
STATE OF THE PRACTICE FOR LATTICE BOLTZMANN METHOD SOFTWARE

By
PETER MICHALSKI.

A Report
Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the degree

Master of Engineering in Computing and Software

McMaster University
© Copyright by Peter Michalski, August 2021

TITLE: State of The Practice for Lattice Boltzmann Method Software
DEGREE: Master of Engineering (Computing and Software)
INSTITUTION: McMaster University
AUTHOR: Peter Michalski
SUPERVISOR: Dr. Spencer Smith and Dr. Jacques Carette
NUMBER OF PAGES: 125

Abstract

We analyze the state of the practice of software development in the Lattice Boltzmann
Methods software domain by quantitatively and qualitatively measuring and comparing
23 software packages. We present a general methodology for assessing the state of the
practice of software development in scientific computing software domains. We present a
domain analysis of the Lattice Boltzmann Methods software family, and identify candidate
software packages. We assess these packages to answer software development related re-
search questions to understand how software quality is impacted by software development
choices, including principles, processes, and tools. We interview software developers to
identify development pain points, and to identify how software quality is ensured. We use
quantitative data to rank the software packages using the Analytical Hierarchy Process, and
rank Ludwig, ESPResSo, and Palabos as the top three packages. Each of them score high
in at least several of the individual qualities that we quantitatively measure. We compare
these rankings with rankings from the software development community. We make recom-
mendations, such as providing a detailed user manual and tutorials, explicitly stating the
limits of the software, using user-friendly software languages, considering a peer review
process, communicating development and contribution information, and using continuous
integration and project management tools.

Keywords: Lattice Boltzmann Methods, Scientific Computing, Software Engineering,
Software Family, Software Quality

Contents
1 Introduction 1

1.1 Research Questions . 2
1.2 Motivation . 4
1.3 Scope . 5
1.4 Organization . 6

2 Domain Analysis 8
2.1 Lattice Boltzmann Systems . 9
2.2 Commonalities . 10

2.2.1 Lattice Boltzmann Method Solvers 11
2.2.2 Input . 13
2.2.3 Output . 14

2.3 Variabilities . 14
2.3.1 Lattice Boltzmann Method Solvers 15
2.3.2 Input . 19
2.3.3 Output . 19
2.3.4 System Constraints . 20

2.4 Parameters of Variation . 21
2.4.1 Lattice Boltzmann Method Solvers 22
2.4.2 Input . 28
2.4.3 Output . 28
2.4.4 System Constraints . 29

3 Methodology 31
3.1 Process . 32
3.2 Software Qualities . 33

3.2.1 Installability . 33
3.2.2 Correctness . 33
3.2.3 Verifiability . 34
3.2.4 Reliability . 34
3.2.5 Robustness . 35
3.2.6 Performance . 35
3.2.7 Usability . 35
3.2.8 Maintainability . 36
3.2.9 Modifiability . 36
3.2.10 Reusability . 36
3.2.11 Understandability . 37
3.2.12 Traceability . 37

i

3.2.13 Visibility and Transparency . 37
3.2.14 Reproducibility . 38
3.2.15 Unambiguity . 38

3.3 Identify Candidate Software . 38
3.4 Filter the Software List . 39
3.5 Empirical Measures . 42
3.6 Analytical Hierarchy Process . 43

4 Quantitative Findings and AHP Results 44
4.1 Installability . 44
4.2 Surface Correctness and Verifiability . 47
4.3 Surface Reliability . 50
4.4 Surface Robustness . 51
4.5 Surface Performance . 52
4.6 Surface Usability . 53
4.7 Maintainability . 55
4.8 Reusability . 58
4.9 Surface Understandability . 60
4.10 Visibility and Transparency . 61
4.11 Overall Quality . 63

5 Qualitative Findings From Developer Interviews 65
5.1 Surface Correctness and Verifiability . 65
5.2 Surface Usability . 66
5.3 Maintainability . 67
5.4 Modifiability . 68
5.5 Surface Understandability . 69
5.6 Traceability . 69
5.7 Visibility and Transparency . 70
5.8 Reproducibility . 72
5.9 Unambiguity . 73

6 Answers To Research Questions 75
6.1 Artifacts Present . 75

6.1.1 Common Artifacts . 77
6.1.2 Less Common Artifacts . 77
6.1.3 Rare Artifacts . 78

6.2 Tools Used . 79
6.2.1 Development Tools . 79
6.2.2 Dependencies . 80

ii

6.2.3 Project Management Tools . 80
6.3 Principles, Processes, and Methodologies 81
6.4 Pain Points . 84

6.4.1 Lack of Development Time . 84
6.4.2 Lack of Software Development Experience 84
6.4.3 Lack of Incentive and Funding . 85
6.4.4 Lack of External Support . 85
6.4.5 Parallelization and Continuous Integration 86
6.4.6 Ensuring Correctness . 86
6.4.7 Usability . 87
6.4.8 Technical Debt . 88
6.4.9 Quality of Documentation . 88

6.5 Quality Recommendations . 89
6.5.1 Installability . 89
6.5.2 Surface Correctness and Verifiability 90
6.5.3 Surface Reliability . 91
6.5.4 Surface Robustness . 92
6.5.5 Surface Performance . 92
6.5.6 Surface Usability . 93
6.5.7 Maintainability . 94
6.5.8 Modifiability . 95
6.5.9 Reusability . 96
6.5.10 Surface Understandability . 96
6.5.11 Traceability . 97
6.5.12 Visibility and Transparency . 98
6.5.13 Reproducibility . 99
6.5.14 Unambiguity . 99

6.6 Designation Comparison . 100
6.6.1 Repository Ranking Metrics . 100
6.6.2 Domain Expert Recommended Software 102

6.7 Threats To Validity . 104

7 Conclusion 106
7.1 Highlighted Recommendations . 107
7.2 Future State Of The Practice Assessments 108

Appendices 110

A Measurement Template 110

iii

B Developer Interview Questions 118

C Grading Template 120

D Eliminated Software Packages 124

E Ethics Approval 125

iv

List of Figures
1 Streamlines of flow past a stationary circular cylinder at Reynolds number

= 10, 20, and 40 [8] . 1
2 Commonly used LBM models in two and three dimensions 25
3 AHP Installability Score . 46
4 AHP Surface Correctness and Verifiability Score 49
5 AHP Surface Reliability Score . 51
6 AHP Surface Robustness Score . 52
7 AHP Surface Usability Score . 54
8 AHP Maintainability Score . 56
9 AHP Reusability Score . 58
10 AHP Understandability Score . 61
11 AHP Visibility and Transparency Score 62
12 AHP Overall Score . 63

List of Tables
1 Alive Software Packages . 40
2 Dead Software Packages . 41
3 Git Repository Data . 57
4 Module Data . 59
5 Artifacts Present . 76
6 Repository Ranking Metrics . 102
7 Ranking Comparison . 104
8 Measurement Template . 111
9 Grading Template . 120
10 Eliminated Software Packages . 124

v

Reference Material

Software Engineering Related Definitions and Acronyms
AHP: Analytical Hierarchy Process

Commonality: A requirement or goal common to all family members.

CPU: Central Processing Unit

Goal: Goals capture, at different levels of abstraction, the various objectives the system
under consideration should achieve [45].

GPU: Graphics Processing Unit

LOC: Lines of Code

OS: Operating System

OTS: Off-The-Shelf

Requirements: A software requirement is: i) a condition or capability needed by a user to
solve a problem or achieve an objective; ii) a condition or capability that must be met or
possessed by a system or system component to satisfy a contract, standard, specification,
or other formally imposed document; or, iii) a documented representation of a condition or
capability as in the above two definitions [43].

SCS: Scientific Computing Software

Software Family: A set of programs with an extensive amount of common properties [28].

Variability: A requirement or goal that varies between family members.

vi

Lattice Boltzmann Related Definitions and Acronyms
1D 1-Dimensional

2D: 2-Dimensional

3D: 3-Dimensional

BGK: Bhatnagar-Gross-Krook [5]

CFD: Computational Fluid Dynamics

MRT: Multi-Relaxation-Time

SRT: Single-Relaxation-Time

TRT: Two-Relaxation-Time

LBM: Lattice Boltzmann Methods

LBS: Lattice Boltzmann Solvers

Velocity Directions: The number of links connecting to each lattice node in the chosen
model from neighbouring nodes. All nodes in a chosen lattice model will have the same
number of links. A single link will connect between two adjacent nodes.

vii

1 Introduction

We analyze the development of Computational Fluid Dynamics (CFD) software pack-

ages that use Lattice Boltzmann Methods (LBM). These LBM algorithms consider the

behaviours of a collection of particles as a single unit of an intermediate size, and pre-

dict their positional probability as they move through a lattice structure. Figure 1 presents

the streamlines of converged flow past a stationary circular cylinder with varied Reynolds

number, a common task of LBM.

Figure 1: Streamlines of flow past a stationary circular cylinder at Reynolds number = 10,
20, and 40 [8]

LBM have several advantages over conventional CFD methods, including a simple cal-

culation procedure, improved parallelization, and robust handling of complex geometries

[9]. LBM are further detailed in Section 2.

Scientific Computing Software (SCS) is defined as the use of computer tools to analyze

or simulate mathematical models of real world systems [32]. Given the importance of

such software, scientists and engineers desire methods and tools to sustainably develop it

with high quality. This has led to the formation of groups like the Software Sustainability

Institute (SEI) and Better Scientific Software (BSS).

The goal of this report is to analyze the current state of development of LBM SCS to

provide insight into its best practices and to offer guidance for future development. We

1

https://www.software.ac.uk/
https://bssw.io/

want to understand how software quality in the LBM SCS family is impacted by software

development choices, including principles, processes, and tools.

In this report red text denotes internally linked sections of this document. Cyan text

denotes an external URL link. Green text denotes a link to the bibliography.

1.1 Research Questions

The LBM software packages are assessed to answer the following research questions:

1. What artifacts are present in current software packages?

2. What tools (development, dependencies, project management) are used by current

software packages?

3. What principles, processes, and methodologies are used in the development of cur-

rent software packages?

4. What are the pain points for developers working on research software projects? What

aspects of the existing processes, methodologies and tools do they consider as poten-

tially needing improvement? How should processes, methodologies and tools be

changed to improve software development and software quality?

5. For research software developers, what specific actions are taken to address the fol-

lowing:

(a) installability

(b) correctness and verifiability

(c) reliability

2

(d) robustness

(e) performance

(f) usability

(g) maintainability

(h) modifiability

(i) reusability

(j) understandability

(k) traceability

(l) visibility and transparency

(m) reproducibility

(n) unambiguity

6. How does software designated as high quality by this methodology compare with top

rated software by the community?

The packages are assessed for a given set of quality attributes using quantitative and

qualitative data. The qualities are defined in Section 3.2. Quantitative data is measured

using quality metrics. The findings are presented in Section 4. Qualitative data is gathered

from interviews with software package developers. The interview findings are presented in

Section 5. In this context the purposes of the report are as follows:

• Develop and test an updated methodology for assessing the state of the practice of

SCS projects

• Describe the specific example of LBM software structure and goals

3

• Report on the measure of a subset of LBM software packages along quality metrics

• Evaluate the state of the practice of LBM software development along quality at-

tributes

• Make suggestions for improving LBM software along quality attributes

• Make suggestions for improving state of the practice of SCS assessments

1.2 Motivation

The purpose of state of the practice assessments is to understand how software quality

is impacted by software development choices, including principles, processes, and tools,

within SCS communities. This knowledge can be used to guide future development of SCS,

specifically along quality attributes, and to reduce software quality failures. This work

reports on the state of the practice of LBM software development and makes suggestions

on improving the quality of software in this domain.

This assessment of the state of the practice of LBM software development builds off

of prior work on assessing the state of research software development. Updates to the

methodology used in prior assessments are detailed below. Those assessments include

domains such as Geographic Information Systems [39], Mesh Generators [38], Oceano-

graphic Software [36], Seismology software [41], and statistical software for psychology

[40].

In the course of this assessment we updated the methodology that was used during

previous assessments. Details of the new methodology are in [33]. The previous set of re-

search questions were critically assessed and modified. The updated questions are listed in

Section 1.1. In this re-boot we collected more quantitative and qualitative data, focused on

4

software quality attributes, and added more measures, including collecting empirical data

and interviewing developers. We have also added a domain analysis to better characterize

the functionality provided by the software, and have leveraged the expertise of a domain

expert. As in past assessments, the collected data was combined to rank the software using

the Analytical Hierarchy Process (AHP). The domain expert was consulted to verify the

ordering.

1.3 Scope

We analyze a filtered set of LBM software packages along quantitative and qualitative

measures. Many of these measures are captured using surface measurements, which can

be categorized as initial and easy to capture measurements, of the underlying quality; they

may not represent the true quality of the software. Surface measurements are taken as

they allow us to apply the same measurement, with reasonable effort, along all software

packages despite technical and functional variabilities among the set of software packages.

Not all qualities are quantitatively measured. For example, performance is not measured by

running the code. A surface investigation of the documentation of each software package

for performance information is conducted instead. The measured software packages are

open source. Some recommendations may not apply to closed-source software. Practices

surrounding close source software development may differ.

The report addresses what was done during the development of the software packages to

address the quality attributes listed in Section 3.2. It then provides general guidance on how

to improve these qualities when developing LBM software. It does not make suggestions on

what should have been done or should be done for any one specific package. Best practices

may differ among software packages due to their inherent organizational and technical

5

differences.

1.4 Organization

The report is organized as follows:

• Introduction to the report, including its purpose, motivation, scope, and organiza-

tion.

• LBM software Domain Analysis. A domain analysis consists of systematically iden-

tifying and documenting the commonalities, variabilities, and terminology of a soft-

ware family [47]. The purpose of this analysis in this state of the practice assessment

is to better classify the different software products based on their functionality.

• Methodology of this state of the practice assessment, including the steps of the

methodology, software quality definitions and how these qualities are assessed in

this report, an overview of candidate software selection, empirical measures gath-

ered, and the AHP. This follows a general methodology for assessing the state of the

practice for SCS domains.

• Quantitative Results.

• Qualitative Results.

• An analysis of the results and Answers To Research Questions.

• Conclusion to the report including comments on suggestions for future state of the

practice assessments.

6

• Appendix: This section includes our Research Questions, the Measurement Tem-

plate, Grading Template, Ethics Approval, and Developer Interview Questions.

7

2 Domain Analysis

A domain analysis consists of systematically identifying and documenting the com-

monalities, variabilities, and parameters of variation of a software family [47]. A software

family is defined by [28] as “a set of programs whose common properties are so extensive

that it is advantageous to study the common properties of the programs before analyzing

individual members”.

We added this domain commonality and variability analysis to our original methodol-

ogy because the first time we did the State of the Practice exercise we found we weren’t

comparing “apples to apples”. Software packages can have considerable variation, even

when the packages appear to be in the same software family. Viewing our final ranking

of the software packages as a means for selecting the right tool for a job, functionality is

important. A 2D Lattice Boltzmann solver is not a substitute for a 3D Lattice Boltzmann

solver when the latter is required. For example, an analysis of a vascular system may re-

quire a 3D model to convey all required information to a researcher. This domain analysis

helps ensure that the packages that we compare are appropriately similar, and highlights

potential differences. This information further helps when analyzing the appropriateness

of the final rank of the packages. This exercise seeks to classify the different software prod-

ucts based on their functionality. Nonfunctional qualities are assessed through other means

in our process. For instance, through usability experiments as noted in the Methodology

for Assessing the State of the Practice for Domain X document. This exercise was not part

of the methodology of the previous State of the Practice exercise.

This domain analysis of the LBM SCS family is organized into the four subsection

located below. The first subsection reviews the basics of Lattice Boltzmann systems. The

next three subsections consist of lists of commonalities, variabilities, and parameters of

8

https://github.com/smiths/AIMSS/blob/master/StateOfPractice/Methodology/Methodology.pdf
https://github.com/smiths/AIMSS/blob/master/StateOfPractice/Methodology/Methodology.pdf

variation, respectively. These three sections form the heart of the domain analysis and

include an extensive set of cross-references to demonstrate the relationships between the

different items.

2.1 Lattice Boltzmann Systems

LBM are a family of fluid dynamics algorithms for simulating single-phase and multi-

phase fluid flows, often incorporating additional physical complexities [7] such as reflective

and non-reflective boundaries. They consider the behaviours of a collection of particles as a

single unit at the mesoscopic scale, between the nanoscopic and microscopic scales. These

methods predict the positional probability of a collection of particles moving through a lat-

tice structure. Off-the-shelf (OTS) Lattice Boltzmann Solvers (LBS) allow for a range of

fluid and physical model input parameters, computational parameters, and output parame-

ters.

LBS model fluid dynamics within a boundary using a predefined lattice structure and

a two step calculation process. The first process is streaming, where the particles move

along the lattice via links. The second process is collision, where energy and momentum

is transferred among particles that collide [2]. There are many standardized lattice models

- individual solvers within the family might only use a subset of them. LBM use the initial

parameters of the fluid to find the probability of where along the lattice linkages a group

of particles are most likely to travel. It then moves the particles into the next node, and

transfers the energy and momentum if a collision occurs. Then the process repeats for the

duration of the modeling instance.

9

2.2 Commonalities

This section lists common features among potential family members. These features

were chosen after a review of LBM literature and software package specifications. The

commonalities are organized using the following abstraction of the system, which can be

used to describe all Lattice Boltzmann systems: input information, generate the simulation,

output the results. Section 2.2.1 describes the commonalities for the simulation step. Sec-

tion 2.2.2 highlights the input information that is required for Lattice Boltzmann systems.

