
SAGA: A Story Scripting Tool for Video Game

Development

Lucas Beyak

Department of Computing and Software

McMaster University

April 21, 2011

Abstract

Video game development is currently a very labour-intensive endeavour.

Furthermore it involves multi-disciplinary teams of artistic content creators

and programmers, whose typical working patterns are not easily meshed.

Usually a domain expert has to communicate their ideas to a programmer

in order to realize their designs into a final software product. This process

of transferring information may introduce error or ambiguity, while also

hampering productivity.

Domain-specific languages (DSLs) attempt to increase development pro-

ductivity by allowing domain experts to express ideas in a customary man-

ner, while also providing a mechanism to directly translate these ideas into

usable code.

The SAGA tool, which includes a DSL and compiler program, uses these

methods in an attempt to increase developer productivity. Various domains

from video games were considered but the area of story design was chosen.

The story design DSL developed employs a text-based, natural language

style in order to be less daunting to a non-programmer. A story is modeled

as a transition system through some notions of story states and transitions

that can progress the story according to important events.

From the DSL source code the compiler program produces a usable story

manager module that interacts with game code to supervise the progression

of story. This story manager module can be rendered in C#, C++, or Java.

The compiler also creates a visual output of the story graph.

A video game developer can use the SAGA tool to easily model their

story and employ a story management system in their products.

Contents

1 Introduction 3

2 Requirements 5

3 Domain-Specific Languages 6

3.1 What Is a Domain-Specific Language? 6

3.2 Internal vs. External DSLs 7

3.3 Domain Selection . 8

3.3.1 Character Status Representation 8

3.3.2 Real-Time Strategy Game Rules 9

3.3.3 Story Design . 10

3.4 But Why Choose Story? . 11

4 The Video Game Story 13

4.1 Story Structure . 13

4.1.1 Linear . 13

4.1.2 Non-Linear . 14

4.2 How is Story Affected . 18

5 The Story as an Acyclic Graph Assembly (SAGA) DSL 20

5.1 Syntax . 20

5.1.1 Grammar Definition using EBNF 20

5.2 Semantics . 21

5.3 Possible Extensions . 26

1

6 The SAGA Program 27

6.1 The Big Picture . 27

6.2 Parsers . 28

6.2.1 Story Parser . 28

6.2.2 Configuration Parser 29

6.3 Code Generation . 29

6.3.1 Story Manager Details 30

6.3.2 Abstract Code - An Intermediate Representation . . . 31

7 SAGA Program Output and Code Interactivity 33

7.1 Rendering Usable Code . 33

7.2 Other Output . 34

7.2.1 Story Graph . 34

7.3 Interaction Timing . 35

8 Conclusions 37

A Module Information 39

A.1 Module Hierarchy . 39

A.2 High-level Module Descriptions 40

A.2.1 Main . 40

A.2.2 SAGA.Code . 40

A.2.3 SAGA.CodeGeneration 40

A.2.4 SAGA.Parsers . 41

A.2.5 SAGA.StoryManager 41

A.3 Module Dependency Diagram 42

2

Chapter 1

Introduction

Recently the video game industry has become a mainstream phenomenon.

Video games are now as ubiquitous as movies, books, and other forms of

popular culture. The industry’s growth might even be out pacing that of

the more classical art forms [5, 28]. Much of the growing popularity of video

games is due to advances in technology, such as alternate input devices

and improved visuals. Revolutionary devices such as the Nintendo Wii and

Microsoft Kinect are enticing new users to the industry who felt like they

could not get involved in video games using traditional control schemes.

Since video games are becoming more popular, developers continue to

produce more complex systems to appease the masses. Eventually the meth-

ods utilized to create these interactive media must evolve in order to keep

development productive [7]. Although video game development has come a

long way since it’s infancy, the ones involved must still make advances in

this sector.

In order to understand the problem that pertains to this project, one

must have a cursory understanding of how a medium to large-sized game

development studio functions. Since there is such a broad spectrum of ex-

pertise required to produce a complex software like a video game, there will

most likely be employees that have a deep understanding of a certain aspect

of development but know little about other areas.

