist, and, while many features have been

implemented in the language, it is not mature enough to be used for serious,

complex applications. GOOL was intended to be a purely academic exercise;
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a methodology to search for, discover, and demonstrate a set of patterns.

This goal has been achieved to an extent that is more than sufficient; how-

ever, a great deal of further development should be carried out to discover

just how far the common core extends.
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Appendix A

Module Information

A.1 Module Hierarchy

The following module hierarchy was produced by Haddock, a tool used to au-

tomatically generate documentation from specially annotated Haskell source

code [MW10].

69



Figure A.1: GOOL Module Hierarchy

A.2 High-level Module Descriptions

A.2.1 GOOL.Auxil

GOOL.Auxil.DataTypes

Defines some data types that are used globally.
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GOOL.Auxil.DotOutput

This is a SAGA-specific module (see Section 8.1). It is not used in GOOL’s

Generic Mode. Since the Story Mode functionality is out of scope for this

report, such modules will not be discussed here.

GOOL.Auxil.Helper

Contains several helper functions for formatting output, typically used by

the renderer modules. This includes, for example, functions for transform-

ing arbitrary strings into valid variable names, and for handling lists of

renderable AbstractCode elements.

GOOL.Auxil.Printing

Contains various useful functions for printing which are not provided by the

pretty-printing library.

A.2.2 GOOL.Code

GOOL.Code

Defines the Code data type. A Code structure wraps generated code docu-

ments together with their expected file names.

A.2.3 GOOL.CodeGeneration

GOOL.CodeGeneration

Implements the high-level process of producing a Code structure from an

AbstractCode, and creating the output files.

GOOL.CodeGeneration.AbstractCode

Defines the structure of the AbstractCode datatype, and all of the compo-

nents of the AbstractCode language. Also contains many shortcut functions

and symbolic operators which serve to replace cumbersome and/or common

patterns in AbstractCode programming.
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GOOL.CodeGeneration.AbstractCode.AbstractCodeImplementation

Contains a program written in AbstractCode. This is the ’default’ imple-

mentation; i.e. if GOOL is not instructed to render a specific pre-existing

example, this is the implementation that will be rendered.

GOOL.CodeGeneration.AbstractCode.Examples.PatternExamples.AbstractCodeImplementation

Contains one of the example AbstractCode implementations. This exam-

ple simply demonstrates the functionality of some of the “PatternState”

statements of AbstractCode. These statements implement some of the well-

known “Gang of Four” OO design patterns at a high level.

GOOL.CodeGeneration.AbstractCode.Examples.QuickSort.AbstractCodeImplementation

Contains one of the example AbstractCode implementations. This example

implements QuickSort, and performs a few test sorts.

GOOL.CodeGeneration.AbstractCode.Examples.State.Version1.AbstractCodeImplementation

Contains one of the example AbstractCode implementations. This example

demonstrates a simple State Machine program.

GOOL.CodeGeneration.AbstractCode.Examples.State.Version2.AbstractCodeImplementation

Contains one of the example AbstractCode implementations. This example

demonstrates the same State Machine program as in Version 1, but uses

inheritance to make the implementation more concise.

GOOL.CodeGeneration.AbstractCode.StoryMgrAbstractCode

This is a SAGA-specific module.

GOOL.CodeGeneration.AbstractCode.LanguageRenderer

Defines the structure of the Config datatype, which is meant to contain

all rendering functions for a specific language, and thus acts as an explicit
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dictionary for the language. This module also contains a set of default

implementations for the rendering functions.

GOOL.CodeGeneration.AbstractCode.LanguageRenderer.CSharpRenderer

Contains the logic to render C# code from an AbstractCode program.

GOOL.CodeGeneration.AbstractCode.LanguageRenderer.CppRenderer

Contains the logic to render C++ code from an AbstractCode program.

GOOL.CodeGeneration.AbstractCode.LanguageRenderer.JavaRenderer

Contains the logic to render Java code from an AbstractCode program.

GOOL.CodeGeneration.AbstractCode.LanguageRenderer.LuaRenderer

Contains the logic to render Lua code from an AbstractCode program.

GOOL.CodeGeneration.AbstractCode.LanguageRenderer.ObjectiveCRenderer

Contains the logic to render Objective-C code from an AbstractCode pro-

gram.

GOOL.CodeGeneration.AbstractCode.LanguageRenderer.PythonRenderer

Contains the logic to render Python code from an AbstractCode program.

A.2.4 GOOL.Parsers

GOOL.Parsers.ConfigParser

Defines the parser for the GOOL configuration file. See Section 7.5 for

details.

GOOL.Parsers.StoryParser

This is a SAGA-specific module.
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A.2.5 Main

The entry point for execution of GOOL. This module is responsible initiates

and directs the I/O processes: reading and parsing the configuration file,

code generation, and printing any operational feedback for the user.

A.3 Module Dependency Diagram

Dependencies between the modules of GOOL are illustrated below. The

graph was produced by graphmod, a tool used to visually represent module

dependencies of Haskell programs [Dia10].

Note that the LanguageRenderer and Examples groups have been col-

lapsed for clarity.