The next section, Section 2.2.3, shows the common features for the output of Lattice Boltz-

mann systems, such as the requirement that mesh information be written to files. Although

the output information could simply be written to the memory, in all practical applications

it is desirable to have a persistent record of the output that was created.

Each commonality below uses the same structure. All of the commonalities are as-

signed a unique item number, which takes the form of a natural number with the prefix

“C”. Following this, a description of the commonality is provided along with a list of re-

lated variabilities, which are given as hyperlinks that allow navigation of the document to

the text describing the variability.

10

2.2.1 Lattice Boltzmann Method Solvers

Item Number C1

Description A lattice discretizes a computational domain into a finite number of

points. All LBS discretize the computational domain using a regular,

evenly spaced grid within a boundary.

Related Variability V6 V7 V11

Item Number C2

Description All Lattice Boltzmann versions use a collision operator which con-

cerns collisions between particles. Collision operators map collisions

of particles within the lattice space. The Bhatnagar-Gross-Krook

Collision Operator is a common LBM collision operator that pre-

serves continuity for a discretized model, for each velocity direction

i. Its equation is Ωi =
1
τ
(f eq

i − fi), where τ is the relaxation rate to-

wards equilibrium, f eq is the equilibrium particle probability distri-

bution function, and f is the particle probability distribution function.

Related Variability V5 V6

11

Item Number C3

Description All Lattice Boltzmann versions use a probability density function to

give the probability that fluid has moved into a specific domain.

Related Variability V5

Item Number C4

Description Every Lattice Boltzmann version uses an equilibrium distribution

function to capture the probability distribution of particles.

Related Variability V2 V3 V4

12

Item Number C5

Description Every Lattice Boltzmann version uses a Boltzmann transport equa-

tion to describe the statistical behaviour of a system that does not

have collisions. The equation is (d
dt +e ·∇x+

F
m ·∇e) f = Ω(t), where

e is the velocity, ∇x is the position vector gradient, F is the force of

the fluid, m is the mass, ∇e is the velocity gradient, f indicates the

probability density function, and Ω(t) is the collision operator as a

function of time.

Related Variability V8

2.2.2 Input

Item Number C6

Description The LBS require fluid, model, and boundary information for the

problem. This includes, but is not limited to, fluid acceleration rate,

velocity, and viscosity, as well as the number of dimensions in the

lattice model, and the number of velocity directions in the lattice.

Related Variability V12

13

2.2.3 Output

Item Number C7

Description LBS write fluid predictions, such as the output of the transport equa-

tion, to memory.

Related Variability V13 V14

2.3 Variabilities

This section provides a list of characteristics that may vary among family members.

These features were chosen after a review of LBM literature and software package spec-

ifications. As in Section 2.2, the first three subsections on variabilities are organized into

the following sublists: Simulation Models, Input and Output. The final subsection lists

variabilities that can be characterized as system constraints.

As for the commonalities, each variability is labelled with a unique item number. In

this case the numbers are prepended with the letter “V”. The other three headings provided

for each variability are: Description, Related Commonality, and Related Parameter. The

related commonalities and parameters are given as a set of identifiers that respectively

refer back to the previous section on commonalities or refer forward to the next section on

parameters of variation.

14

2.3.1 Lattice Boltzmann Method Solvers

Item Number V1

Description LBS may use a framework for parallel processing of the model.

Related Commonality None

Related Parameter P1

Item Number V2

Description Different versions of an equilibrium distribution function can cap-

ture the probability distribution of particles.

Related Commonality C4

Related Parameter P2

Item Number V3

Description Storage patters for distribution function can vary.

Related Commonality C4

Related Parameter P3

15

Item Number V4

Description Coefficients used with the distribution function can vary. These

are based on the number of velocity directions in the model.

Related Commonality C4

Related Parameter P4

Item Number V5

Description The number of dimensions in the lattice of the model can vary.

Related Commonality C1 C3

Related Parameter P5

Item Number V6

Description The number of velocity directions in the lattice of the model can

vary.

Related Commonality C1 C2

Related Parameter P6

16

Item Number V7

Description Various collision operators can be used.

Related Commonality C1 C2

Related Parameter P7

Item Number V8

Description Various transport equations can be used to describe the statistical

behaviour of the system

Related Commonality C5

Related Parameter P8

Item Number V9

Description The number of fluids allowed in a multifluid simulation.

Related Commonality C6

Related Parameter P9

17

Item Number V10

Description The type of fluid parameters.

Related Commonality C6

Related Parameter P10

Item Number V11

Description The boundary of the lattice can have various conditions.

Related Commonality C1

Related Parameter P11

18

2.3.2 Input

Item Number V12

Description The input interface can vary between LBS.

Related Commonality C6

Related Parameter P12

2.3.3 Output

Item Number V13

Description Visual presentation of the prediction.

Related Commonality C7

Related Parameter P13

Item Number V14

Description Format of prediction information.

Related Commonality C7

Related Parameter P14

19

2.3.4 System Constraints

Item Number V15

Description Hardware that processes the calculations

Related Commonality None

Related Parameter P15

Item Number V16

Description Operating systems on which LBS run.

Related Commonality None

Related Parameter P16

Item Number V17

Description Amount of storage and memory needed for the LBS.

Related Commonality None

Related Parameter P17

20

2.4 Parameters of Variation

This section specifies the parameters of variation for the variabilities listed in Section

2.3. They are organized into the same five subcategories as employed previously: Simula-

tion Models, Input, Output, and System Constraints.

Each parameter of variation is given a unique identifier of the form P followed by a

natural number. The corresponding variability is listed and a hyperlink is provided that

allows navigation back to the appropriate item in Section 2.3. The final entry for each

parameter of variation is the binding time, which is the time in the software lifecycle when

the variability is fixed. The binding time could be during specification, or during building

of the system (build time), or during execution of the system (run time). It is possible

to have a mixture of binding times. For instance, a parameter of variation could have a

binding time of specification or building to represent that the parameter could be set at

specification time, or it could be postponed until the given family member is built. The

choice of postponing the decision until the build could be associated with the presence

of a domain specific language that would allow postponing decisions on the values of the

parameter of variation.

21

2.4.1 Lattice Boltzmann Method Solvers

Item Number P1

Corresponding Variability V1

Range of Parameters OpenMP, OpenCL, CUDA, MPI are used if the execution of

the LBS is parallelized.

Binding Time Build Time

Item Number P2

Corresponding Variability V2

Range of Parameters Equilibrium approximation varies between incompressible or

compressible models.

Binding Time Build Time

22

Item Number P3

Corresponding Variability V3

Range of Parameters Various data structures can be used to store function output,

including single and multi-dimensional arrays, depending on

the problem model and developer preferences.

Binding Time Build Time

Item Number P4

Corresponding Variability V4

Range of Parameters Numerous coefficients for equilibrium distribution function

based on number of velocity directions. The number of ve-

locity directions is typically 2, 3, 5, 9, 13, 15, 19, or 27.

Binding Time Build Time

23

Item Number P5

Corresponding Variability V5

Range of Parameters LBS model has 1, 2, or 3 dimensions.

Binding Time Build Time or Run Time

Item Number P6

Corresponding Variability V6

Range of Parameters One dimensional models include options of 2, 3, and 5 veloc-

ity directions. Two dimensional models include options of 9,

13, and 15 velocity directions. Three dimensional models in-

clude options of 15, 19, and 27 velocity directions. Figure

2 from [44] illustrates two commonly used LBM models in

two and three dimensions.

Binding Time Build Time or Run Time

24

Figure 2: Commonly used LBM models in two and three dimensions

Item Number P7

Corresponding Variability V7

Range of Parameters SRT, TRT, MRT, BGK collision operators.

Binding Time Build Time

25

Item Number P8

Corresponding Variability V8

Range of Parameters Collision and collision free transport equations. LBS some-

times use one or the other, often the collision transport equa-

tion. A Boolean parameter could be used to select between

these equations in systems that can apply either equation.

Binding Time Build Time

Item Number P9

Corresponding Variability V9

Range of Parameters LBS can model a natural number of fluids.

Binding Time Build Time

26

Item Number P10

Corresponding Variability V10

Range of Parameters LBS fluid parameters include Reynolds Number, density, vis-

cosity, time, pressure, force, direction, relaxation rate, turbu-

lence. All of these parameters have the type of real number.

Binding Time Build Time

Item Number P11

Corresponding Variability V11

Range of Parameters Lattice boundary can have reflective or non-reflective condi-

tions. Some LBS will only model reflective or non-reflective

conditions. If there is a choice then this can be indicated by

a Boolean parameter.

Binding Time Build Time

27

2.4.2 Input

Item Number P12

Corresponding Variability V12

Range of Parameters Input can be graphical, text or file.

Binding Time Build Time

2.4.3 Output

Item Number P13

Corresponding Variability V13

Range of Parameters LBS can provide 1D, 2D, and 3D rendering of the model.

Binding Time Build Time or Run Time

28

Item Number P14

Corresponding Variability V14

Range of Parameters LBS prediction information is output in either text or binary

format.

Binding Time Build Time

2.4.4 System Constraints

Item Number P15

Corresponding Variability V15

Range of Parameters The LBS model can be calculated on the CPU or GPU.

Binding Time Build Time

Item Number P16

Corresponding Variability V16

Range of Parameters LBS can be run on Windows, MacOS, or Linux versions.

Binding Time Build Time

29

Item Number P17

Corresponding Variability V17

Range of Parameters The amount of memory and storage varies between LBS.

Binding Time Run Time

30

3 Methodology

In this project we set out to answer the research questions listed in Section 1.1 for the

LBM SCS domain. The process involved systematically measuring and analyzing members

of this software family along the quality attributes listed in the research questions and

described in Section 3.2. The methodology includes gathering quantitative and qualitative

measurements. A goal of the project is to produce a quality assessment for LBM software

packages.

The methodology used in this LBM software assessment is a general state of the prac-

tice methodology that can be applied to any SCS domain. It was developed as an update to

previous state of the practice exercises.

We collected quantitative data using the measures found in the measurement template

in Appendix A. Some of this was empirical software engineering related data, such as the

number of files, number of lines of code (LOC), percentage of issues that are closed, etc.

Most of the data was gathered by manually investigating the software, its source code, and

its artifacts, while some was gathered using the empirical measurement tools discussed in

Section 3.5.

We also collected qualitative data by interviewing the software package developers and

asking them the questions found in Appendix B. Ethics clearance information can be found

in Appendix E. Furthermore, we solicited the assistance of domain experts to better assess

each software package by leveraging their experience to assess the functional and non-

functional requirements for the software domain.

This section begins by describing the steps of the overall process we used to select,

measure and compare LBM software. This is followed by quality definitions and how

these qualities were assessed in our project. The rest of the section provides an overview of

31

how candidate software packages were selected and filtered, the empirical measurements

and software tools that were used, and the AHP.

3.1 Process

The following steps provide an overview of how the assessment was conducted:

1. List candidate software packages for the domain. This is discussed in Section 3.3.

2. Filter the software package list. This is discussed in Section 3.4.

3. Gather the source code and documentation for each software package.

4. Collect empirical measures. This is discussed in Section 3.5.

5. Measure using the measurement template. This is discussed in Section 3.5. The

measurement template can be found in Appendix A.

6. Survey the developers. The developers of each software package in the filtered soft-

ware list were contacted for voluntary interviews. The interview questions can be

found in Appendix B.

7. Use AHP to rank the software packages. This is discussed in Section 3.6.

8. Analyze the results and answer the research questions. The answers can be found in

Section 6.

These steps are further detailed in the Methodology for Assessing the State of the Prac-

tice for Domain X document.

32

https://github.com/smiths/AIMSS/blob/master/StateOfPractice/Methodology/Methodology.pdf
https://github.com/smiths/AIMSS/blob/master/StateOfPractice/Methodology/Methodology.pdf

3.2 Software Qualities

Software quality attributes facilitate the measurement and comparison of software pack-

ages in this state of the practice assessment. We adopt software quality definitions from

various researchers and subject matter expert entities. Some of the definitions are from

[34]. The quality measurement results are found in Section 4 of this report. Section 6.5

lists recommendations to address software qualities in LBM software packages. The fol-

lowing are the software quality definitions used in this state of the practice exercise, along

with comments regarding their quantitative and qualitative measurement.

3.2.1 Installability

Installability is measured by the effort required for the installation, uninstallation or

reinstallation of a software product in a specified environment [19] [23]. A good measure

of installability correlates with scenarios when low or moderate effort is required to gather

and prepare software for its general use on a system for which it was designed. In this

case effort includes the time spent finding and understanding the installation instructions,

the man-time and resources spent performing the installation procedure, and the absence

or ease of overcoming system compatibility issues. The ability to reasonably validate the

installation procedure also has a positive effect on the measure of installability. Similarly,

the ease of uninstallation has an affect on the measure of installability.

3.2.2 Correctness

A software program is correct if it behaves according to its stated specifications [12].

This requires that the specification is available. Software is unlikely to have a formal spec-

ification if it is not developed by seasoned or professional software developers. Since some

33

software does not have a specification available, the correctness of software cannot always

be verified. Despite an absent specification, the correctness of the output of scientific com-

puting software can sometimes be manually verified by applying domain knowledge. A

good measure of correctness correlates with the availability of a requirements specification

and reference to domain theory, as well as the explicit use of tools or techniques for building

confidence of correctness, such as documentation generators and software analysis tools.

3.2.3 Verifiability

Verifiability is measured by the extent to which a set of tests can be written and exe-

cuted to demonstrate that the delivered system meets the specification [42]. Similarly to

correctness, verifiability is correlated with the availability of a specification and with refer-

ence to domain knowledge. A good measure of verifiability is further correlated with the

availability of well written tutorials that include expected output, with software unit test-

ing documentation, and with evidence of continuous integration during the development

process.

3.2.4 Reliability

Reliability is measured by the probability of failure-free operation of a computer pro-

gram in a specified environment for a specified time, i.e. the average time interval between

two failures also known as the mean time to failure (MTTF) [12] [26]. Reliability is thus

positively correlated with the absence of errors during installation and use. Recoverability

from errors also improves reliability.

34

3.2.5 Robustness

Software possesses the characteristic of robustness if it behaves reasonably in two situa-

tions: i) when it encounters circumstances not anticipated in the requirements specification;

and ii) when the assumptions in its requirements specification are violated [6] [11]. A good

measure of robustness correlates with a reasonable reaction to unexpected input, includ-

ing data of the wrong type, empty input, or missing files or links. A reasonable reaction

includes an appropriate error message and the ability to recover the system.

3.2.6 Performance

Performance is measured by the degree to which a system or component accomplishes

its designated functions within given constraints, such as speed (database response times,

for instance), throughput (transactions per second), capacity (concurrent usage loads), and

timing (hard real-time demands) [16] [48]. In this state of the practice assessment per-

formance was not quantitatively measured. Instead the documentation of each software

package was observed for information that alludes to a consideration of performance, such

as parallelization tools.

3.2.7 Usability

Usability is measured by the extent to which a software product can be used by spec-

ified users to achieve specified goals with effectiveness, efficiency, and satisfaction in a

specified context of use [27]. A good measure of usability correlates with the presence

of documentation, including tutorials, manuals, and defined user characteristics, and user

support. Preferably the user support model has avenues to contact developers and report

issues.

35

3.2.8 Maintainability

A measure of maintainability is the effort with which a software system or component

can be modified to correct faults, improve performance or other attributes, and satisfy new

requirements [16] [6]. In this state of the practice analysis maintainability is measured

by the quality of documentation artifacts, and the presence of version control and issue

tracking. These artifacts can greatly decrease the effort needed to modify software. There

are many documentation artifacts that can improve maintainability, including user and de-

veloper manuals, specifications, README files, change logs, release notes, publications,

forums, and instructional websites.

3.2.9 Modifiability

Modifiability refers to the ease with which stable changes can be made to a system and

the flexibility of the system to adopt such changes [1]. This state of the practice assessment

did not quantitatively measure modifiability. Developers were asked in interviews if they

considered the ease of future changes when developing the software packages, specifically

changes to the structure of the system, modules and code blocks. A follow up question

asked if any measures had been taken.

3.2.10 Reusability

Reusability refers to the extent to which components of a software package can be used

with or without adaptation in other software packages [20]. A good measure of reusability

results from a large number of easily reusable components. Increased software modu-

larization, defined as the presence of smaller components with well defined interfaces, is

important. For this state of the practice assessment, a good measure of reusablity correlates

36

with an increased number of code files, and the availability of API documentation.

3.2.11 Understandability

Understandability is measured by the capability of the software package to enable the

user to understand its suitability and function [18]. It is an artifact-dependent quality. Un-

derstandability is different for the user-interface, source code, and documentation. In this

state of the practice analysis, understandability focuses on the source code. It is measured

by the consistency of a formatting style, the extend of modularization, the explicit identifi-

cation of coding standards, the presence of meaningful identifiers, and clarity of comments.

3.2.12 Traceability

Traceability refers to the ability to link the software implementation and the software

artifacts, especially the requirement specification [25]. Similar to the quality of correctness,

this requires some form of specification to be available. The quality refers to keeping track

of information as it changes forms or relates between artifacts. This state of the practice

assessment did not quantitatively measure traceability. Developers were asked in interviews

how documentation fits into their development process.

3.2.13 Visibility and Transparency

Visibility and transparency refer to the extent to which all of the steps of a software

development process, and the current status of it, are conveyed clearly [11]. In this state

of the practice assessment a good measure of visibility and transparency correlates with a

well defined development process, the presence of development process and environment

documentation, and software package version release notes.