At a high level the common departments that would be present in a devel-

3

opment studio would be: art, music, programming, game design, and man-

agement [11]. These broad departments might be partitioned into smaller

sections depending on the size of the studio. There might be dedicated staff

for world and level design, music and sound effects, user interface design, or

story design to name a few. These employees are domain experts in their re-

spective fields, but they may know very little of how the other departments

operate.

Since all developed material must eventually be realized in a final soft-

ware product, the people like the level and story designers must express

their designs and ideas to the programmers. This can take much effort and

time, and it can also be easy for the programmers to misunderstand the true

intent of the designers. This situation can hamper productivity.

One attempt to increase productivity is to eliminate the requirement

to transfer information from the designer to the programmer. It would be

much easier if the domain experts could simply express their ideas in their

usual way and have their designs be used directly in the game software.

A way of accomplishing this is by utilizing a domain-specific language.

The domain expert can use a language that they understand and continue

working at their full potential. There will be some automated mechanism

that translates the expert’s ideas into a usable form [6]. Since the language

is designed for use in a specific problem domain it can accurately express

the information a designer wishes to convey.

This report will explain the technical background of domain-specific lan-

guages as well as the craft of storytelling and how stories can be represented.

The syntax and semantics of the constructed domain-specific language will

be described along with the program to process this language. Finally, the

method of using the output of this tool in a system will be revealed.

4

Chapter 2

Requirements

The goal of this project is to create a tool that will aid in video game

development for a particular domain. Such a tool will attempt to increase

the productivity of an expert in the chosen domain. This tool must satisfy

a number of requirements and properties.

The tool should provide some interface for a domain expert (non pro-

grammer) to describe their ideas in a standard way. It should be fairly

natural for the expert to express themselves through this interface.

The information gathered from the expert must be somehow transformed

into a usable form for an existing game framework. This output will be in

the form of compilable code, which can be processed by a standard compiler

and linked into the game executable.

The computational overhead for interactions between the game engine

and generated code should be minimized. Since video games are real-time

systems that require many calculations per second, the available resources

cannot be squandered.

It would be attractive if the tool could generate code in multiple output

languages. C++ is by far the most common for serious game development,

but other fairly common languages are C, C#, and Java. This should not

be too problematic since the syntax for these languages are quite similar.

Additionally, the system should be well-designed according to software

quality metrics such as understandability, conciseness, and maintainability.

5

Chapter 3

Domain-Specific Languages

3.1 What Is a Domain-Specific Language?

A domain-specific language (or DSL) is a small language that is designed to

express a specific portion of a software application [13]. This specific aspect,

or domain, can be very efficiently and accurately defined through the custom

language. A DSL is not usually Turing complete, and therefore is unlikely

to be used in the same way as a general-purpose language to define an entire

system.

In order to design a DSL for a domain, that domain must be well under-

stood. The reason for this is that there must be an automated mechanism

that unambiguously translates a DSL program into some desired form [6].

In addition, if domain experts are going to be using this language to de-

scribe their ideas, there should be more or less a standard representation of

problems in that domain.

Programming in a DSL should be much easier than writing code for the

same purpose in a general-purpose language. This means that productivity

should be increased by utilizing a DSL. Unfortunately this is not always the

case. Even if productivity is not increased, however, other benefits may be

achieved. Some of these other advantages might be attributes of software

quality like reliability, understandability, maintainability, testability, and ef-

ficiency [14]. Since the DSL can accurately express the domain it is designed

6

for, this means that domain experts, who may or may not be programmers,

will be able to use it as well to communicate their ideas to the rest of the

programming team.

DSLs can differ in the programming style that they employ. Some might

be “solution-oriented”, meaning that the actual form of the solution is de-

scribed in algorithmic details. Others might be “problem-oriented”, where

the code describes what the program should do but not how it is accom-

plished. This is analogous to the differences between general purpose imper-

ative and declarative programming languages. Most DSLs utilize a declara-

tive programming paradigm, and so are oriented to describe the problem to

be solved. DSLs are presumed to be easier to use, and usually the declarative

style lends itself to this purpose.