Figure A.2: GOOL Module Dependency Diagram

A.4 Configuration File Syntax

Listing A.1: EBNF Grammar of the Configuration File

config = opt_whitespace , ’Generation ’, whitespace , ’Language ’,

whitespace , ’=’, whitespace , language , [ eximp ],

[ javalist ], [ cpplist ], [ objclist ],

opt_whitespace ;
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language = ’C#’ | ’C++’ | ’Java ’ | ’Objective -C’

| ’Python ’ | ’Lua ’ ;

whitespace = whitespace_char , { whitespace_char } ;

whitespace_char = ? any white space character ? ;

opt_whitespace = [ whitespace ] ;

eximp = whitespace , ’ExampleImplementation ’, whitespace , ’=’,

whitespace , example ;

javalist = whitespace , ’JavaListType ’, whitespace , ’=’,

whitespace , javalistype ;

cpplist = whitespace , ’CppListType ’, whitespace , ’=’,

whitespace , cpplistype ;

objclist = whitespace , ’ObjCStaticListType ’, whitespace , ’=’,

whitespace , objclisttype ;

example = ’Patterns ’ | ’QuickSort ’ | ’State ’ | ’StateV2 ’ ;

javalisttype = ’ArrayList ’ | ’LinkedList ’ | ’Vector ’ ;

cpplisttype = ’deque ’ | ’vector ’ ;

objclisttype = ’NSArray ’ | ’NSMutableArray ’ ;

A.5 AbstractCode Language Definition

Listing A.2: Haskell Definition of the AbstractCode DSL

data AbstractCode = AbsCode Package

data Package = Pack Label [Class]

data Class = Class {

className :: Label ,

parentName :: Maybe Label ,

classScope :: Scope ,

classVars :: [StateVar],

classMethods :: [Method ]}

| Enum {

className :: Label ,

classScope :: Scope ,

enumElements :: [Label]}

| MainClass {

className :: Label ,

classVars :: [StateVar],

classMethods :: [Method ]}
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data StateVar = StateVar Label Scope StateType Int

data Method =

Method Label Scope MethodType [Parameter] Body

| GetMethod Label MethodType

| SetMethod Label Parameter

| MainMethod Body

data Scope = Private | Public

data Parameter = StateParam Label StateType

| FuncParam Label MethodType [Parameter]

type Body = [Block]

data Block = Block [Statement]

data Statement = AssignState Assignment

| DeclState Declaration

| CondState Conditional

| IterState Iteration

| JumpState Jump

| RetState Return

| ValState Value

| CommentState Comment

| FreeState Value

| PrintState {newLine :: Bool , valType :: StateType ,

printVal :: Value}

| ExceptState Exception

| PatternState Pattern

data Assignment = Assign Value Value

| PlusEquals Value Value

| PlusPlus Value

data Declaration = VarDec Label StateType

| ListDec ListType Label StateType Int

| ListDecValues ListType Label StateType [Value]

| VarDecDef Label StateType Value

| ObjDecDef Label StateType Value

| ConstDecDef Label Literal

data Conditional = If [(Value , Body)] Body

| Switch Value [(Literal , Body)] Body

data Iteration =

For {initState :: Statement , guard :: Value , update ::

Statement , forBody :: Body}

| ForEach Label Value Body

| While Value Body

data Jump = Break | Continue

data Exception = Throw {excMsg :: String}

| TryCatch {tryBody :: Body , catchBody :: Body}

data Return = Ret Value

data Function = Func {funcName :: Label , funcParams :: [Value ]}

| Cast StateType

| Get Label
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| Set Label Value

| IndexOf Value

| ListSize

| ListAccess Value

| ListAdd {index :: Value , addVal :: Value}

| ListSet {index :: Value , setVal :: Value}

| ListPopulate Value StateType

| IterBegin | IterEnd

| Floor | Ceiling

data MethodType = MState StateType

| Void

| Construct Label

data StateType = List ListType StateType

| Base BaseType

| Iterator StateType

| EnumType Label

| Type Label

data ListType = Static | Dynamic

data BaseType = Boolean | Integer | Float | Character | String

data Value = EnumElement {enumName :: Label , elemName :: Label}

| EnumVar Label

| Expr Expression

| FuncApp Label [Value]

| Lit Literal

| ObjAccess Value Function

| StateObj StateType [Value]

| Self

| Var Label

| ObjVar Value Value

| ListVar Label StateType

| Const Label

| Arg Int

| Input

data Literal = LitBool Bool

| LitInt Int

| LitFloat Float

| LitChar Char

| LitStr String

data Expression = UnaryExpr UnaryOp Value

| BinaryExpr Value BinaryOp Value

data UnaryOp = Negate | SquareRoot | Abs

| Not

data BinaryOp = Equal | NotEqual

| Greater | GreaterEqual

| Less | LessEqual

| Plus | Minus

| Multiply | Divide
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| Power | Modulo

data Pattern = State StatePattern

| Strategy StratPattern

| Observer ObserverPattern

data StatePattern = InitState {fsmName :: Label , initialState :: Label

}

| ChangeState {fsmName :: Label , toState :: Label}

| CheckState {fsmName :: Label , cases :: [(Label ,

Body)], defaultBody :: Body}

data StratPattern = RunStrategy {stratName :: Label , strategies ::

Strategies , assignResultTo :: Maybe Value}

data Strategies = Strats {strats :: [(Label , Body)], returnVal ::

Maybe Value}

data ObserverPattern = InitObserverList {observerType :: StateType ,

observers :: [Value]}

| AddObserver {observerType :: StateType ,

observer :: Value}

| NotifyObservers {observerType :: StateType ,

receiveFunc :: Label , notifyParams :: [Value

]}
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