37

3.2.14 Reproducibility

Software achieves reproducibility if another developer can take the requirements doc-

umentation and re-obtain the same software artifacts [4]. This includes the output of the

software, where the scientific results are compared between software implementations, or

between software implementations and manually calculated results. This state of the prac-

tice assessment did not quantitatively measure reproducibility. Developers were asked in

interviews if they have any concern that their computational results won’t be reproducible

in the future, and if they have taken any steps to ensure reproducibility.

3.2.15 Unambiguity

Unambiguity refers to the extent to which two readers have similar interpretations when

reading software artifacts. In other words, artifacts are unambiguous if, and only if, they

only have one interpretation [17]. This state of the practice assessment did not quantita-

tively measure unambiguity. Developers were asked in interviews if they think that the

current documentation can clearly convey all necessary knowledge to the users, and how

they achieved this or what improvements are needed to achieve it.

3.3 Identify Candidate Software

The candidate software was found through search engine queries targeting authoritative

lists of software. We found LBM software listed on the websites GitHub and swMATH,

as well as through articles found in scholarly journals and databases. Software packages

that are not on the authoritative lists that we used were not assessed. Packages that fit our

criteria but were found after data collection and analysis was conducted, such as Musubi,

38

will need to be added to future SOP assessments.

The following properties were considered when creating the list and reviewing the can-

didate software:

1. The software functionality must fall within the identified domain.

2. The source code must be viewable.

3. The empirical measures should be available, which implies a preference for GitHub-

style repositories.

4. The software cannot be marked as incomplete or in an initial development phase.

The initial list had 45 packages, including a few packages that were later found to not

have publicly available source code, or to be in an incomplete state of development.

3.4 Filter the Software List

To reduce the number of members in the candidate software list to a manageable size,

the following filters were applied. The filters were applied in the priority order listed.

1. Scope: Software is removed by narrowing what functionality is considered to be

within the scope of the domain.

2. Usage: Software packages were eliminated if their installation procedure was miss-

ing or not clear and easy to follow.

3. Age: The older software packages (age being measured by the last date when a

change was made) were eliminated, except in the cases where an older software

package appears to be highly recommended and currently in use.

39

For the third item in the above filter, software packages were characterized as ‘alive’

if their related documentation had been updated within the last 18 month. Packages were

categorized as ‘dead’ if the last update of this information was more than 18 month ago.

Name Released Updated

DL MESO (LBE) unclear 2020 Mar
ESPResSo 2010 Nov 2020 Jun
ESPResSo++ 2011 Feb 2020 Apr
lbmpy unknown 2020 Jun
lettuce 2019 May 2020 Jul
Ludwig 2018 Aug 2020 Jul
LUMA 2016 Nov 2020 Feb
MechSys 2008 Jun 2020 Jul
OpenLB 2007 Jul 2019 Oct
Palabos unclear 2020 Jul
pyLBM 2015 Jun 2020 Jun
Sailfish 2012 Nov 2019 Jun
TCLB 2013 Jun 2020 Apr
waLBerla 2008 Aug 2020 Jul

Table 1: Alive Software Packages

While the initial list had 45 packages, filtering by scope, usage, and age decreased the

size of the list to 23 packages. Many of the 22 packages that were removed could not

be tested as there was no installation guide, they were incomplete, source code was not

publicly available, a license was needed, or the project was out of scope or not up to a

standard that would support incorporating them into this study. These eliminated software

packages are listed in the Appendix in Section D. Of the remaining 23 packages that were

studied, some were kept on the list despite being marked as dead due to their prevalence

40

on authoritative lists on LBM software and due to their surface excellence, specifically the

considerable time that was put into these projects.

The final list of software packages that were analyzed in this project can be found in

the following two tables. Table 1 lists packages that fell into the ‘alive’ category as of mid

2020, and Table 2 lists packages that were ‘dead’ at that time.

Name Released Updated

HemeLB 2007 Jun 2018 Aug
laboetie 2014 Nov 2018 Aug
LatBo.jl 2014 Aug 2017 Feb
LB2D-Prime 2005 2012 Apr
LB3D unclear 2012 Mar
LB3D-Prime 2005 2011 Oct
LIMBES 2010 Nov 2014 Dec
MP-LABS 2008 Jun 2014 Oct
SunlightLB 2005 Sep 2012 Nov

Table 2: Dead Software Packages

There is considerable variation among these software packages, including their in-

tended purpose, size, user interfaces, and software languages used. For example, the

OpenLB software package is predominantly a C++ package that makes use of hybrid par-

allelization and was designed to address a range of CFD problems [15]. The software

package pyLBM is an all-in-one Python language package for numerical simulations [13].

ESPResSo is an extensible simulation package that is specifically for research on soft mat-

ter, and is written in C++ and Python [46]. The HemeLB package is used for efficient

simulation of fluid flow in several medical domains, and is written predominantly in C,

C++, and Python [24].

41

3.5 Empirical Measures

The quality measurements in this assessment rely on the gathering and analyzing of raw

and processed empirical data related to the research questions listed in Section 1.1.

All of the quality measurements that are part of the AHP analysis are empirical mea-

surements. Qualitative data gathered during interviews with developers is not part of the

AHP analysis. This part of the assessment focuses on data that is reasonably easy to col-

lect. Much of the data was gathered by manually reviewing the artifacts of each software

package, while some was gathered using the freeware tools discussed below. The data that

was gathered is listed in the measurement template found in Appendix A. Some of the

data required processing other data within the template, including the status of the software

package, which relied on the last commit date; the percentage of issues that are closed,

which relied on the number of open and closed issues; and the percentage of code that

is comments, which relied on the number of total lines and comment lines in text-based

files. The complete measurement template data was then analyzed using the grading tem-

plate found in Appendix C, the output of which was analyzed using the AHP described in

Section 3.6.

Most of the measurement template data was gathered by observing GitHub repository

metrics and software package artifacts, or by processing data gathered using freeware tools.

Data in the final three sets of the measurement template was collected using these tools.

The tool GitStats was used to measure each software package’s GitHub repository for the

number of binary files, the number of added and deleted lines, and the number of commits

over varying time intervals. The tool Sloc Cloc and Code (scc) was used to measure the

number of text based files as well as the number of total, code, comment, and blank lines

in each GitHub repository. Details on installing and running these tools can be found in the

42

https://github.com/tomgi/git_stats
https://github.com/boyter/scc

Guide to Empirical Measures file in the AIMSS repository.

3.6 Analytical Hierarchy Process

The Analytical Hierarchy Process (AHP) is a decision-making technique that is used to

compare multiple options by multiple criteria. In our work AHP was used for comparing

and ranking the LBM software packages using the overall impression quality scores that

were gathered in the measurement template found in Appendix A using the grading tem-

plate found in Appendix C. AHP performs a pairwise analysis using a matrix and generates

an overall score as well as individual quality scores for each software package. Smith et al.

(2016) shows how the AHP is applied to ranking software based on quality measures [38].

This project used a tool for conducting this process. The tool includes a sensitivity

analysis that was used to ensure that the software package rankings are appropriate with

respect to the uncertainty of the quality scores. The README file of the tool includes

requirements and usage information.

43

https://github.com/smiths/AIMSS/blob/master/StateOfPractice/Methodology/A Guide to Empirical Measures.pdf
https://github.com/smiths/AIMSS/blob/master/StateOfPractice/AHP2020/LBM/README.txt

4 Quantitative Findings and AHP Results

This section presents the quantitative findings from data that was gathered using the

measurement template found in Section A for qualities listed in Section 3.2. The results of

the AHP analysis based on that data are also presented in this section.

4.1 Installability

All of the 23 software packages that were tested have installation instructions. As noted

previously, many of the 23 software packages that were part of the original long list of 45

packages were removed due to not including documentation or installation instructions.

All 23 packages on the short list can be installed on some Unix-like systems. Seven

packages could be installed on Windows, and five on macOS. Operating system compati-

bility is found in the documentation of 19 software packages. All but one of the software

packages, TCLB, were tested on Ubuntu for this state of the practice assessment. TCLB

was tested on CentOS, since this operating system is mentioned in its installation instruc-

tions.

Of the software packages that were tested, most installation instructions are located in

one place, often in an instruction manual or on a web-page. Sometimes, like with Lud-

wig, incomplete installation instructions are found on a home page, with more detailed

instructions located on another web-page, or within the documentation. Maintainability

and correctness of these instructions could be improved if all the instructions were in one

location.

All but one of the software packages (LatBo.jl) have automated at least some of the

installation process. Most of these packages, such as waLBerla and SunlightLB, use Make

44

to automate the installation, and a few of them, like lbmpy, use custom scripts.

Errors encountered during the installation process were often quickly fixed thanks to

descriptive error messages. Systems that provided vague error messages, such as messages

that did not specify which action or file was at fault, were more difficult to troubleshoot.

Only three software packages (HemeLB, LB3D, lbmpy) that displayed a descriptive er-

ror message were not recoverable, and most of these instances were due to hardware and

operating system incompatibility, such as the requirement of CUDA. Fourteen software

packages definitively broke during installation. Some packages, such as LB2D-Prime and

LB3D-Prime, did not provide a definitive message of the success or failure of installation.

In these instances, validating the installation required performing a tutorial or running a

script, as described below, if these were available.

About half of the installation instructions are written as if the person doing the installa-

tion has none of the dependent packages installed. It is common for software packages to

not list all of their dependencies despite listing some. This was the case for many packages,

including ESPResSo++, Ludwig, and LUMA. Sometimes only an error message during the

installation process informs the user of the requirement of these additional packages. A de-

tailed rewrite of the installation instructions from the point of view of installation on a clean

operating system is suggested. A clean environment can be achieved for testing purposes

by using a virtual machine.

Sixteen software packages require less than 10 dependencies to be installed. All but

one software package (LatBo.jl) require less than 20 dependencies. Some packages may

automatically install additional dependencies in the background. Eighteen of the software

packages do not explicitly indicate software dependency versions. Some software package

installation issues, specifically those occurring when manual installation of dependencies

45

is required, may be avoided if versions of dependencies are specified. Fifteen software

packages do not have detailed instructions for installing dependencies.

Sixteen software packages have less than 10 manual installation steps. If dependencies

are installed in one command then none of the software packages take more than 20 steps

to install. The average number of steps is about eight, and the fewest is two (LB3D-Prime).

All but six (ESPResSo, HemeLB, laboetie, LB3D-Prime, lbmpy, waLBerla) of the soft-

ware packages have a way to specifically verify the installation. Most have some sort of

tutorial examples that can be run by the user. Some other ways of installation validation in-

clude validation scripts (LB2D-Prime, lettuce, Ludwig, LUMA), automatic validation after

the installation (LatBo.jl), and instructions to manually review the file system (LIMBES).

Uninstallation instructions were found for only one of the software packages, pyLBM.

Figure 3: AHP Installability Score

46

Figure 3 shows the installability ranking of the software packages using AHP. Software

packages with a higher score (MechSys, Palabos, ESPResSo, OpenLB) tend to have one set

of linear installation instructions that are written as if the person doing the installation has

none of the dependencies installed. The instructions often list compatible operating sys-

tem versions and include instructions for the installation of dependencies. The top ranked

packages often incorporate some sort of automation of the installation process and have

fewer manual installation steps. The number of dependencies a package has does not cor-

relate with a higher score. The ability to validate the installation process, often through

tutorials or test examples that include expected output, is correlated with a higher score.

Furthermore, the top six ranked packages are noted as being alive.

Many software packages would benefit from a rewrite or reorganization of installa-

tion instructions. A single location for installation instructions would improve their main-

tainability and correctness. Listing compatible operating system and dependency versions

would decrease installation time and errors, as would adding instructions on installing de-

pendencies. Installation process errors should prompt the system to display detailed mes-

sages. Once a software package is installed, either an automatic validation needs to be

performed or the user needs to be able to perform a manual validation using test examples

that include expected output. Finally, uninstallation instructions should be included in the

documentation.

4.2 Surface Correctness and Verifiability

Sixteen of the software packages include a requirements specification artifact or ex-

plicitly reference domain theory, often only the latter. Software packages that distribute

requirements specification information, such as DL MESO (LBE), generally keep it brief

47

and include it within other documentation. This artifact is often found within a user man-

ual, on a web-page, or is mentioned in related publications. In the latter case the user may

need to spend significant time to find this information.

Document generation tools are explicitly used by 12 software packages. Sphinx is used

by eight of them, and Doxygen is used by seven. Several of the packages use both.

Tutorials are available for 18 of the software packages. Generally they are linearly

written and easy to follow. However, only eight tutorials provide an expected output. It is

not possible to verify the correctness of the output of the software packages that are missing

this key information. In these cases the user may need to assume correctness if there are no

visible errors.

Unit tests are only explicitly available for one of the software packages, Ludwig. Code

modularization of most packages allow for users to create tests with varying degrees of

effort. These tests allow developers and users to verify the correctness of fragments of the

source code, and in doing so better assess the correctness of the entire package.

The use of continuous integration tools and techniques alludes to a more refined devel-

opment process where faults are isolated and better recognized. Only two of the packages

(ESPResSo, Ludwig) mentioned applying the practice of continuous integration in their

development process.

Figure 4 shows the surface correctness and verifiability ranking of the software pack-

ages using AHP. Software packages with a higher score tend to have a visible requirements

specification or references to theory documentation. They also explicitly use at least one

document generation tool that builds confidence of correctness. The top ranked software

packages all include an easy to follow getting started tutorial, and most of these include

expected output. Only the top ranked package, Ludwig, provided unit testing. It and the

48

Figure 4: AHP Surface Correctness and Verifiability Score

second ranked package, ESPResSo, explicitly incorporated continuous integration in the

development process. Furthermore, eight of the top 10 ranked packages are noted as being

alive.

The inclusion of requirements specification and theory documentation greatly benefits

the correctness and verifiability of software packages. The use of document generation

tools can help build confidence in correctness. The addition of easy to follow tutorials

further helps users verify the software and have confidence in its correctness. Unit test-

ing documentation and capability, as well as the use of continuous integration tools and

techniques such as Bamboo, Jenkins, and Travis CI, help verify correctness.

49

4.3 Surface Reliability

The analysis of surface reliability focused on package installation and tutorials. Errors

occurred when installing 16 of the software packages. Every instance prompted an error

message. These messages indicated unrecognized commands (even when following the in-

stallation guide), missing links, missing dependencies, syntax errors in code files. In some

instances the error messages were vague. Several automatic installation processes could

not find and load dependencies. In these instances the installation tried to access outdated

external repositories. Seven of the installations were recovered and verified, and one of the

installations (LB3D-Prime) was assumed to be recovered due to the absence of any way to

verify it. The installation of eight of the software packages could not be recovered. Most

of these broken installations could not find external dependencies, encountered system in-

compatibilities, or displayed vague error messages.

Of the 13 software packages that installed correctly and also have tutorials, four (pyLBM,

ESPResSo++, LIMBES, Ludwig) broke during tutorial testing. All of these instances re-

sulted in an error message being displayed. One error (pyLBM) was due to a missing

tutorial dependency, another (Ludwig) was due to an invalid command despite following

the tutorial, and the final two errors were vague execution errors. Of the four broken tutorial

instances, only the one that was missing a dependency was recoverable.

Figure 5 shows the surface reliability ranking of the software packages using AHP.

Software packages with a high score either did not break during installation, or the broken

installation was recoverable. All of the top five ranked packages have tutorials. One of these

packages, pyLBM, broke during tutorial testing, but a descriptive error message helped in

recovery. Furthermore, nine of the top 10 ranked packages are noted as being alive.

Overall, lower ranked software packages are lacking clear documentation, testing or

50

Figure 5: AHP Surface Reliability Score

tutorial examples, and descriptive error messages, and have broken dependencies. Thus,

regarding surface reliability, software packages would benefit from clear up-to-date doc-

umentation that specifies all dependencies, the inclusion of testing and tutorial examples,

and the assurance of descriptive error messages during fault conditions.

4.4 Surface Robustness

The software packages were tested for handling unexpected input, including incorrect

data types, empty input, and missing files or links. Success predicated on a reasonable

response from the system, including appropriate error messages and an absence of unre-

coverable system failures.

Figure 6 shows the surface robustness ranking of the software packages using AHP.

51

Figure 6: AHP Surface Robustness Score

Software packages with a high score behaved reasonably in response to unexpected input as

described above. All of the software packages that installed correctly passed this test. They

output descriptive error messages or did not crash. Software packages with a lower surface

robustness score had not installed correctly, so their robustness score may not be a true

reflection of runtime robustness. Similarly, all software packages that installed correctly

and require plain text input files correctly handled an unexpected change to these input

files, including a replacement of new lines with carriage returns. Furthermore, nine of the

top 10 ranked packages are noted as being alive. LIMBES is noted as being dead.

4.5 Surface Performance

Although the software packages all apply LBM to solve scientific computing problems,

the packages focus on varied CFD problems, with varying parameters, and are technically

52

different from each other. Due to this, a comparison of performance is not appropriate. In

this project we instead looked through each software package’s artifacts for evidence that

performance was considered. The artifacts of 17 software packages mentioned paralleliza-

tion. This included GPU processing and the CUDA parallel computing platform, which

were mentioned in the artifacts of 6 packages (ESPResSo, lbmpy, lettuce, pyLBM, Sail-

fish, TCLB). GPUs provide superior processing power and speed compared to CPUs, and

are often used for scientific computing when a large amount of data is involved. The soft-

ware package TCLB is implemented in a highly efficient multi-GPU code to achieve per-

formance suitable for model optimization [29]. In the Ludwig package, a so-called mixed

mode approach is used where fine-grained parallelism is implemented on the GPU, and

MPI is used for even larger scale parallelism [14]. While one software package (Sailfish)

required CUDA and GPU processing, some (ESPResSo, lbmpy, lettuce, pyLBM, TCLB)

have the option of using either the GPU or the CPU. The packages that require GPU and

CUDA have better performance at the expense of installability and surface reliability.