The goal of such a language would be twofold. Firstly, such a language

should make it quite easy to express common tasks performed in a con-

ventional language (in the DSL’s domain of course). Secondly, tasks that

would be very difficult to express in a general-purpose programming lan-

guage should be able to be performed with the DSL with an acceptable

difficulty.

3.2 Internal vs. External DSLs

A distinction can be made between so called internal (or embedded) and

external domain-specific languages [13]. There are reasons for and against

the usage of each kind.

An internal DSL will be embedded in some general purpose host lan-

guage. This means code is written in the host language, but some additional

constructions are made so the DSL code looks like a “new” customized lan-

guage. This type of language can also be referred to as a fluent interface

[13].

It is easier to quickly create a DSL of this type because the host lan-

guage’s compiler is used to process the code. Also, all the advanced features

of the host language are available to the DSL developer. One reason why

developing an internal DSL might be difficult is sometimes the embedded

7

language’s expressiveness is reduced, as the code must follow the rules of

the host parser in order to be well-formed. This loss of DSL expressiveness

varies greatly from host language to host language.

General purpose languages can be quite divergent, and so creating an

internal DSL in one might be much easier than creating a DSL in another.

Another problem in writing internal DSL code is the domain expert is pro-

gramming in a language that they may not fully comprehend. This may

become confusing if they are not familiar with the host language.

An external DSL is not embedded in some host language and does not

use that host’s compiler. This type of DSL can have a completely custom

syntax and be made very expressive for the domain being considered. It

should be more natural to communicate ideas in this way. It can be more

difficult to implement such a DSL as a compiler must be produced to process

the custom DSL code. This is not a trivial feat, as the compiler has to parse

the DSL code, perhaps make some intermediate representation of the code,

and then perform code generation to produce the end result.

3.3 Domain Selection

It can be seen from the title of the paper that the selected domain was story

design. It was not, however, an obvious selection. There is a plethora of

different areas in game design in which a DSL could be utilized. The three

domains considered for selection during this project were: character status

representation, real-time strategy game rules, and story design.

3.3.1 Character Status Representation

In some games the player is mainly concerned about building up the charac-

ter they are controlling throughout their play. This avatar is very important

as it represents the player in the immersive gameworld in which they are

participating. The player will progress through the game, all the while

gaining power and abilities for their character. This is mostly common in

role-playing games, or RPGs. There are numerous attributes that keep track

8

of the ever-changing status of a character, and so the rules governing these

attributes can become complicated. A DSL for this domain would be able

to simply define attributes and how these attributes affect the abilities of

such a character.

A classic example of this is Dragon Quest, which is a 1986 RPG game

released in Japan and later in North America [20]. This was one of the first

games to introduce concepts such as attributes for a character and different

skills to utilize, both inside and outside of combat.

More recent examples of games that would greatly benefit from a DSL

for the character representation domain would be Final Fantasy XIII or

the insanely popular World of Warcraft. Both these games have a heavy

emphasis on building and leveling up a character throughout the game.

3.3.2 Real-Time Strategy Game Rules

Real-time strategy (RTS) games are known for having multiple factions with

which you can do battle. Each faction is unique with regards to either the

buildings and units that can be created, or the mechanics or rules that the

faction follows.

A perfect example of this is Starcraft or Starcraft 2 developed by Bliz-

zard Entertainment. There are three factions (completely distinct races in

this case) that abide by unique rules [26]. The Terran race, humans, can

make most buildings take flight and must construct buildings on regular

land. The Zerg, a primitive alien race, can only create structures on “creep”

(with some exceptions), which is a living foundation that spreads across the

ground near their buildings. The Zerg also make all units from a single

building, where the other races have specific buildings that create specific

units. The advanced alien race called the Protoss must create buildings

within a certain radius of a “Pylon” structure, and can create buildings

very efficiently because no “worker” unit is required to be present to actu-

ally build the structure. Instead, the structure “warps” in unattended and

the player need not concern themselves with it.

One of the first modern RTS games was Dune II: The Battle for Arrakis.

9

It was released in 1992, and all following RTS games utilized the same

concepts introduced with this game [27]. Such concepts included harvesting

resources, building units and buildings, and selecting, moving, and attacking

with units.