4.6 Surface Usability

Software package artifacts were reviewed for the presence of a tutorial, a user manual,

documented user characteristics, and a user support model. In total 18 software packages

have a tutorial, 13 have a user manual, and 11 have both. The tutorials vary in scope and

substance, and eight include an expected output. Most user manuals are in the form of

a file that can be downloaded, while some are rendered on a web-page. Some packages

(waLBerla) do not have a user manual, but do have useful documentation distributed on

their web-pages. Expected user characteristics are documented in four software packages

(laboetie, LIMBES, Ludwig, Palabos). Users are typically scientists or engineers. Their

53

background is often physics, chemistry, biophysics, or mathematics. All but one of the

packages (LIMBES) have a user support model, and many of them have multiple avenues

of user support. The most popular avenue of support is Git, followed by email and forums.

One software package (OpenLB) has an FAQ page.

Figure 7: AHP Surface Usability Score

Figure 7 shows the surface usability ranking of the software packages using AHP. Soft-

ware packages with a high score have a tutorial and user manual, sometimes have docu-

mented user characteristics, and have at least one user support model. Many packages have

several user support models. Furthermore, four of the top five ranked packages are noted

as being alive.

54

4.7 Maintainability

Software packages were reviewed for the presence of artifacts. Every type of artifact

or file that is not a code file was recorded. The software packages were also reviewed for

software release and documentation version numbers. This information could be used to

better troubleshoot issues and organize documentation. All but three software packages

(LatBo.jl, LB3D-Prime, MechSys) have source code release and documentation version

numbers.

Information on how code is reviewed, or how to contribute to the project was also noted.

In total, 11 software packages have this information, which was found in various artifacts,

including in developer guides, contributor guides, user guides, developer web-pages, and

README files.

Issue tracking is used in 22 software packages, 15 of which use Git, six use email, and

one (SunlightLB) uses SourceForge. Most software packages that use Git have most of their

issues closed, and only three (laboetie, lettuce, Sailfish) have less than 50 percent of their

issues closed. Four of the top five overall ranked packages (Ludwig, ESPResSo, Palabos,

LUMA) have most of their issues closed. Fourth ranked LUMA does not use Git. Alive

packages (11 use Git issue tracking) have 64% of their issues closed, while dead packages

(3 use Git issue tracking) have 71% of their issues closed. This information is presented in

Table 3. Furthermore, 13 packages that use Git for issue tracking use GitHub as a version

control system, while two (Palabos, waLBerla) use GitLab. Of the other packages, one

package (SunlightLB) uses CVS for issue tracking, and seven packages do not appear to

use any issue tracking system.

Software package code files were further measured for the percentage of code that is

comments. The findings are presented in Table 3. Packages with a higher percentage

55

of comments were designated as more maintainable. Comments represent more than 10

percent of code files in 15 packages, and the average percentage of code comments is about

14 percent. Four of the top five overall ranked packages (Ludwig, ESPResSo, Palabos,

OpenLB) have more than the average. Fifth ranked LUMA has only 0.2 percent comments,

the fewest of any package. The package has the most lines of source code, with over four

million. The next largest package is ESPResSo++ with one million.

Figure 8: AHP Maintainability Score

Figure 8 shows the maintainability ranking of the software packages using AHP. Soft-

ware packages with a high score provide version numbers on documents and source code

releases, have an abundance of high quality artifacts, and use an issue tracking tool and

version control system. These packages also appear to reasonably handle tracked issues,

having most of their issues closed. Their code files are well commented with more than 10

56

percent of the code being comments. Furthermore, nine of the top 10 ranked packages are

noted as being alive. MP-LABS is noted as being dead.

Name % Issues Closed % Code Comments Status

DL MESO (LBE) Not Git 8.06 Alive
ESPResSo 89.26 21.78 Alive
ESPResSo++ 66.28 17.10 Alive
HemeLB No Issues 16.68 Dead
laboetie 18.75 2.47 Dead
LatBo.jl 93.33 0.40 Dead
LB2D-Prime Not Git 13.61 Dead
LB3D Not Git 13.76 Dead
LB3D-Prime Not Git 14.34 Dead
lbmpy 58.33 2.03 Alive
lettuce 33.33 8.19 Alive
LIMBES Not Git 17.39 Dead
Ludwig 60.00 20.70 Alive
LUMA 85.71 0.20 Alive
MechSys Not Git 15.11 Alive
MP-LABS 100.00 26.67 Dead
OpenLB Not Git 22.43 Alive
Palabos 89.47 17.76 Alive
pyLBM 66.67 16.12 Alive
Sailfish 22.22 9.26 Alive
SunlightLB Not Git 17.67 Dead
TCLB 60.32 6.02 Alive
waLBerla 72.90 22.62 Alive

Table 3: Git Repository Data

57

4.8 Reusability

Each software package was measured for the total number of source code files. A

larger number of source files was associated with increased reusability due to increased

modularization. Some packages have more features than others, consequently contributing

to reusablility since they have more source code that can be reused. The software packages

were also reviewed for the presence of API documentation, which indicates that a software

package was developed with interaction between other software applications in mind.

Figure 9: AHP Reusability Score

Figure 9 shows the reusability ranking of the software packages using AHP. Software

packages with a high score have thousands of source code files and API documentation.

The highest scoring packages, ESPResSo and waLBerla, have extensive functionality, in-

58

cluding graphical visualizations as well as modeling that does not use LBM. For this reason

a comparison with other software packages is not on a level field. However, these packages

do have an abundance of reusable components. Furthermore, nine of the top 10 ranked

packages are noted as being alive. HemeLB is noted as being dead.

Name Text Files Binary Files LOC Avg. LOC /
Text File

DL MESO (LBE) 310 51 170223 549
ESPResSo 1309 86 186700 143
ESPResSo++ 5328 66 969196 182
HemeLB 1065 48 95104 89
laboetie 133 1 48403 364
LatBo.jl 41 0 42172 1029
LB2D-Prime 82 19 54755 668
LB3D 99 76 39766 402
LB3D-Prime 23 6 12944 563
lbmpy 201 28 46489 231
lettuce 62 0 5529 89
LIMBES 26 1 4872 187
Ludwig 859 32 109811 128
LUMA 312 19 4370670 14000
MechSys 324 3 85543 264
MP-LABS 307 3 43124 140
OpenLB 1104 5 209034 189
Palabos 1829 67 547623 299
pyLBM 258 85 32314 125
Sailfish 632 11 69398 110
SunlightLB 36 1 7646 212
TCLB 535 7 43226 81
waLBerla 2395 67 848146 353

Table 4: Module Data

59

Table 4 shows file and line of code data of the software packages. Packages with a

high reusability score do not have many LOC per text file, generally having a few hundred

lines or less. This suggests that the source code of these packages is likely functionally

modularized, and modules could be reused in other projects.

There was a strong focus on modularity when designing the waLBerla framework to

enhance productivity, reusability, and maintainability [3]. Its software design has enabled

waLBerla to be successfully applied in several projects as a basis for various extensions

[3].

4.9 Surface Understandability

Ten random source code files of each software package were reviewed for several mea-

sures. This assessment of surface understandability may not perfectly reflect each package

due to the practical limitation of only being able to test 10 files.

All of the packages appear to have a consistent indentation and formatting style. Only

LUMA and HemeLB explicitly identify coding standards that are used during develop-

ment. Generally, the software packages use consistent, distinctive, and meaningful code

identifiers. Only four packages (LB2D-Prime, LB3D-Prime, LIMBES, MP-LABS) appear

to use vague identifiers, such as single letters for variables. Symbolic constants were ob-

served in the source code of 12 packages. The constants are used for various parameters,

mathematical constants, and matrix definitions. All of the packages are well commented

and the comments clearly indicate what is being done. Domain algorithms are noted in the

source code of 11 packages. Table 4 suggests that the software packages are modularized to

various degrees. When observing the source code files, it was found that 13 of the packages

have a consistent style and order of function parameters.

60

Figure 10: AHP Understandability Score

Figure 10 shows the surface understandability ranking of the software packages using

AHP. Software packages with a high score have a consistent indentation and formatting

style, and consistent, distinctive, and meaningful code identifiers. They also have symbolic

constants, and explicitly identify mathematical and LBM algorithms. Their comments are

clear and indicate what is being done in the source code. The source code is well modular-

ized and structured. Furthermore, four of the top five ranked packages are noted as being

alive.

4.10 Visibility and Transparency

Software package artifacts were reviewed for the identification of a specific develop-

ment model, like a waterfall of agile development model, and the presence of documen-

61

tation recording the development process and standard. They were also reviewed for the

identification of the development environment, and the presence of release notes. The pack-

ages tended to not explicitly use well-known development models. This was also noted in

the interviews with developers, as detailed below. The development teams of these pack-

ages are fairly small and easily organized without the need for such processes. Seven of

the software packages did have some artifacts outlining the general development process,

how to contribute, and the status of the package or its components. Eight of the packages

have artifacts that note the development environment. While this information could help

developers, and would improve transparency, the small close-knit nature of the develop-

ment teams make explicitly publicly specifying this information practically unnecessary.

Version release notes were found in nine of the software packages.

Figure 11: AHP Visibility and Transparency Score

62

Figure 11 shows the visibility and transparency ranking of the software packages using

AHP. Software packages with a high score have an explicit development model and defined

development process. They also had detailed and easy to access notes accompanying soft-

ware releases. Furthermore, four of the top five ranked packages are noted as being alive.

MP-LABS is noted as being dead.

4.11 Overall Quality

Figure 12: AHP Overall Score

Figure 12 shows the overall ranking of the software packages using AHP. Software

packages with an overall high score had ranked high in at least several of the individual

qualities that were quantitatively measured. The overall ranking is found with an assump-

63

tion of an equal weighting of all qualities. If the qualities were weighed differently, the

overall software package ranking would change.

Looking at the top three ranked packages, Ludwig scored high in surface correctness

and verifiability, surface robustness, surface usability, maintainability, and visibility and

transparency. ESPResSo had achieved a relative high score in installability, surface cor-

rectness and verifiability, surface usability, maintainability, reusability, and visibility and

transparency. Palabos scored high in installability, surface reliability, surface robustness,

maintainability, and understandability.

Section 6.5 further analyzes these findings and offers some software quality recommen-

dations for future development of LBM software.

64

5 Qualitative Findings From Developer Interviews

This section presents the qualitative findings from data that was gathered during inter-

views with developers for qualities listed in Section 3.2. The interview questions are found

in Appendix B.

5.1 Surface Correctness and Verifiability

Interviews with developers confirmed that these software packages are developed by

domain experts with backgrounds in physics, mathematics and mechanical engineering. It

was noted in these interviews that some of the developers do not have formal software en-

gineering education. Some of the development teams include computer scientists. Despite

a lack of visible domain documentation and a resulting lower surface correctness and veri-

fiability score, it is clear that some of the software packages were developed by teams with

significant domain knowledge on account of the academic backgrounds of their developers.

Interviews suggested a more frequent use of both unit testing and continuous integra-

tion in the development processes than what was observed from the initial survey. For

example, OpenLB, pyLBM, and TCLB use such methods during development despite this

not being explicitly clear from an analysis of the material available online. The correctness

and verificablity of such packages is not measured well using surface analysis.

Several interviewed developers alluded to difficulty with testing the correctness of large

numbers of features, and some even manually tested program output. The use of well

defined unit testing tools could decrease the time spent testing some feature.

65

5.2 Surface Usability

Interviews with developers revealed several usability issues. Some users have misun-

derstood the boundaries of LBM and CFD, and have combined or applied methods that

are not physically sound. Sometimes users have applied LBM to poorly defined or inap-

propriate fluid dynamics problems. For example, they may wish to model flow through

or around a structure despite having limited information about the structure or its environ-

ment, and having little previous knowledge of CFD. The users do not realize the limitations

of the methods, of the software, and do not understand the requirements to properly model

a problem with the software. As the developer of TCLB noted, such software packages

are not designed to be used “out of the box” in a plug and play fashion, and it could take

months or more to set up the CFD problems correctly. Developers of some software pack-

ages, including ESPResSo, mitigated this by editing the source code to prevent users from

“combining methods that are not physically sound together”, and by updating the docu-

mentation to better inform users of LBM limitations, and of the requirements to properly

model appropriate problems, including what algorithms and parameters to use.

Some additional but infrequent software usability issues were commented on by the

developers. Users have had trouble with installation and understanding how to maneuver

the interfaces and how to set up or run models. These issues are addressed by various user

support models, including frequently asked questions sections on the software package

websites, user guides, and hardware and software requirements specifications.

One software package (ESPResSo) changed some of its scripting language to Python to

make it more usable. The developer commented that this was “the biggest step in terms of

usability over the years”, further commenting that “most people in the field know [Python]”

and that “it’s easy to learn”.

66

5.3 Maintainability

Interviews with developers revealed that most projects do have a defined process for

accepting contributions from team members. The packages rarely get contributions from

outside developers, but the process would be similar as for the aforementioned group.

Contributions are made through GitHub, and are then reviewed and pulled by lead

developers, often with consultation with a group of core developers depending on the orga-

nizational model. Continuous integration is part of the process for some packages.

Some developers noted that their software package does not have well defined con-

tributing guide in the repository, but it might be a good idea to add one in the near future.

They would be happy to see contribution from outside of their organization, but currently

this does not happen.

Furthermore, maintainability has been addressed by increasing source code modular-

ity, reducing duplicate information, and improving abstraction by developing well defined

interfaces. This was noted by the developers of ESPResSo and pyLBM. Several software

packages have had sections of their code base redeveloped with languages that the develop-

ers felt are more understandable and readable, and that are better supported, such as Python.

Data structures have also been redeveloped and storage has been improved. A developer of

pyLBM mentioned that the geometries and models of their system had been “decoupled”,

using abstraction and modularization of the source code, to make it “very easy to add [new]

features”.

67

5.4 Modifiability

Software packages were not quantitatively measured for modifiability. In this project

we asked developers to comment on modifiability when we interviewed them. Specifically,

we asked if ease of future changes to the system, modules, and code blocks was considered

when designing the software. We also asked if any measures had been taken to ensure the

ease of future changes. All of the developers that were interviewed noted that the ease of

future changes was considered and that measures to ensure it had been taken, including

requiring the separation of software components in the source code architecture.

A high degree of code modularity and abstraction was noted by developers as a measure

to ensure the ease of future changes. This can be ensured by separating components and

hiding information behind well defined interfaces. The developer of ESPResSo also noted

that some of the code base was transitioned from C to C++, which could ease modifiability

of that software package. The developer of TCLB noted that their software package was

designed to allow for the addition of some LBM features, but changes to major aspects of

the system would be difficult. For example, “implementing a new model will be an easy

contribution”, but changes to the “Cartesian mesh...will be a nightmare”. Furthermore, the

package was designed with flexible data structures and storage in mind.

Some software packages, like Palabos, provide validation benchmarks for their core

fundamental algorithmic ingredients [22]. The stated intent of these benchmarks is to

showcase the validity and usefulness of the package to stimulate the development of third-

user extensions. The Palabos package identifies as a development framework for modeling

problems in various CFD areas.

68

5.5 Surface Understandability

Software developers noted that they believe users have generally found their packages

to be understandable. The interviewed developer of ESPResSo commented that some users

have attempted to run physically incompatible LBM methods, and the solution was to edit

the code to prevent such combinations, as well as to update the documentation to prevent

misunderstanding the methods. Similarly, a developer of pyLBM noted that some users

had issues setting up parameters for LBM schemes. The solution to this was to update the

interface where these parameters are set, as well as to add functionality to test the stability

of the parameters. A developer of OpenLB noted that some users lack the background

knowledge to easily model fluid dynamics problems using their software. A frequently

asked questions section was added to their package website to help users find answers to

common questions. The package also has detailed documentation, including guides and

usage requirements specification, to better help users understand the software.

5.6 Traceability

Software packages were not quantitatively measured for traceability. In this project

we asked developers to comment on traceability, specifically on their software package’s

documentation and how it fit into their development process.

The interviewed developer of ESPResSo noted that all major additions to their package

had accompanying changes to artifacts and documentation. They noted that considerable

effort had been put into the documentation. They further commented that they want to

lower the entry barrier for new developers, and because of that their package has a con-

siderable amount of developer documentation. This documentation informs developers on

69

how to get started, and orients them to the artifacts, source code, and system architecture,

as well as how the software package build system works, and how the coupling between

the simulation engine and the interface works.

Developers noted the importance of documentation for both the users and developers of

their software. New features are always added to the documentation. The developers use

documentation to stay up to date on the status of the software package, and to help expand

features, like computational models or algorithms. This is necessary so that the coding

standard for these models is kept consistent with new developers.

The importance of documentation for both users and developers was stressed through-

out the interviews. However, it was noted several times that a lack of time and funding has

a negative affect on the documentation. Most of the developers are scientific researchers

evaluated on the scientific papers that they produce. Writing and updating documentation

is something that is done in their free time, if that time arises. Sometimes it is a last prior-

ity for the developers. Finding ways to hasten updating documentation would increase the

frequency of such updates and benefit both users and developers.

The developer of OpenLB noted the use of documentation generators like Doxygen.

It would be advisable for more projects to use such automatic document generation tools,

since some projects do not do this.

5.7 Visibility and Transparency

Developers were asked to comment on the obstacles in their development process. The

developer of ESPResSo noted that a lot of their source code had been written with a specific

application in mind, and that there is too much coupling between components. Addressing

this issue would help with code modifiability and reusability. Updating the development

70

process would help resolve this issue and prevent such issues in the future. Improving

the visibility of software changes and a peer review process would also help. Improving

the software engineering education or experience of developers is also an idea that was

brought up by several developers. Specifically, developers should always write code that

is decoupled and modular, and should keep in mind the visibility of their contributions

by better updating documentation and ensuring that their contributions are transparent to

the rest of the developers. This would help catch issues in the contributions, and improve

source code maintenance.

According to the interviewed developer of ESPResSo, some obstacles to the devel-

opment processes of their package had been overcome by the introduction of continuous

integration practices, and a peer review process for contributions. These practices decrease

development and maintenance times. The developer of TCLB mentioned that their package

had two sets of code, for executing the models on the CPU and GPU, and that maintenance

was decreased by introducing macros, a practice which became a common part of the de-

velopment process.

Developers were also asked how documentation fits into their development process.

Several developers noted that developer documentation plays an important role in famil-

iarizing potential contributors to the software system architecture. Without the guidance

that the documentation provides it would be unlikely that contributions would pass the peer

review process.

None of the software packages whose developers were interviewed have a formal soft-

ware development model. The packages all have fairly small development teams. These

teams do accept outside contributors, but generally the teams are tight-knit, often working

at the same institution, although one of the packages has an international team. The devel-

71

oper of ESPResSo noted that while no formal model is used, their development model is

something similar to a combination of agile and waterfall development models.

The developers noted similar project management processes. For teams of only a couple

of developers, the addition of new features or major changes are discussed with the entire

team. Projects with more than a couple of developers have lead developer roles. These lead

developers review potential additions to the software. The software packages use GitHub

for managing the project. Typically there are several development branches as well as the

master branch.

5.8 Reproducibility

Software packages were not quantitatively measured for reproducibility. In this project

we asked developers to comment on reproducibility when we interviewed them.

Developers were asked if they have any concern that their computational results would

not be reproducible in the future, and if they had taken any steps to ensure reproducibility.

The developer of ESPResSo noted a comparison of the results of their methods against

manually calculated results. These comparison tests are automatically run for all source

code changes. The tests are run when a pull request is opened on GitHub. Even once these

tests are complete, a peer review process is done before changes are fully committed to

the appropriate branch. The results for all of the LBM schemes on the software package

development branch are also frequently compared for correctness, ensuring that the system

output reflects the expected output.

Several developers noted that they currently do not have a system in place to test for

reproducibility, but it is of interest and could be implemented in the future. Generally, the

mathematical foundations of the models are verified, but the output of the software package

72

is not compared to other output. Depending on the package and how it outputs solutions,

it may not be practical or feasible. A correct output may not be exactly reproducible, as

it may be dependent on a probability distribution, so strictly comparing results may not be

appropriate.

The source code and artifacts of some software packages may be reproducible. There

is considerable variance in the quality of software specifications and other developer docu-

mentation. Some packages are well detailed, and translating the specifications into source

code will produce similar results across developers. Developers were not asked to com-

ment on the reproducibility of their source code from their requirements specifications and

design documentation. This question should be considered in the next iteration of state of

the practice assessments.

5.9 Unambiguity

Software packages were not quantitatively measured for unambiguity. In this project

we asked developers to comment on unambiguity when we interviewed them.

Developers were asked if they thought that the current documentation can clearly con-

vey all necessary knowledge to the users, and if they had taken any steps to ensure clarity.

The developer of ESPResSo noted that their documentation was meant for users that

are already familiar with the underlying physics and CFD methods. These concepts are not

explained in detail within the documentation. Users should acquire this knowledge from

suitable external sources. The documentation focuses on how to technically use the soft-

ware package, and includes a user guide and tutorial walk through of how to set up and

run a simulation. With this in mind, the developer believes that their documentation is in

reasonable shape for users with a minimum knowledge of the underlying physics. If new

73

users have technical questions these can be addressed in further revisions of the documen-

tation. New developers should find that the documentation is reasonably clear and useful.

Information that is missing, like detailed explanations of dependencies, is referenced in the

documents.

The developer of pyLBM also noted that their documentation was in reasonable shape,

but that they “need more [user] feedback to improve [it]”. They also noted that they believe

a lack of knowledge of the underlying physics and CFD concepts can be an issue for some

users. This information can be referenced in the documentation, but it is not something that

the documentation needs to detail.

74

6 Answers To Research Questions

This section answers the research questions listed in Section 1.1 using the quantitative

data presented in Section 4, qualitative data presented in Section 5, additional data from

software package repositories and artifacts, and domain expert feedback. Each subsection

answers one of the research questions. Software package artifacts are examined in Section

6.1, tools are listed in Section 6.2, development principles, processes, and methodologies

are discussed in Section 6.3, development pain points are explored in Section 6.4, and

our recommendations for improving software qualities are presented in Section 6.5. A

comparison between our designations of the software packages to community rankings is

made in Section 6.6. Finally, threats to the validity of this assessment are noted in Section

6.7.

6.1 Artifacts Present

This subsection answers the research question: What artifacts are present in current

software packages?

The software packages were examined for the presence of artifacts, which were then

categorized by frequency. We have grouped them into common, less common, and rare

artifacts in Table 5. Common artifacts were found in 16 to 23 (>70%) of the software

packages. Less common artifacts were found in 8 to 15 (35-70%) of the software packages.

Rare artifacts were found in 1 to 7 (<35%) of the software packages.

75

Common

Authors / Developers List
Bug Tracker
Dependency Notes
Installation Guide / Instructions
License
List of Related Articles / Publications
Makefile / Build File
README File
Requirements Specification / Theory Notes
Tutorial

Less Common

Change Log / Release Notes
Design Documentation
Functional Specification / Notes
Performance Information / Notes
Test Plan / Report / Script / Data / Cases
User Manual/Guide
Version Control

Rare

API Documentation
Developer / Contributor Manual / Guide
FAQ / Forum
Verification and Validation Plan / Notes
Video Guide (including YouTube)

Table 5: Artifacts Present

76

6.1.1 Common Artifacts

All of the top four AHP ranked packages, ESPREsSo, Ludwig, OpenLB, and Palabos,

have each of the commonly found artifacts, except only three of them have a requirements

specification or theory notes. Palabos is the only one of these four packages that does not

have an artifact from this category.

The common artifacts contribute to the quality of the software in the following ways. A

list of authors and developers helps potential users and contributors contact project mem-

bers to answer questions affecting many software qualities. A bug tracker helps with or-

ganizing improvements to the software. Dependency notes help users install the software,

as does an installation guide. Makefiles or other automated build files decrease human

error in the installation process. Licenses promote usage of the software. Requirements

specifications, linked theory notes, and related articles and publications help make the soft-

ware more understandable, decrease ambiguity, and help with verifying its correctness.

README files also help with understandability. The tutorials help users become familiar

with using the software.

6.1.2 Less Common Artifacts

The top four AHP ranked packages have most of the less common artifacts. At the time

of data collection, only one (Palabos) of the four packages did not have a user manual or

guide, but there was a broken link on the package website indicating that such an artifact

might exist. This broken link was later fixed, but this is not reflected in our data because it

was not present at the time of data collection. Despite the broken link, Palabos does have

a detailed and informative website. Another one (Ludwig) of the top four packages does

not appear to have publicly visible design documentation. A third package (OpenLB) from

77

the list does not appear to use a version control system. It is possible that such a system is

used by the package since its website notes package version numbers, but the artifacts do

not explicitly state the use of such a system.

The less common artifacts also contribute to software quality. A change log or release

notes improve traceability of the software. Design documentation helps with maintaining,

modifying, and reusing the software. Version control also helps to improve these qualities,

as well as with traceability. Functional specifications and notes clarify the software, con-

tributing to usability and understandability. A user manual also helps with those qualities

and with installability, and correctness and verificability. Performance notes suggest that

performance was considered when developing the software. Test plans, scripts, and cases,

help verify correctness.

6.1.3 Rare Artifacts

It is not common for the top four AHP ranked packages to have many of the rare arti-

facts. None of the top four packages have any explicit API documentation. Three of these

packages (ESPREsSo, Ludwig, Palabos) have information on contributing to the project.

Two of them (OpenLB, Palabos) have a FAQ section or forum. One (OpenLB) has verifi-

cation and validation notes, and a video guide of the software.

Although the artifacts were rarely found in our set of LBM software, they also con-

tribute to software quality. API documentation helps with reusing the software. Developer

and contributor manuals and guides help with maintainability, visibility and transparency.

FAQs and forums improve usability of software. Verification and validation notes can be

used to help check if a system meets specifications. Video guides can contribute to many

software qualities, depending on the content of the video.

78

6.2 Tools Used

This subsection answers the research question: What tools (development, dependen-

cies, project management) are used by current software packages?

Software tools are used to support the development, verification, maintenance, and evo-

lution of software, software processes, and artifacts [11]. Many tools are used by LBM soft-

ware packages. The tools noted here are subdivided into development tools, dependencies,

and project management tools.

6.2.1 Development Tools

Development tools support the development of end products, but do not become part

of them, unlike dependencies that remain in the application once it is released [11]. The

following type of development tools were explicitly noted in the artifacts or web-pages of

the 23 LBM packages that were assessed. It is likely that other tools, such as debuggers,

were used but are not specified in our sources.

• Continuous Integration Tools

• Code Editors

• Development Environment

• Runtime Environments

• Compilers

• Unit Testing Tools

• Correctness Verification Tools

The above tools can verify the correctness of software during its development. Only

two (ESPResSo, Ludwig) of the software packages that were assessed mentioned using

continuous integration tools, like Travis CI. Code editors and compilers were explicitly

noted to have been used by several packages, and were likely used by all of them. One of

the packages (Ludwig) explicitly noted the use of proprietary unit testing code written in C.

79

Likewise, the use of proprietary code for verifying the correctness of output was noted by

one (pyLBM) of the developers. It is likely that similar tools were used when developing

other software packages.

6.2.2 Dependencies

The following types of dependencies were explicitly noted in the artifacts or web-pages

of the 23 LBM packages that were assessed. It is possible that other types of dependencies

are part of these software packages, but are not clearly specified in their artifacts or web

sites and because of that they are not listed here.

• Build Automation Tools

• Technical Libraries

• Domain Specific Libraries

Most of the software packages use some sort of build automation tools, most commonly

Make. They also all use various technical and domain specific libraries. Technical libraries

include visualization (e.g. Matplotlib, ParaView, Pygame, VTK), data analysis (e.g. Ana-

conda, Torch), and message passing libraries (e.g. MPICH, Open MPI, PyZMQ). Domain

specific libraries are scientific computing libraries (e.g. SciPy). Libraries that are not ex-

plicitly stated in artifacts, or were not noted during our observations, may fall outside of

these categories.

6.2.3 Project Management Tools

Many of the software packages that were assessed were developed by teams of two or

more people. Their work needed to be coordinated and managed. The following types of

project management tools were explicitly noted in the artifacts, web-pages, or interviews

80

with the developers of the 23 LBM packages that were assessed. As with development

tools and dependencies, it is possible that other types of project management tools were

used to coordinate and manage the projects but are not specified and because of that they

are not listed here.

• Collaboration Tools

• Email

• Change Tracking Tools

• Version Control Tools

• Document Generation Tools

Collaboration tools are noted as being used when developing the software projects.

Most often email and video conferencing is used. Project management software was not

explicitly mentioned, but it is possible that some of the projects use such software. Many

of the projects are located on GitHub, and its developers use the platform to help manage

their projects, especially bug related issues. Most of the projects appear to use change

tracking and version control tools. They often use GitHub or GitLab for this. One package

(SunlightLB) uses CVS. Document generation tools are mentioned in the artifacts of 12 of

the projects. The tools Sphinx and Doxygen are explicitly used in this capacity.

6.3 Principles, Processes, and Methodologies

This subsection answers the research question: What principles, processes, and method-

ologies are used in the development of current software packages?

The points and conclusions in this subsection come from developer interviews and re-

views of software package artifacts.

Most of the software packages do not explicitly state in their artifacts the motivations

or design principles that were considered when developing the software. One package,

81

Sailfish, indicates in its artifacts that shortening the development time was considered in

early stages of design, with the developers opting for using Python and CUDA/OpenCL to

achieve this without sacrificing any computational performance. The goals of that project

are explicitly listed as performance, scalability, agility and extendability, maintenance, and

ease of use. The project scored well in these categories during our assessment.

Processes, like methods, are ways of doing things, especially in an orderly way; while

methodologies are defined as systems of methods [11]. It is not explicitly indicated in the

artifacts of most of the packages that development involved following any specific model,

like a waterfall or agile development model. One developer (ESPResSo) noted that while

no formal model is used, their development model is something similar to a combination

of agile and waterfall development models. The developer teams of the LBM packages are

fairly small, so it is feasible for them to be organized without the need for such models.

Seven of the software packages contain artifacts outlining the general development pro-

cess, like basic instructions on how to contribute. Eleven of the packages explicitly convey

that they would accept outside contributors, but generally the teams are centralized, often

working at the same institution.

The developers that were interviewed all noted similar project management processes.

In teams of only a couple of developers, additions of new features or major changes are

discussed with the entire team. Projects with more than a couple developers have lead

developer roles. These lead developers review potential additions to the software. One of

the developers (ESPResSo) that was interviewed noted that an ad hoc peer review process

is used to assess major changes and additions.

Thirteen (57%) of the 23 software packages use GitHub for managing the project, in-

cluding nine (64%) of the 14 alive packages, and four of the nine (44%) dead packages.

82

Two projects (Palabos, WaLBerla) use GitLab. This could be indicative of a transition to

such software development and version control tools for SCS. Typically there are several

simultaneous development branches in these projects.

Documentation was also noted as playing a significant role in the development process,

specifically with on-boarding new developers. A goal of documentation is to lower the

entry barrier for these new contributors. The documentation provides information on how

to get started, orients the user to artifacts and the source code, and explains how the system

works, including the so-called simulation engine and interface. The use of document gen-

eration tools is mentioned in the artifacts of 12 software packages, and was noted during

interviews with developers. Sphinx and Doxygen are the tools that were mentioned.

Two types of software changes were discussed during interviews with developers. One

is feature additions, which arise from a scientific or functional need. These changes in-

volve formal discussions within the development team, and lead developer participation

is mandatory. The other change type is code refactoring, which only sometimes involves

formal discussions with the development team. New developers were noted to play an in-

creased role in these changes compared to the former changes. Software bugs are typically

addressed in a similar fashion as code refactoring, and issue tracking is commonly used to

manage these changes.

Interviews with the developers of software packages also revealed a more frequent use

of both unit testing and continuous integration in the development process than was found

by only assessing the artifacts. The use of automatic installation processes is also common.

Most often this involved a Make script.

83

6.4 Pain Points

This subsection answers the research question: What are the pain points for developers

working on research software projects? What aspects of the existing processes, method-

ologies and tools do they consider as potentially needing improvement? How should pro-

cesses, methodologies and tools be changed to improve software development and software

quality?

Developers were asked to comment on obstacles in their development process, obstacles

encountered by users, and potential future obstacles.

6.4.1 Lack of Development Time

A developer of pyLBM noted that their small development team has a lack of time to

implement new features. Small development teams are common for LBM software pack-

ages. Team members are almost always part of the same institute or already know each

other from other projects. External contributions are rare despite many of the projects ac-

cepting them. Aside from on-boarding new developers, time constraints could be mitigated

by increasing developer efficiency, which could be addressed in several ways, including by

improving the quality of documentation, or incorporating automatic code generation.

6.4.2 Lack of Software Development Experience

A lack of software development experience was noted by the developer of TCLB. Many

of the team members on their project are domain experts and there can be a steep learning

curve before these team members contribute good quality source code. It was further noted

that this has been somewhat addressed, as the code has been re-written to best ensure ease

of future contributions.

84

6.4.3 Lack of Incentive and Funding

The same developer also noted that there is a lack of incentive and funding in academia

for developing widely used scientific software. The importance of funding for scientific

software has been discussed in [10], which notes that “software tools are developed and

maintained only for as long as there is explicit or implicit funding”. The developer further

commented that there are no journals that publish such scientific software source code.

However, there are ways to get such source code cited. Work has been done to address this

in [31], which presents a set of software citation principles and discusses “how they could

be used to implement software citation in the scholarly community” [21].

6.4.4 Lack of External Support

Another raised concern was that there are no organizations helping with the develop-

ment of good quality software; but some do exist, including Better Scientific Software

(BSSw), Software Sustainability Institute, and Software Carpentry. Some SCS developers

may not be familiar with these organizations.

Scientific software is often developed in-house by the very researchers that temporarily

use it in their own research. Empirical studies of such “professional end-user development”

of SCS is noted in [30]. This kind of software has a defined user and purpose, and often does

not meet the standards that would be required by external users. It has been categorized

as a “private tool” by [10], which notes that despite often being made freely available,

“it is not always clear that it is sufficiently mature in terms of domain coverage, validity,

documentation or usability, to be useful to other researchers”. It is less common for such

ad hoc scientific software to become “user-ready software”, which “is not only research-

ready, but should have most of the attributes commonly expected of commercial software

85

https://bssw.io/
https://bssw.io/
https://www.software.ac.uk/
https://software-carpentry.org/

products including broadness of scope, robustness, demonstrable correctness and adequate

documentation” [10]. As software becomes user-ready, it can become commercialized and

closed-source.