A recent game within the RTS genre is R.U.S.E. [9]. There are six

factions in the game, each having their own strengths and weaknesses. There

are many aspects of this game that could be described by a DSL for this

RTS game rules domain.

3.3.3 Story Design

The story of a game is important because it immerses the player [2]. Im-

mersion is a very powerful tool to engage the player in the game world, and

make the game more important or exciting by making it seem real. Most

games, however, have a linear story, which does not offer the player much

agency during their gameplay.

Agency in a video game is the idea that the player has some control

over their surroundings and that their actions have an effect on the game

world [19]. A player who feels like they are actually interacting with a

game’s environment and are able to change it will become immersed more

easily. Agency and immersion in a game will lead to a more involved player

experience, and usually leads to more enjoyment.

Like in the movies, if a film portrays strong character development or an

engaging storyline, this can drive a very powerful experience for the viewer.

Since video games are a highly interactive media, this experience can be

compounded to be even more immersive.

The reason why games commonly adopt a simple story is because for

every choice the player can make, there is a number of different directions

that the story can then take. Therefore, many choices for the player leads

to a combinatorial explosion of story “states”. This adds much complexity

to the design of the game, and requires much time, effort, and money spent

on the development of assets that will not always be appreciated.

Myst is a classic example of a game that makes use of a story that can

10

be changed by the player, although only at the end of the game [25]. The

player can make one of four choices, and based on what the player decides,

different ending cinematics and dialogue are introduced. Myst also has an

“open world” style of gameplay, where the player is free to roam throughout

the game world as they wish, which again creates immersion as the player

is never presented with a “you can’t do that now” moment. A moment

like this can quickly jar the player out of deep immersion and cause great

annoyance [2].

There are a few excellent examples of very recent games that make great

use of interactive storytelling. Most notable are the titles Heavy Rain and

the Mass Effect series (Mass Effect 1 and Mass Effect 2). These games not

only let the player make decisions in the game, but these decisions have

important consequences on the game’s story. In Heavy Rain, there are four

main characters, but depending on the path that the player takes, some

main characters can even be killed and will not return to the game for the

remainder of play [23]. An interesting aspect of the Mass Effect series is

that the save data from Mass Effect 1 can be used to start a game of Mass

Effect 2 [22]. This keeps the story consistent based on the decisions that

were made by the player during the play of Mass Effect 1.

3.4 But Why Choose Story?

Not all players are created equal. There are many aspects to a video game

and some players enjoy a particular aspect or aspects to a greater degree.

Some players love fancy graphics while others enjoy the music and sound

effects of a game. Players expect a more engaging experience, and desire a

game experience that can be tailored to their play style.

An engaging story can fulfill this requirement, and has much room to

grow over it’s current condition in the video game industry. The idea of

interactive storytelling will only continue to increase as the industry matures

over time.

A video game story can be unambiguously defined using mathematics,

specifically the area of graph theory. A story can be represented mathe-

11

matically by a directed acyclic graph (DAG) [16]. Since the theory used to

model this problem is well understood and can be easily represented, it is a

good choice to explore when considering the possibilities of a DSL in video

game development.

Since the domain of this project is the story of a video game, elements

correlated with this aspect will be discussed in more detail.

12

Chapter 4

The Video Game Story

4.1 Story Structure

The story of a video game can be structured in the same ways that a story

is constructed in movies or books. The only difference is that instead of

passively watching characters make decisions like in a film or book, the

player of the video game is the one making decisions for the characters. The

overall structure of a story in a game can be either linear or non-linear, as

described in this chapter.

4.1.1 Linear

The most simple structure for a game’s story is the linear structure [3].

A linear structure does not offer the player much choice in the way of in-

teractive story. The player will begin the game and be directed to make

“choices”, which are not actually choices at all because the player cannot

decide to take alternative paths through the game.

Games containing linear stories are predictable, which may lead to a low

replay value since the player already knows exactly what is going to happen

the second time through. On the plus side, linear stories are easier to design

than their non-linear counterparts because of their low complexity. The

developer knows that all the content that they create for their game will be

seen every time the game is played, and so no effort is wasted on content

13

that might never see the light of day. Figure 4.1 below was originally taken

from [3].

Figure 4.1: A linear story graph.