6.4.5 Parallelization and Continuous Integration

Setting up parallelization was also noted as a technical pain point by one of the devel-

opers, and the introduction of continuous integration by another. Software development

knowledge, and automatic code generation, could mitigate such pain points. As already

noted, many of the developers are domain experts and not professional software develop-

ers. The developer of TCLB noted that eliminating equivalent statements using macros had

helped improve the quality of their source code, specifically helping with reusing code to

run on both the CPU and GPU.

6.4.6 Ensuring Correctness

Difficulties with ensuring correctness were also noted by several developers. They

indicated that tests are run on all new source code additions, testing both individual modules

and the system to verify correctness. These tests compare the package output to known

correct output using test cases. The developer of TCLB commented that the amount of

testing data that is needed for some cases is a problem as free testing services do not offer

capabilities to store and process such large amounts of data, and in-house testing solutions

needed to be created to address this limitation. The solution for this has been to limit the

size of the testing problems, and to run tests in small batches with few iterations.

86

6.4.7 Usability

A few obstacles related to users were found. Several developers noted that users some-

times try to use incorrect LBM method combinations to solve their problems. Further-

more, some users think that the packages will work out of the box to solve their cases,

while the packages require both a good understanding of CFD and an understanding of the

requirements for formulating problems in the individual packages, which can be a signifi-

cant endeavor. These software packages are not like commercial software packages. They

are generally set up to solve specific research problems, and are often primarily used by

their developers. While they are modifiable to solve similar problems, these modifications

are not trivial. Better documentation, with attention on traceability, and automatic code

generation are suggested when designing software for change, and would help with these

modifications. So far this problem of on-boarding new users has been addressed by updat-

ing the documentation to better inform users of the underlying LBM theory and package

requirements. Similar issues with LBM parameters were noted by another developer. Up-

dating the user interface to better explain theoretical principles, as well as test user input

for compatibility, was the implemented solution. As noted above, sometimes frequently

asked questions on the underlying theory and on how to use the software are answered in

the documentation.

The interviewed developer of ESPResSo commented that parts of their package’s source

code had been refactored to Python to help address usability issues. Python was perceived

as a much more usable language, and it would be easy for future users and developers to

learn and understand the source code.

87

6.4.8 Technical Debt

A few potential future obstacles were noted. The developer of ESPResSo noted that

their source code had been written with a specific application in mind and that due to

this there was too much coupling between components of the source code. This results

in technical debt, having an impact on future modifiability and reusability when trying to

extend the software, and the code would need to be refactored.

As noted above, difficulties with ensuring future correctness could also arise. As new

methods and functionality is added into the software, new test cases and test data will need

to be developed.

6.4.9 Quality of Documentation

Interviewees commented that documentation is important and that its quality could be

improved. As already noted, there is often no time or funding for maintaining quality doc-

umentation for software that is rarely used outside of the development team. Furthermore,

the documentation generally only provides a shallow overview of the underlying CFD the-

ory. Users would be well advised to already be familiar with these topics, or they should

spend significant time referencing theory resources. The documentation instead generally

focuses on explaining how to use the software. It is of course not feasible for package docu-

mentation to address the underlying physics topics in detail, so it is advised that the package

documentation links to resources that better explain the underlying theory. Sometimes, fre-

quently asked questions about the underlying theory are answered in the documentation.

OpenLB has an artifact for such questions.

The developer comments emphasized an importance on source code, while documen-

tation seems to be of secondary importance. It must be stressed that improving documen-

88

tation could benefit development and help eliminate some of the developer concerns that

were raised. The use of automatic document generation tools that capture scientific and

computing knowledge, and transform it into software artifacts, is advised. Drasil is an

automatic document generation tool that is further discussed in Section 7.1.

6.5 Quality Recommendations

This subsection answers the research question: For research software developers, what

specific actions are taken to address software qualities?

The following points regarding software quality should be considered when developing

LBM software packages. These points are based on developer interviews, SCS literature,

what was found to have worked for packages that were designated as high quality in this

assessment.

6.5.1 Installability

• Include OS compatibility, including specific OS versions. This was done by several

top ranked packages, including ESPResSo and LUMA.

• Provide complete installation instructions. This was done by all of the top five ranked

packages.

• Installation instructions should be written as if the user does not have any dependen-

cies installed and is installing on a clean OS. This was done by several top ranked

packages, including ESPResSo, OpenLB, and Palabos. This can be tested on a clean

environment using a virtual machine.

89

• List all dependencies in the installation instructions, dependency versions, and how

to install them. This was done by several top ranked packages, including ESPResSo,

LUMA, OpenLB, and Palabos.

• If possible, automate the installation of dependencies. Use tools such as Make. This

was done by all of the top five ranked packages.

• Automate the installation process as much as possible. Use tools such as Make. This

was done by all of the top five ranked packages.

• The installation instruction should only be in one location. This was done by several

top ranked packages, including ESPResSo, OpenLB, and Palabos.

• Include descriptive error messages for errors encountered during installation. This

was done by several top ranked packages, including Ludwig and LUMA

• Provide a way to validate the installation. This can be done using a custom script,

or a test case that specifies expected output. This was done by several top ranked

packages, including OpenLB, Ludwig, LUMA, and Palabos.

• Provide instructions for uninstalling the software. These were included with pyLBM.

6.5.2 Surface Correctness and Verifiability

• Use a requirements specification document. This is suggested in SCS literature, and

several of the top ranked packages had such a document or reference to theory man-

uals. A potential template is presented in [37].

• Make public (on package website or GitHub) the requirements specification docu-

ment, or explicitly reference the domain theory that the software is designed from.

90

This was done by several top ranked packages, including ESPResSo, Ludwig, LUMA,

and OpenLB.

• Ensure the above information is easy to find. Consider adding it to the user manual.

The information is easy to find in most top ranked packages.

• Development teams should include both domain experts and experienced software

developers. This suggestion is based on developer comments.

• Use and make public (on package website or GitHub) detailed documentation. Con-

sider using automatic document generation tools like Doxygen, Drasil, or Sphinx.

This was done by all of the top five ranked packages.

• Provide detailed tutorials that include expected output, like the waLBerla tutorials.

• Use unit tests during development and make them public (on package website or

GitHub). This was available for Ludwig.

• Modularize the source code, separate components, hide information behind well de-

fined interfaces. This is suggested in SCS literature, and in developer comments.

• Use continuous integration tools (Bamboo, Jenkins, and Travis CI) and processes

during development. This was done by top ranked packages ESPResSo and Ludwig.

6.5.3 Surface Reliability

• Include descriptive error messages where appropriate. This was done by most pack-

ages that encountered a fault.

91

https://www.walberla.net/doxygen/index.html

• In case automatic installation of dependencies fails, the system should indicate to

the user what dependencies need to be installed manually. This was done by many

packages, including ESPResSo++, Ludwig, LUMA, pyLBM, TCLB.

• The packages should include detailed tutorials, including dependencies, expected

output, and any additional supplementary documentation that may be required. This

was done by many packages, including waLBerla, Palabos, MechSys, LUMA, and

pyLBM.

6.5.4 Surface Robustness

• The system must provide descriptive error messages when it encounters unexpected

input, including incorrect data types, empty input, and missing files or links. Eigh-

teen of the software packages behaved reasonably when tested with unexpected input.

6.5.5 Surface Performance

• Integrate parallelization tools and techniques to reduce processing time. Consider

GPU processing, CUDA, and MPI. Seventeen software packages mentioned paral-

lelization in their artifacts.

• The user should be able to choose to process their model on either the CPU or GPU.

ESPResSo, lbmpy, lettuce, pyLBM, and TCLB allow for either CPU or GPU pro-

cessing.

92

6.5.6 Surface Usability

• Include user hardware and software requirements documentation. Hardware require-

ments are rarely listed in the software packages that were assessed. Only those offer-

ing GPU processing (ESPResSo, lbmpy, lettuce, pyLBM, Sailfish, TCLB) mentioned

any hardware requirements. On the other hand, some sort of software requirements

were available for all packages, even if only some dependencies or a compatible

operating system were mentioned.

• Provide a user tutorial that indicates the expected output. This was done by many

packages, including waLBerla, Palabos, MechSys, LUMA, pyLBM.

• Provide a detailed user manual. It should identify elements of user interfaces, and

identify all requirements to model a system. Thirteen packages have a user manual.

ESPResSo has a well detailed manual.

• State appropriate fluid dynamics problems that the software is designed to model in

the documentation, and explicitly state the limits of the software. This is done in the

ESPResSo user guide.

• Provide documentation that details the background theory information, or provide

a reference to such information. This was done by several top ranked packages,

including ESPResSo, Ludwig, LUMA, and OpenLB.

• Identify expected user characteristics. LIMBES, Ludwig, laboetie, and Palabos did

this. The importance of specifying user characteristics is discussed in [35].

• Keep all documentation in one location. This was done by top ranked packages.

93

• Do not duplicate artifact information. This is suggested as good software develop-

ment practice. Duplicate information is difficult to maintain.

• Maintain a user support model (Git, email, forum, FAQ). This was done by all of the

top five ranked packages.

• If possible, consider using popular user-friendly software languages like Python. Es-

pecially consider this for parts of the source code that is likely to be modified or

reviewed by users. ESPResSo and Sailfish use Python to shorten development time

and improve usability.

6.5.7 Maintainability

• Keep artifacts updated. This is suggested as good software maintenance practice.

• Ideally include most of the common and less common artifacts listed in Section 6.1.

• Include version numbers and release notes for all major source code and artifact

releases. The top five ranked software packages include release notes.

• Have a defined process for accepting contributions, and make public documentation

for making contributions to the project. The top five ranked software packages in-

clude information on how to contribute.

• Use an issue tracker (Git, email, SourceForge, other) to manage bugs and changes.

Issues should be regularly reviewed and closed. All but three (laboetie, lettuce, Sail-

fish) of the software packages that use Git have most of their issues closed.

• Use a version control system (GitHib, CVS). Four (ESPREsSo, Ludwig, LUMA,

Palabos) of the top five ranked packages use a version control system.

94

• Source code needs to be well commented. Typically, more than 10 percent of LBM

package source code is comments, as presented in Table 3. Four of the top five overall

ranked packages (Ludwig, ESPResSo, Palabos, OpenLB) have about 20 percent of

their source code as comments.

• Modularize the source code, separate components, hide information behind well de-

fined interfaces. This is suggested in SCS literature, and in developer comments.

• Eliminate code duplication. This is suggested as good software development prac-

tice. Duplicate code is difficult to maintain.

• If possible, consider using popular user-friendly software languages like Python. Es-

pecially consider this for parts of the source code that is likely to be modified or

reviewed by users. ESPResSo and Sailfish use Python to address several software

qualities, including maintainability.

• Consider the recommended points for addressing traceability.

6.5.8 Modifiability

• Modularize the source code, separate components, hide information behind well de-

fined interfaces. This is suggested in SCS literature, and in developer comments.

• If possible, consider using popular user-friendly software languages like Python. Es-

pecially consider this for parts of the source code that is likely to be modified or

reviewed by users. ESPResSo and Sailfish use Python to address several software

qualities, including modifiability.

95

• Consider future source code modifiability as early as the design stage of develop-

ment. This is suggested as good software development practice.

• Consider flexibility of data structures and data storage in the design stage. The pack-

age pyLBM redeveloped data structures to ease future changes.

6.5.9 Reusability

• Modularize the source code, separate components, hide information behind well de-

fined interfaces. This is suggested in SCS literature, and in developer comments.

• Document module interfaces in design and developer documentation. This is sug-

gested as good software development practice.

• Provide API documentation, if applicable. Only one (ESPResSo) of the top five

ranked packages provided API documentation.

6.5.10 Surface Understandability

• Adopt a coding standard and document it in artifacts, including some examples.

A coding standard needs to be part of continuous integration. Only LUMA and

HemeLB explicitly identify coding standards.

• Use consistent, distinctive, and meaningful code identifiers. Nineteen of the 23 soft-

ware packages use such code identifiers.

• Use symbolic constants. Twelve of the 23 software packages use such constants.

• Identify algorithms that are used in source code comments. Document them in the

artifacts. Cite relevant external sources if needed. Domain algorithms are noted in

96

the source code of 11 packages.

• Add meaningful comments. Indicate what is being done in each section of source

code. All of the top ranked packages have meaningful comments in their source

code.

• Modularize the source code, separate components, hide information behind well de-

fined interfaces. This is suggested in SCS literature, and in developer comments.

• Provide a user manual that identifies all technical and problem modeling require-

ments. Thirteen software packages have a user manual.

• State appropriate fluid dynamics problems that the software is designed to model in

the documentation, and explicitly state the limits of the software. This is done in the

ESPResSo user guide.

• Consider adding a FAQ section to the documentation. This helped resolve some

usability issues for OpenLB.

6.5.11 Traceability

• Update all relevant documentation when a change to the software is made. This is

suggested as good software development practice.

• Use automatic document generation tools (Doxygen, Drasil, Sphinx) to limit the

time spent on updating documentation. This was done by all of the top five ranked

packages.

97

• Provide a developer’s guide to help orient developers to the artifacts, source code, and

system architecture so that they can better document changes. Top ranked package

OpenLB has a developer guide.

6.5.12 Visibility and Transparency

• Summarize the development process that is used. Provide information on how new

users can contribute. Identify the development model by name (waterfall, agile, etc.),

if appropriate. Seven of the software packages have some artifacts outlining the gen-

eral development process. Eleven packages have information on how to contribute.

• Identify the development environment. Eight of the 23 software packages identify

the development environment.

• Update all relevant documentation when a change to the software is made. This is

suggested as good software development practice.

• Include notes with all releases. Nine of the packages include release notes.

• Communicate all changes within the development team. This suggestion is based on

developer comments.

• Use continuous integration processes and tools (Bamboo, Jenkins, and Travis CI).

This was done by top ranked packages ESPResSo and Ludwig.

• Consider peer review processes to assess contributions and ensure the tracking of

information. High ranked package ESPResSo uses a peer review process for contri-

butions.

98

• Use project management tools, including change and version control tools (GitHub,

GitLab, CVS), collaboration tools (GitHub, GitLab), and document generation tools

(Doxygen, Drasil, Sphinx). This was done by all of the top five ranked packages.

6.5.13 Reproducibility

• Test output against automatically calculated or known correct results. High ranked

package ESPResSo does this.

• Automate the testing of output. Run tests after all code changes. High ranked pack-

age ESPResSo does this.

• Consider peer review processes and task based inspection to assess contributions.

High ranked package ESPResSo does this.

• Update all relevant design documentation when a change to the software is made.

This is suggested as good software development practice.

6.5.14 Unambiguity

• Documentation must state all technical requirements and software dependencies. A

missing dependency was a frequent cause of fault conditions during this assessment.

• Provide a detailed user manual. Thirteen packages have a user manual. ESPResSo

has a well detailed manual.

• Provide a table of symbols in the developer’s guide that maps to names used in the

source code. This is suggested as good software development practice.

99

• State appropriate fluid dynamics problems that the software is designed to model in

the documentation, and explicitly state the limits of the software. This is done in the

ESPResSo user guide.

• The documentation should either explain the underlying CFD theories or provide a

reference to appropriate resources. This was done by several top ranked packages,

including ESPResSo, Ludwig, LUMA, and OpenLB.

• Consider asking users for feedback on the documentation. The developer of pyLBM

noted that such feedback would be appreciated.

6.6 Designation Comparison

This subsection answers the research question: How does software designated as high

quality by this methodology compare with top rated software by the community?

This comparison helps evaluate the methodology that was used, and assess the validity

of the findings. Threats to the validity of this exercise are noted in Section 6.7. The software

package designations of this report are compared to package repository ranking metrics in

Section 6.6.1, and to software recommended by a domain expert in Section 6.6.2.

6.6.1 Repository Ranking Metrics

Table 6 presents our LBM software package rankings along with the repository ranking

metrics of each software package.

Eight packages do not use GitHub or GitLab, so they do not have a measure of reposi-

tory stars. Looking at the repository stars of the other 15 packages, we can observe a slight

pattern where packages that have been highly ranked by our assessment do have more stars

100

than lower ranked packages. The second ranked package (ESPResSo) has the second most

number of stars. The ninth ranked package (Sailfish) has the most number of stars. Pack-

ages designated as lower quality often do not use GitHub or GitLab, or have few stars,

except for HemeLB which has 22 stars. Our assessment of this package might not be accu-

rate. The number of stars does not necessarily represent the perceptions of the community,

but for lack of an alternative measure we will use it this way.

The repository watches column contains even less data to compare since two of the

packages (Palabos, waLBerla) use GitLab, which does not include this metric. The pattern

that can be observed with this metric is very similar to that of the stars metric. The ninth

ranked package (Sailfish) has the most number of watches. The second ranked package

(ESPResSo) has the second most number of watches.

Besides missing data, another threat to the validity of this comparison is the varying

ages of the repositories. Older packages have been able to accumulate stars and watches

for longer than newer packages. The true quality of new packages may not be reflected in

their stars and watches.

101

Name Our Ranking Repository
Stars

Repository
Star Rank

Repository
Watches

Ludwig 1 19 8 6
ESPResSo 2 115 2 23
Palabos 3 14 10 GitLab
OpenLB 4 No Git No Git No Git
LUMA 5 26 6 10
pyLBM 6 57 4 8
DL MESO (LBE) 7 No Git No Git No Git
waLBerla 8 17 9 GitLab
Sailfish 9 154 1 39
laboetie 10 4 13 5
TCLB 11 61 3 16
MechSys 12 No Git No Git No Git
lettuce 13 8 11 2
ESPResSo++ 14 31 5 13
MP-LABS 15 7 12 2
SunlightLB 16 No Git No Git No Git
LB3D 17 No Git No Git No Git
LIMBES 18 No Git No Git No Git
LB2D-Prime 19 No Git No Git No Git
HemeLB 20 22 7 15
lbmpy 21 4 13 2
LB3D-Prime 22 No Git No Git No Git
LatBo.jl 23 4 13 5

Table 6: Repository Ranking Metrics

6.6.2 Domain Expert Recommended Software

Table 7 compares the top 10 ranked LBM software packages with a LBM package

ranking made by a domain expert. Five (Palabos, OpenLB, LUMA, waLBerla, Sailfish) of

102

the top 10 ranked packages in this assessment are also found in the domain expert’s list.

Interestingly, these five packages are listed in the same order on both lists. Looking at the

remaining packages, the top two ranked packages in this state of the practice assessment

(Ludwig, ESPResSo) are not on the domain expert’s list. Perhaps the intended applications

of these packages, complex fluids for Ludwig and soft matter research for ESPResSo, do

not align with the research interests of the domain expert, and this is why they did not

make it onto their list. Moving down the list, pyLBM and DL MESO(LBE) did not make

the domain expert’s top 10 list but were mentioned by the domain expert. The 10th ranked

package, laboetie, was not mentioned by the domain expert. Looking at the remainder

of the domain expert’s list, ASL is a general purpose tool for solving partial differential

equations and may have fallen out of scope of the authoritative lists that were used to

identify the initial LBM software list. The domain expert’s fifth ranked package (ch4-

project) was on the initial software list of this assessment, but was removed due to a lack

of documentation. Open FSI is a new project that uses Palabos. It was made public the

year before data was collected for this state of the practice exercise. It may not have been

on authoritative lists due to its young age. Similarly, LIFE was also made public recently.

Finally, the domain expert’s 10th ranked package (HemeLB) was ranked 20th in this state

of the practice assessment.

103

Rank This Assessment Domain Expert

1 Ludwig (N/A) Palabos
2 ESPResSo (N/A) OpenLB
3 Palabos (1) LUMA
4 OpenLB (2) ASL
5 LUMA (3) ch4-project
6 pyLBM (17) Open FSI
7 DL MESO (LBE) (12) WaLBerla
8 waLBerla (7) LIFE
9 Sailfish (9) Sailfish
10 laboetie (N/A) HemeLB

Table 7: Ranking Comparison

6.7 Threats To Validity

This section examines potential threats to the validity of this state of the practice as-

sessment. These can be categorized into methodology and data collection issues.

The goal of this assessment isn’t to rank the software, but to use the ranking exercise as

a means to understand the state of the practice of LBM software development.

The measures listed in our measurement template may not be broad enough to accu-

rately capture some qualities. For example, there are only two measures of surface robust-

ness. The measurement of robustness could be expanded, as it currently only measures

unexpected input. Other faults could be introduced, but could require a large investment of

time to develop, and might not be a fair measure for all packages. Similarly, reusability is

assessed along the number of code files and LOC per file. While this measure is indicative

of modularity, it is possible that some packages have many files, with few LOC, but the files

do not contain source code that is easily reusable. The files may be poorly formatted, or the

104

source code may be vague and have ambiguous identifiers. Furthermore, the measurement

of understandability relies on 10 random source code files. It is possible that the 10 files

that were chosen to represent a software package may not be a good representation of the

understandability of that package.

Regarding data collection, a risk to the validity of this assessment is missing or incorrect

data. Some software package data may not have been measured due to technology issues

like broken links. This issue arose with the measurement of Palabos, which had a broken

link to its user manual, as noted in Section 6.1.2.

Some pertinent data may not have been specified in public artifacts, or may be ob-

scure within an artifact or web-page. The use of unit testing and continuous integration

was mentioned in the artifacts of only two (ESPResSo, Ludwig) packages. However, inter-

views suggested a more frequent use of both unit testing and continuous integration in the

development processes than what was observed from the initial survey of the artifacts. For

example, OpenLB, pyLBM, and TCLB use such methods during development despite this

not being explicitly clear from an analysis of the material available online.

Furthermore, design documentation was measured to be a “less common” artifact in

this assessment, but it is probable that such documentation is part of all LBM packages.

After all, developing SCS is not a trivial endeavor. It is likely that many packages have

such documentation but did not make it public, and due to this the measured data is not a

true reflection of software package quality.

105

7 Conclusion

We analyzed the state of the practice of software development in the Lattice Boltzmann

Methods software domain by quantitatively and qualitatively measuring, and comparing,

23 software packages along quality attributes. The software qualities that were assessed in

this report are listed in Section 3.2. A methodology for assessing the state of the practice of

software development in SCS domains was presented. Domain packages were assessed to

answer the software development related research questions listed in Section 1.1 to under-

stand how software quality is impacted by software development choices, including princi-

ples, processes, and tools. Software developers were interviewed to identify development

pain points, and to identify how software quality is ensured. Quantitative data was used to

rank the software packages using the AHP. The ranking designations were compared with

rankings from the software development community, and we found that many of our top 10

ranked packages are ranked highly by a domain expert. Recommendations for improving

software along quality metrics were made, and highlights are presented in Section 7.1 of

this conclusion. The findings of this report can be used to guide future development of

SCS, specifically along quality attributes, and to reduce software quality failures.

We understand that software packages vary in goals, developers, funding, and other

aspects. Our goal was to highlight software quality successes through an evaluation of

the entire domain software family. Furthermore, threats to the validity of the findings are

highlighted in Section 6.7.

Recommendations for future state of the practice assessments are made in Section 7.2.

106

7.1 Highlighted Recommendations

The following recommendations improve software quality along multiple attributes,

and provide the greatest return on investment:

• Provide a detailed user manual. It should identify elements of user interfaces, and

identify all requirements to model a system. Thirteen packages have a user manual.

ESPResSo has a well detailed manual.

• State appropriate fluid dynamics problems that the software is designed to model in

the documentation, and explicitly state the limits of the software. This is done in the

ESPResSo user guide.

• Include detailed tutorials, including dependencies, expected output, and any addi-

tional supplementary documentation that may be required. This was done by many

packages, including waLBerla, Palabos, MechSys, LUMA, and pyLBM.

• Keep all documentation in one location. This was done by top ranked packages.

• If possible, consider using popular user-friendly software languages like Python. Es-

pecially consider this for parts of the source code that is likely to be modified or

reviewed by users. ESPResSo and Sailfish use Python to address several software

qualities, including maintainability, modifiability and usability.

• Modularize the source code, separate components, hide information behind well de-

fined interfaces. This is suggested in SCS literature, and in developer comments.

• Include descriptive error messages where appropriate. This was done by most pack-

ages that encountered a fault.

107

• Summarize the development process that is used. Provide information on how new

users can contribute. Seven of the software packages have some artifacts outlining

the general development process. Eleven packages have information on how to con-

tribute.

• Consider peer review processes and task based inspection to assess contributions.

High ranked package ESPResSo does this.

• Use continuous integration tools (Bamboo, Jenkins, and Travis CI) and processes

during development. This was done by top ranked packages ESPResSo and Ludwig.

• Use project management tools, including change and version control tools (GitHub,

GitLab, CVS), collaboration tools (GitHub, GitLab), and document generation tools

(Doxygen, Drasil, Sphinx). This was done by all of the top five ranked packages.

Ensuring software quality can take significant time. An inability to develop high quality

documentation due to time constraints could be mitigated in the future by the use of auto-

matic document generation tools like Drasil. The Drasil Framework consists of a collection

of Domain Specific Languages (DSL) for capturing scientific documents, structures, and

computing knowledge, and then transforming this knowledge into relevant software arti-

facts without having to manually duplicate knowledge into multiple artifacts [49].

7.2 Future State Of The Practice Assessments

This section notes recommendations for future state of the practice assessments.

As mentioned in Section 6.7, the measures listed in our measurement template may

not be broad enough to accurately capture some qualities. Adding or extending measures is

108

worth considering. For example, usability experiments and performance benchmarks could

be incorporated into the assessment.

Section 5 noted that developers were not asked to comment on the reproducibility of

their source code from their requirements specifications and design documentation. Adding

this question to the interview guide should be considered in the next iteration of state of

the practice assessments. Furthermore, as mentioned in Section 6.7, it was found that some

pertinent information was not specified in public artifacts. The use of unit testing and con-

tinuous integration by several packages (OpenLB, pyLBM, TCLB) was only discovered

during interviews with developers. Adding further questions to the interview guide regard-

ing the measures that are on the measurement template could reduce instances of incorrect

data being collected. This additional interview data could be analyzed and incorporated

into the AHP ranking, ensuring quality designations more accurate represent the true qual-

ity of the software packages.

109

Appendices

A Measurement Template
The table below lists the set of measures that are used to assess each software product.

The first set identifies summary information, followed by 9 sets for software qualities and 3
sets for raw metrics. Each measure is followed by the type for a valid result. A superscript
indicate that a response of this type needs to be accompanied by explanatory text.

110

Table 8: Measurement Template

Summary Information
Software name? (string)
URL? (URL)
Affiliation (institution(s)) (string or N/A)
Software purpose (string)
Number of developers (all developers that have contributed at least one commit to
the project) (use repo commit logs) (number)
How is the project funded? (unfunded, unclear, funded*) where * requires a string
to say the source of funding
Initial release date? (date)
Last commit date? (date)
Status? (alive is defined as presence of commits in the last 18 months) (alive, dead,
unclear)
License? (GNU GPL, BSD, MIT, terms of use, trial, none, unclear, other*) * given
via a string
Platforms? (set of Windows, Linux, OS X, Android, other*) * given via string
Software Category? The concept category includes software that does not have
an officially released version. Public software has a released version in the public
domain. Private software has a released version available to authorized users only.
(concept, public, private)
Development model? (open source, freeware, commercial, unclear)
Publications about the software? Refers to publications that have used or mentioned
the software. (number or unknown)
Source code URL? (set of url, n/a, unclear)
Programming language(s)? (set of FORTRAN, Matlab, C, C++, Java, R, Ruby,
Python, Cython, BASIC, Pascal, IDL, unclear, other*) * given via string
Is there evidence that performance was considered? Performance refers to either
speed, storage, or throughput. (yes, no)
Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

111

Installability (Measured via installation on a virtual machine.)

Are there installation instructions? (yes, no)

Are the installation instructions in one place? Place referring to a single document
or web-page. (yes, no, n/a)

Are the installation instructions linear? Linear meaning progressing in a single
series of steps. (yes, no, n/a)

Are the instructions written as if the person doing the installation has none of the
dependent packages installed? (yes, no, unclear)

Are compatible operating system versions listed? (yes, no)

Is there something in place to automate the installation (makefile, script, installer,
etc)? (yes*, no)

If the software installation broke, was a descriptive error message displayed? (yes,
no, n/a)

Is there a specified way to validate the installation? (yes*, no)

How many steps were involved in the installation? (Includes manual steps like
unzipping files) Specify OS. (number, OS)

What OS was used for the installation? (Windows, Linux, OS X, Android, other*)
*given via string

How many extra software packages need to be installed before or during installa-
tion? (number)

Are required package versions listed? (yes, no, n/a)

Are there instructions for the installation of required packages / dependencies? (yes,
no, n/a)

Run uninstall, if available. Were any obvious problems caused? (yes , no, unavail)

Overall impression? (1 .. 10)

Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

112

Correctness and Verifiability

Any reference to the requirements specifications of the program or theory manuals?
(yes , no, unclear)

What tools or techniques are used to build confidence of correctness? (literate pro-
gramming, automated testing, symbolic execution, model checking, assertions used
in the code, Sphinx, Doxygen, Javadoc, confluence, unclear, other*) * given via
string

If there is a getting started tutorial? (yes, no)

Are the tutorial instructions linear? (yes, no, n/a)

Does the getting started tutorial provide an expected output? (yes, no*, n/a)

Does your tutorial output match the expected output? (yes, no, n/a)

Are unit tests available? (yes, no, unclear)

Is there evidence of continuous integration? (for example mentioned in documen-
tation, Jenkins, Travis CI, Bamboo, other) (yes*, no, unclear)

Overall impression? (1 .. 10)

Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

Surface Reliability

Did the software break during installation? (yes , no)

If the software installation broke, was the installation instance recoverable? (yes,
no, n/a)

Did the software break during the initial tutorial testing? (yes, no, n/a)

If the tutorial testing broke, was a descriptive error message displayed? (yes, no,
n/a)

If the tutorial testing broke, was the tutorial testing instance recoverable? (yes, no,
n/a)

Overall impression? (1 .. 10)

Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

113

Surface Robustness

Does the software handle unexpected/unanticipated input (like data of the wrong
type, empty input, missing files or links) reasonably? (a reasonable response can
include an appropriate error message.) (yes, no)

For any plain text input files, if all new lines are replaced with new lines and carriage
returns, will the software handle this gracefully? (yes, no, n/a)

Overall impression? (1 .. 10)

Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

Surface Usability

Is there a getting started tutorial? (yes, no)

Is there a user manual? (yes, no)

Are expected user characteristics documented? (yes, no)

What is the user support model? FAQ? User forum? E-mail address to direct ques-
tions? Etc. (string)

Overall impression? (1 .. 10)

Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

114

Maintainability

What is the current version number? (number)

Is there any information on how code is reviewed, or how to contribute? (yes*, no)

Are artifacts available? (List every type of file that is not a
code file for examples please look at the Artifact Name col-
umn of https://gitlab.cas.mcmaster.ca/SEforSC/se4sc/-/blob/git-
svn/GradStudents/Olu/ResearchProposal/Artifacts MiningV3.xlsx) (yes*, no,
unclear) *list via string

What issue tracking tool is employed? (set of Trac, JIRA, Redmine, e-mail, discus-
sion board, sourceforge, google code, git, BitBucket, none, unclear, other*) * given
via string

What is the percentage of identified issues that are closed? (percentage)

What percentage of code is comments? (percentage)

Which version control system is in use? (svn, cvs, git, github, unclear, other*) *
given via string

Overall impression? (1 .. 10)

Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

Reusability

How many code files are there? (number)

Is API documented? (yes, no, n/a)

Overall impression? (1 .. 10)

Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

115

Surface Understandability (Based on 10 random source files)

Consistent indentation and formatting style? (yes, no, n/a)

Explicit identification of a coding standard? (yes, no, n/a)

Are the code identifiers consistent, distinctive, and meaningful? (yes, no , n/a)

Are constants (other than 0 and 1) hard coded into the program? (yes, no , n/a)

Comments are clear, indicate what is being done, not how? (yes, no , n/a)

Is the name/URL of any algorithms used mentioned? (yes, no , n/a)

Parameters are in the same order for all functions? (yes, no , n/a)

Is code modularized? (yes, no , n/a)

Overall impression? (1 .. 10)

Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

Visibility/Transparency

Is the development process defined? If yes, what process is used. (yes, no, n/a)

Are there any documents recording the development process and status? (yes, no))

Is the development environment documented? (yes, no)

Are there release notes? (yes, no)

Overall impression? (1 .. 10)

Additional comments? (can cover any metrics you feel are missing, or any other
thoughts you have)

Raw Metrics (Measured via git stats)

Number of text-based files. (number)

Number of binary files. (number)

Number of total lines in text-based files. (number)

Number of total lines added to text-based files. (number)

Number of total lines deleted from text-based files. (number)

Number of total commits. (number)

Numbers of commits by year in the last 5 years. (Count from as early as possible if
the project is younger than 5 years.) (list of numbers)

Numbers of commits by month in the last 12 months. (list of numbers)

116

Raw Metrics (Measured via scc)

Number of text-based files. (number)

Number of total lines in text-based files. (number)

Number of code lines in text-based files. (number)

Number of comment lines in text-based files. (number)

Number of blank lines in text-based files. (number)

Repo Metrics (Measured via GitHub)

Number of stars. (number)

Number of forks. (number)

Number of people watching this repo. (number)

Number of open pull requests. (number)

Number of closed pull requests. (number)

117

B Developer Interview Questions
Information about these interview questions: This gives you an idea what I would like to
learn about the development of domain software. Interviews will be one-to-one and will be
open-ended (not just yes or no answers). Because of this, the exact wording may change a
little. Sometimes I will use other short questions to make sure I understand what you told
me or if I need more information when we are talking such as: So, you are saying that ?),
to get more information (Please tell me more?), or to learn what you think or feel about
something (Why do you think that is?).

1. Interviewees current position/title? degrees?

2. Interviewees contribution to/relationship with the software?

3. Length of time the interviewee has been involved with this software?

4. How large is the development group?

5. Do you have a defined process for accepting new contributions into your team?

6. What is the typical background of a developer?

7. What is your estimated number of users? How did you come up with that estimate?

8. What is the typical background of a user?

9. Currently, what are the most significant obstacles in your development process?

10. How might you change your development process to remove or reduce these obsta-
cles?

11. How does documentation fit into your development process? Would improved docu-
mentation help with the obstacles you typically face?

12. In the past, is there any major obstacle to your development process that has been
solved? How did you solve it?

13. What is your software development model? For example, waterfall, agile, etc.

14. What is your project management process? Do you think improving this process can
tackle the current problem? Were any project management tools used?

15. Was it hard to ensure the correctness of the software? If there were any obstacles,
what methods have been considered or practiced to improve the situation? If prac-
ticed, did it work?

118

16. When designing the software, did you consider the ease of future changes? For ex-
ample, will it be hard to change the structure of the system, modules or code blocks?
What measures have been taken to ensure the ease of future changes and maintains?

17. Provide instances where users have misunderstood the software. What, if any, actions
were taken to address understandability issues?

18. What, if any, actions were taken to address usability issues?

19. Do you think the current documentation can clearly convey all necessary knowledge
to the users? If yes, how did you successfully achieve it? If no, what improvements
are needed?