4.1.2 Non-Linear

The other style of story structure is one that is non-linear. At certain points

in the game the player may be presented with a real choice of what to do

next, and based on this choice the story of the game may change. This

is very interesting as the player now feels like they can affect their game

environment. This is known as agency and was introduced earlier in this

writing. Unlike linear stories, non-linear story structure can be represented

in multiple ways.

Branching

A branching story structure [3] is the standard interpretation of a non-linear

story. In a branching story a player makes many choices throughout the

game, where every choice will lead the player in a completely new direction.

This is very good, and the player will be very excited about how the story

may progress. However, this is unfortunately also a large problem.

For every choice the player makes there is a new unique path through

the story. The reason why these many paths produce a problem is that for

each new story “state” content must be produced by the game developers. In

addition, since the player makes these choices and goes through a single path

through the game, much of the content created for the game goes unseen.

14

This branching structure creates so many states that it is simply impractical

to make a game with a story structured in this way. A branching story graph

is shown below in Figure 4.2, which was taken from [3] and modified slightly.

Figure 4.2: A branching story graph.

Parallel Paths (Foldback)

The parallel paths [4] structure is a compromise of a linear and branching

structure. The player is still given choices that affect the story of the game,

but at a certain point the story paths converge, fold back on themselves,

to a central point. This central point will always be reached by the player

regardless of what path they choose to take. After this central point, the

player will be given choices again that branch out for a short time before

once again folding back.

This structure gives a good illusion of choice to the player. The player

does have choices that matter but not all the time. Only after playing the

game another time it is possible that a player will realize that there are some

inevitable events that cannot be altered.

This structure offers freedom to the player while not containing a pro-

hibitive amount of story content to create. Because of this reason it is the

standard selection of story structure in modern games [2]. The foldback

graph that was taken from [3] is shown below.

15

Figure 4.3: A foldback story graph.

Threaded

The threaded structure [4] is quite different from the ones shown so far. In

this structure there are multiple independent paths that develop on their

own, regardless of what else is happening in the story of the game. When

the game is nearing the end of the story, these paths usually converge to

form the final events. These are called “threads”, hence the name of the

structure, and it is a similar technique to what authors or filmmakers use to

craft an intriguing story.

Unlike in the previous story structures, the plot does not progress along

a single path. Figure 4.4 below shows a possible story structure for a game.

This story graph was taken from [4], and is supposed to be an approximation

of the first two acts of the game Discworld Noir. The yellow dots represent

events that start an act. An act is just some structure to break up the

main events of the story. The red horizontal lines separate two acts shown

in the figure. The blue dots are optional story events, while the red dots

are mandatory. Red dots with black inside are story events that will make

the next act available. At least one of these special red dots must occur in

16

each act. The green lines show the areas where threads interact with one

another.

Figure 4.4: A threaded story graph.

This system allows the player free-movement throughout their experi-

ence, which is a rarity in today’s games. Keeping track of the changes in

the story graph can be difficult, and makes implementation of this method

challenging. As well as the technical implementation challenges, the effort

required in the quality assurance (QA) process greatly increases due to the

fact that players have this increased freedom to explore.

Much of the time the player will simply be oblivious to the fact that

this type of freedom exists. However, as it is often the case with design of

system elements (such as a fluid and natural user interface), they should

be transparent and not intrude on the user experience. In this case of non-

linear storyline, the user simply notices that many of his/her desired actions

are not limited, making them fully immersed and content.

Dynamic Hierarchical

The given name for this structure in [4] is dynamic object-oriented. The

term object-oriented is not being used in the correct way here. This struc-

ture actually is hierarchical, and uses abstractions to represent story. This

method can be even more expressive than the Threaded structure, but still

17

be as manageable as the Parallel Paths (foldback) structure.

The idea is that a very complicated structure can be simplified greatly

when wrapping smaller units in other larger representations. In this way

you can ultimately think of your story as a simple graph of transitions

between nodes. The complexity of each of these nodes, which could contain

a whole complex graph of its own is hidden by abstraction. This nesting of

complex nodes repeats indefinitely until the highest level structure can be

easily designed and managed by a human.

Having many paths through the story means that there must be a huge

amount of content that must be created for the game like game levels and

characters. To avoid this asset creation problem, the same locations and

characters can be reused many times but with different settings, like lighting,

colours, and dialogue. This style of structure is shown in an example below

in Figure 4.5. The graph was taken from [4].

Figure 4.5: A hierarchical story graph.

4.2 How is Story Affected

Story progression in a video game is usually represented by some type of pre-

recorded video during the game, whether they may be in-game cut-scenes,

18

or completely rendered cinematics. A story will progress forward when some

important event or events take place. The most important idea when speak-

ing about a game’s story is the fact that once the story has progressed in

some way, this is a permanent change and the player cannot “undo” this

progression. This is congruent with the earlier statement that a story is

represented by a DAG.

There may be many events that the player can trigger during a game,

such as acquiring some new item or skill. It is not necessarily the case

that all events will actually affect the state of the game’s story. It might

not matter what kind of sword the player has attained throughout their

adventures. It is important not to confuse the idea of an “open-world”

style game with a non-linear storyline. An open-world game means that the

player has the freedom to freely explore a large part of the game world [17].

Some games may give the illusion of a complex, non-linear story by allowing

the player to experience a wide variety of areas, which will customize the

player’s experience.

When present in a game, both of these concepts will increase the agency

of the player. This does not mean that these ideas are the same. An open-

world game may have an extremely linear story, while a more closed-world

game can have a non-linear storyline. This being said, it is probably more

common for an open-world game to have a non-linear story than a linear

one. In an open-world game the player will have access to a large number

of areas in the world. If the player can only further the storyline by doing

a specific event in a specific area of the world, this may become irritating

for some players. It may be difficult to find this area to continue on with

the game’s story, or the player may realize that there is not much point

exploring around the world because they cannot access the story content.

19

Chapter 5

The Story as an Acyclic

Graph Assembly (SAGA)

DSL

5.1 Syntax

Like most DSLs, the one designed for this project is text-based [13]. The

language is quite small, meaning there are very few keywords present in the

grammar. A story can be programmed through these keywords, and the

story description is meant to be similar to natural language.

5.1.1 Grammar Definition using EBNF

EBNF (Extended BackusNaur Form) is a notation to formally define the

syntax of a language. It is based on BNF, which was originally used to

describe the Algol 60 programming language [24]. The EBNF grammar for

the SAGA DSL is shown below in Listing 5.1. There exists many variants

of the EBNF that utilize different syntactical conventions, but the one used

here is outlined by an ISO standard [18].

20

Listing 5.1: EBNF Grammar of the SAGA DSL

s to ry = opt whi te space , story name , whitespace , s t a r t node ,

whitespace , s e c t i o n s , whitespace , ’WHERE’ ,

t r a n s l i s t , opt whi te space ;

story name = ’STORY’ , whitespace , l a b e l ;

s t a r t node = ’ INITIAL ’ , whitespace , l a b e l ;

s e c t i o n s = s e c t i o n , { whitespace , s e c t i o n } ;

s e c t i o n = sect ion name , whitespace , ’{ ’ , whitespace ,

t r a n s l i s t , whitespace , ’} ’ ;

sect ion name = ’SECTION’ , whitespace , l a b e l ;

t r a n s l i s t = trans , { opt whi te space , ” ,” , opt whi te space ,

t rans } ;

t rans = pre nodes , whitespace , ’GOES’ , whitespace , l a b e l ,

whitespace , ’WHEN’ , whitespace , events ;

s e c t t r a n s l i s t = [t r a n s l i s t] ;

pre nodes = l a b e l , { ’OR’ , l a b e l } ;

events = l a b e l , { ’AND’ , l a b e l } ;

l a b e l = word , { whitespace , word } ;

word = char , { char } ;

whitespace = whi te space char , { white space char } ;

wh i t e space char = ? any white space cha rac t e r ? ;

opt whi te space = [whitespace] ;

char = ? any v i s i b l e ASCII p r i n t ab l e cha rac t e r ? − i n v a l i d c h a r ;

i n v a l i d c h a r = ’ , ’ ;

5.2 Semantics

For this language there is some notions of Nodes, Sections, Transitions, and

Events. As explained earlier in this paper, the structure and progression of a

story can be represented as a directed acyclic graph. The nodes are states of

21

the story, and the transitions are directed edges connecting the nodes. These

transitions describe how the story will progress. The transitions require that

some event or events have occurred in order to change the state of the story.