20. Do you have any concern that your computational results wont be reproducible in the
future? Have you taken any steps to ensure reproducibility?

119

C Grading Template
The table below lists how each quality measure of the measurement template is used to
calculate an overall impression in each software quality set.

Table 9: Grading Template

Installability (Measured via installation on a virtual machine.)

Are there installation instructions? (yes=1, no=-1)

Are the installation instructions in one place? Place referring to a single document
or web-page. (yes=1, no=0, n/a=0)

Are the installation instructions linear? Linear meaning progressing in a single
series of steps. (yes=1, no=0, n/a=0)

Are the instructions written as if the person doing the installation has none of the
dependent packages installed? (yes=1, no=0, unclear=0)

Are compatible operating system versions listed? (yes=1, no=0)

Is there something in place to automate the installation (makefile, script, installer,
etc)? (yes*=1, no=-1)

If the software installation broke, was a descriptive error message displayed?
(yes=0, no=-2, n/a=1)

Is there a specified way to validate the installation? (yes*=1, no=0)

How many steps were involved in the installation? (Includes manual steps like
unzipping files) Specify OS. (<10 = 1)

What OS was used for the installation? (does not count)

How many extra software packages need to be installed before or during installa-
tion? (<10 = 1)

Are required package versions listed? (yes=1, no=0, n/a=1)

Are there instructions for the installation of required packages / dependencies?
(yes=1, no=0, n/a=1)

Run uninstall, if available. Were any obvious problems caused? (yes=0, no=1,
unavail=1)

Overall impression? (a sum of >10 is rounded down to 10)

120

Correctness and Verifiability

Any reference to the requirements specifications of the program or theory manuals?
(yes=2, no=0, unclear=0)

What tools or techniques are used to build confidence of correctness? (any=1, un-
clear=0)

If there is a getting started tutorial? (yes=2, no=0)

Are the tutorial instructions linear? (yes=1, no=0, n/a=0)

Does the getting started tutorial provide an expected output? (yes=1, no*=0, n/a=0)

Does your tutorial output match the expected output? (yes=1, no=0, n/a=0)

Are unit tests available? (yes=1, no=0, unclear=0)

Is there evidence of continuous integration? (for example mentioned in documen-
tation, Jenkins, Travis CI, Bamboo, other) (yes*=1, no=0, unclear=0)

Surface Reliability

Did the software break during installation? (yes=0, no=5)

If the software installation broke, was the installation instance recoverable? (yes=5,
no=0, n/a=0)

Did the software break during the initial tutorial testing? (yes=0, no=5, n/a=0)

If the tutorial testing broke, was a descriptive error message displayed? (yes=2,
no=0, n/a=0)

If the tutorial testing broke, was the tutorial testing instance recoverable? (yes=3,
no=0, n/a=0)

Surface Robustness

Does the software handle unexpected/unanticipated input (like data of the wrong
type, empty input, missing files or links) reasonably? (a reasonable response can
include an appropriate error message.) (yes=5, no=0)

For any plain text input files, if all new lines are replaced with new lines and carriage
returns, will the software handle this gracefully? (yes=5, no=0, n/a=5)

121

Surface Usability

Is there a getting started tutorial? (yes=3, no=0)

Is there a user manual? (yes=4, no=0)

Are expected user characteristics documented? (yes=1, no=0)

What is the user support model? FAQ? User forum? E-mail address to direct ques-
tions? Etc. (one=1, two+=2, none=0)

Maintainability

What is the current version number? (provided=1, nothing=0)

Is there any information on how code is reviewed, or how to contribute? (yes*=1,
no=0)

Are artifacts available? (List every type of file that is not a
code file for examples please look at the Artifact Name col-
umn of https://gitlab.cas.mcmaster.ca/SEforSC/se4sc/-/blob/git-
svn/GradStudents/Olu/ResearchProposal/Artifacts MiningV3.xlsx) (Rate 0 2
depending on how many and perceived quality)

What issue tracking tool is employed? (nothing=0, email of other private=1, any-
thing public or accessible by all devs (eg git) = 2)

What is the percentage of identified issues that are closed? (50%+=1, <50%=0)

What percentage of code is comments? (10%+=1, <10%=0)

Which version control system is in use? (anything=2, nothing=0)

Reusability

How many code files are there? (0-9=0, 10-49=1, 50-99=3, 100-299=4, 300-599=5,
600-999=6, 1000+=8)

Is API documented? (yes=2, no=0, n/a=0)

122

Surface Understandability (Based on 10 random source files)

Consistent indentation and formatting style? (yes=1, no=0, n/a=0)

Explicit identification of a coding standard? (yes=1, no=0, n/a=0)

Are the code identifiers consistent, distinctive, and meaningful? (yes=2, no=0,
n/a=0)

Are constants (other than 0 and 1) hard coded into the program? (yes=1, no=0,
n/a=0)

Comments are clear, indicate what is being done, not how? (yes=2, no=0, n/a=0)

Is the name/URL of any algorithms used mentioned? (yes=1, no=0, n/a=0)

Parameters are in the same order for all functions? (yes=1, no=0, n/a=0)

Is code modularized? (yes=1, no=0, n/a=0)

Visibility/Transparency

Is the development process defined? If yes, what process is used. (yes=3, no=0,
n/a=0)

Are there any documents recording the development process and status? (yes=3,
no=0))

Is the development environment documented? (yes=2, no=0)

Are there release notes? (yes=2, no=0)

123

D Eliminated Software Packages
The table below lists the software packages that were filtered out of the candidate software
list.

Name Reason(s) For Removal

ch4-project Scope & Usage

CUDA-LBM-simulator Scope & Age

elbe Scope & Usage

eLBM Usage

firesim Scope & Usage & Age

fvLBM Scope & Usage & Age

JFlowSim Scope & Usage & Age

LatticeBoltzmann Scope & Usage

LBM Scope & Usage & Age

LBM-Cplusplus Scope & Usage

LBM-EP Usage

LBM MATLAB Scope & Usage & Age

LBSim Scope & Usage & Age

listLBM Scope & Usage & Age

loliverhennigh Scope & Usage & Age

openLBMflow Scope & Usage & Age

ParallelLbmCranfield Usage & Age

PowerFLOW Usage

ProLB Usage

Taxila-LBM Usage & Age

turbulent lbm multigpu Usage & Age

wlb Scope & Usage & Age

Table 10: Eliminated Software Packages

124

E Ethics Approval
This project received ethics clearance from the McMaster Research Ethics Board on
February 20, 2021.

Project Title: AIMSS - State of the Practice

MREB#: 5219

125

References
[1] Iso/iec/ieee international standard - systems and software engineering–vocabulary.

ISO/IEC/IEEE 24765:2017(E), pages 1–541, 2017.

[2] Yuanxun Bill Bao and Justin Meskas. Lattice boltzmann method for fluid simulations.
Department of Mathematics, Courant Institute of Mathematical Sciences, New York
University, page 44, 2011.

[3] Martin Bauer, Sebastian Eibl, Christian Godenschwager, Nils Kohl, Michael
Kuron, Christoph Rettinger, Florian Schornbaum, Christoph Schwarzmeier, Dominik
Thönnes, Harald Köstler, et al. walberla: A block-structured high-performance frame-
work for multiphysics simulations. Computers & Mathematics with Applications,
81:478–501, 2021.

[4] F. Benureau and N. Rougier. Re-run, Repeat, Reproduce, Reuse, Replicate: Trans-
forming Code into Scientific Contributions. ArXiv e-prints, August 2017.

[5] Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. A model for collision pro-
cesses in gases. i. small amplitude processes in charged and neutral one-component
systems. Physical review, 94(3):511, 1954.

[6] Barry W Boehm. Software engineering: Barry W. Boehm’s lifetime contributions to
software development, management, and research, volume 69. John Wiley & Sons,
2007.

[7] Shiyi Chen and Gary D Doolen. Lattice boltzmann method for fluid flows. Annual
review of fluid mechanics, 30(1):329–364, 1998.

[8] Z Chen, C Shu, LM Yang, X Zhao, and NY Liu. Phase-field-simplified lattice
boltzmann method for modeling solid-liquid phase change. Physical Review E,
103(2):023308, 2021.

[9] Davood Domairry Ganji and Sayyid Habibollah Hashemi Kachapi. Application of
nonlinear systems in nanomechanics and nanofluids: analytical methods and appli-
cations. William Andrew, 2015.

[10] Marc-Oliver Gewaltig and Robert Cannon. Quality and sustainability of software
tools in neuroscience. Cornell University Library, pages 1–20, 2012.

[11] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of software engi-
neering. Prentice Hall PTR, 1991.

126

[12] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engi-
neering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

[13] Benjamin Graille and Loı̈c Gouarin. pylbm documentation. 2017.

[14] Alan Gray and Kevin Stratford. Ludwig: multiple gpus for a complex fluid lat-
tice boltzmann application. Designing Scientific Applications on GPUs. Chapman
& Hall/CRC Numerical Analysis and Scientific Computing Series, Taylor & Francis,
2013.

[15] Vincent Heuveline, Mathias J Krause, and Jonas Latt. Towards a hybrid paralleliza-
tion of lattice boltzmann methods. Computers & Mathematics with Applications,
58(5):1071–1080, 2009.

[16] IEEE. Ieee standard glossary of software engineering terminology. Standard, IEEE,
1991.

[17] IEEE. Recommended practice for software requirements specifications. IEEE Std
830-1998, pages 1–40, October 1998.

[18] ISO/IEC. ISO/IEC 9126. Software engineering – Product quality. ISO/IEC, 2001.

[19] ISO/IEC. Systems and software engineering - systems and software quality require-
ments and evaluation (square) - system and software quality models. Standard, Inter-
national Organization for Standardization, Mar 2011.

[20] Panagiotis Kalagiakos. The non-technical factors of reusability. In Proceedings of the
29th Conference on EUROMICRO, page 124. IEEE Computer Society, 2003.

[21] Daniel S Katz, Daina Bouquin, Neil P Chue Hong, Jessica Hausman, Catherine
Jones, Daniel Chivvis, Tim Clark, Mercè Crosas, Stephan Druskat, Martin Fenner,
et al. Software citation implementation challenges. arXiv preprint arXiv:1905.08674,
2019.

[22] Jonas Latt, Orestis Malaspinas, Dimitrios Kontaxakis, Andrea Parmigiani, Daniel
Lagrava, Federico Brogi, Mohamed Ben Belgacem, Yann Thorimbert, Sébastien
Leclaire, Sha Li, et al. Palabos: parallel lattice boltzmann solver. Computers &
Mathematics with Applications, 81:334–350, 2021.

[23] Jörg Lenhard, Simon Harrer, and Guido Wirtz. Measuring the installability of service
orchestrations using the square method. In 2013 IEEE 6th International Conference
on Service-Oriented Computing and Applications, pages 118–125. IEEE, 2013.

127

[24] Marco D Mazzeo and Peter V Coveney. Hemelb: A high performance parallel lattice-
boltzmann code for large scale fluid flow in complex geometries. Computer Physics
Communications, 178(12):894–914, 2008.

[25] J. McCall, P. Richards, and G. Walters. Factors in Software Quality. NTIS AD-A049-
014, 015, 055, November 1977.

[26] JD Musa, Anthony Iannino, and Kazuhira Okumoto. Software reliability: prediction
and application, 1987.

[27] Jakob Nielsen. Usability 101: Introduction to usability, 2012.

[28] David Lorge Parnas. On the design and development of program families. IEEE
Transactions on Software Engineering, (1):1–9, 1976.

[29] Mariusz Rutkowski, Wojciech Gryglas, Jacek Szumbarski, Christopher Leonardi,
and Łukasz Łaniewski-Wołłk. Open-loop optimal control of a flapping wing using
an adjoint lattice boltzmann method. Computers & Mathematics with Applications,
79(12):3547–3569, 2020.

[30] Judith Segal. End-user software engineering and professional end-user developers.
In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fr Informatik,
2007.

[31] Arfon M Smith, Daniel S Katz, and Kyle E Niemeyer. Software citation principles.
PeerJ Computer Science, 2:e86, 2016.

[32] Spencer Smith. Systematic development of requirements documentation for general
purpose scientific computing software. In 14th IEEE International Requirements En-
gineering Conference (RE’06), pages 209–218. IEEE, 2006.

[33] Spencer Smith, Jacques Carette, Olu Owojaiye, Peter Michalski, and Ao Dong.
Methodology for assessing the state of the practice for domain x.

[34] Spencer Smith, Jacques Carette, Olu Owojaiye, Peter Michalski, and Ao Dong. Qual-
ity definitions of qualities.

[35] Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analysis for engineering
computation: A systematic approach for improving reliability. Reliable Computing,
13(1):83–107, 2007.

[36] Spencer Smith, Yue Sun, and Jacques Carette. State of the practice for developing
oceanographic software. McMaster University, Department of Computing and Soft-
ware, 2015.

128

[37] W Spencer Smith and Lei Lai. A new requirements template for scientific computing.
In Proceedings of the First International Workshop on Situational Requirements Engi-
neering Processes–Methods, Techniques and Tools to Support Situation-Specific Re-
quirements Engineering Processes, SREP, volume 5, pages 107–121. Citeseer, 2005.

[38] W. Spencer Smith, Adam Lazzarato, and Jacques Carette. State of practice for mesh
generation software. Advances in Engineering Software, 100:53–71, October 2016.

[39] W. Spencer Smith, Adam Lazzarato, and Jacques Carette. State of the practice for
GIS software. https://arxiv.org/abs/1802.03422, February 2018.

[40] W. Spencer Smith, Yue Sun, and Jacques Carette. Statistical software for psychology:
Comparing development practices between CRAN and other communities. https:
//arxiv.org/abs/1802.07362, 2018. 33 pp.

[41] W. Spencer Smith, Zheng Zeng, and Jacques Carette. Seismology software: State of
the practice. Journal of Seismology, 22(3):755–788, May 2018.

[42] Ian Sommerville. Software Engineering 9. Pearson Education, 2011.

[43] Richard H Thayer and Merlin Dorfman. Ieee recommended practice for software
requirements specifications. IEEE Computer Society, Washington, DC, USA, 2nd ed.
edition, 2000.

[44] Nils Thürey and Ulrich Rüde. Stable free surface flows with the lattice boltzmann
method on adaptively coarsened grids. Computing and Visualization in Science,
12(5):247–263, 2009.

[45] Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In
Proceedings fifth ieee international symposium on requirements engineering, pages
249–262. IEEE, 2001.

[46] Florian Weik, Rudolf Weeber, Kai Szuttor, Konrad Breitsprecher, Joost de Graaf,
Michael Kuron, Jonas Landsgesell, Henri Menke, David Sean, and Christian Holm.
Espresso 4.0–an extensible software package for simulating soft matter systems. The
European Physical Journal Special Topics, 227(14):1789–1816, 2019.

[47] David M. Weiss. Defining families: The commonality analysis. Submitted to IEEE
Transactions on Software Engineering, 1997.

[48] Wiegers. Software Requirements, 2e. Microsoft Press, 2003.

[49] Yuzhi Zhao. Automated knowledge extraction based on a scientific computing soft-
ware documentation generation framework, 2018.

129

https://arxiv.org/abs/1802.03422
https://arxiv.org/abs/1802.07362
https://arxiv.org/abs/1802.07362

	Introduction
	Research Questions
	Motivation
	Scope
	Organization

	Domain Analysis
	Lattice Boltzmann Systems
	Commonalities
	Lattice Boltzmann Method Solvers
	Input
	Output

	Variabilities
	Lattice Boltzmann Method Solvers
	Input
	Output
	System Constraints

	Parameters of Variation
	Lattice Boltzmann Method Solvers
	Input
	Output
	System Constraints

	Methodology
	Process
	Software Qualities
	Installability
	Correctness
	Verifiability
	Reliability
	Robustness
	Performance
	Usability
	Maintainability
	Modifiability
	Reusability
	Understandability
	Traceability
	Visibility and Transparency
	Reproducibility
	Unambiguity

	Identify Candidate Software
	Filter the Software List
	Empirical Measures
	Analytical Hierarchy Process

	Quantitative Findings and AHP Results
	Installability
	Surface Correctness and Verifiability
	Surface Reliability
	Surface Robustness
	Surface Performance
	Surface Usability
	Maintainability
	Reusability
	Surface Understandability
	Visibility and Transparency
	Overall Quality

	Qualitative Findings From Developer Interviews
	Surface Correctness and Verifiability
	Surface Usability
	Maintainability
	Modifiability
	Surface Understandability
	Traceability
	Visibility and Transparency
	Reproducibility
	Unambiguity

	Answers To Research Questions
	Artifacts Present
	Common Artifacts
	Less Common Artifacts
	Rare Artifacts

	Tools Used
	Development Tools
	Dependencies
	Project Management Tools

	Principles, Processes, and Methodologies
	Pain Points
	Lack of Development Time
	Lack of Software Development Experience
	Lack of Incentive and Funding
	Lack of External Support
	Parallelization and Continuous Integration
	Ensuring Correctness
	Usability
	Technical Debt
	Quality of Documentation

	Quality Recommendations
	Installability
	Surface Correctness and Verifiability
	Surface Reliability
	Surface Robustness
	Surface Performance
	Surface Usability
	Maintainability
	Modifiability
	Reusability
	Surface Understandability
	Traceability
	Visibility and Transparency
	Reproducibility
	Unambiguity

	Designation Comparison
	Repository Ranking Metrics
	Domain Expert Recommended Software

	Threats To Validity

	Conclusion
	Highlighted Recommendations
	Future State Of The Practice Assessments

	Appendices
	Measurement Template
	Developer Interview Questions
	Grading Template
	Eliminated Software Packages
	Ethics Approval