The domain expert designing the story will most likely not think about

the story in this way. They will simply write the story just as how a writer

writes a book. They will think about the characters, what happens to them,

and what the characters will do in order to overcome their obstacles. The

designer will need to be able to express their story into the discrete form

that the language requires.

Before explaining the meaning of the syntax with respect to the story

elements, an example will illustrate how a story description is transformed

to a story graph.

22

Figure 5.1: “Sealed Fate” Story Description

The story description in Figure 5.1 produces a story graph as seen below.

Make note of how the sections are contained within labeled boxes, as well as

the effects of using the “AND” and “OR” keywords. They are both being

used in the “The Path of Evil” section.

23

Figure 5.2: “Sealed Fate” Story Graph

24

As seen in the example description and graph above, a story must be

given a name using the STORY keyword. The story is labeled at the bottom

of the story graph, and is present so a reader can identify the story they are

inspecting. An initial story state is specified using the INITIAL keyword.

If the story graph is examined it can be seen that the only node that does

not contain an incoming transition is the initial node. The story will always

begin here and then branch out. The sections are defined using the SEC-

TION keyword. The name of the section is specified, and the description of

the contained nodes and transitions are defined inside curly braces.

The well-formedness of a transition is defined in the EBNF grammar,

and the meaning of these definitions will be described now. There will be

a label of a node preceding the GOES keyword, and following GOES there

will be another label of a node. In graph theory terms the first node will be

the tail while the second node will be the head of the arc that this syntax

describes. There is also an OR keyword that can be used to shorten story

description code in the following way. Before the GOES keyword there

can be more than one label for a story node separated using OR. This is

simply a short form that allows the description of multiple transitions with

a single definition. For every tail node appearing before GOES there will be

a separate transition created. The head node of these transition arcs will

always be the same.

There is still the end part of a transition definition to be explained. After

the head node is labeled this is followed by the WHEN keyword. Following

this a list of event labels must be provided, separated by the AND keyword.

These labels identify important events that must have occurred before the

transition is allowed to be taken. Since these events are separated by AND,

this shows that all of the events must be satisfied before using the transition.

When examining the sample story description another part must be spec-

ified. The sections are described already, but the transitions between these

sections must also be specified. The keyword WHERE is used and this is

followed by a list of transition definitions. Even if there is only one sec-

tion defined in the story description, the WHERE keyword must still be

provided.

25

5.3 Possible Extensions

For most people it is easier to comprehend a story through some visuals.

Although the current language is simple and some structure can easily be

seen from the text, there is still much room for improvement. A front-end

visual interface for the language could be a step in the right direction. There

would be some canvas area where the user could place story elements using

some tools provided through the interface. It would most likely be organized

similarly to a digital photo editing program.

Some of the tools that would be available would be: Place Node, Make

Transition, Group Nodes into Section, Set as Initial Node, and Assign

Events. Of course there would also be standard features like moving ele-

ments and panning and zooming the view of the canvas. In addition this

front-end to the language could also include functionality to describe the

desired configuration settings to give to the language’s compiler.

There might be issues of scaling with this visual description of a story. If

the story is complex and contains a large number of nodes then this might

make it difficult to navigate while designing or viewing. One aspect of the

language’s design may be able to assist in this matter to some extent. There

are concepts of Sections and Nodes for a story. A Section is a collection of

Nodes. In order to view the story graph more easily there could be a tool

that would collapse the Sections on the canvas into a small visual area. The

Section can then be thought of as a simple Node even though it is known to

contain some structure within. If the language could support the nesting of

Sections, which it currently does not, then this can be repeated to collapse a

complex portion of the graph into a smaller area. This concept was explained

earlier when speaking about dynamic hierarchical story structure.

Most likely the text-based language would be preserved and the front-

end interface would be able to transform the picture representation into a

story description file like is used currently.

26

Chapter 6

The SAGA Program

6.1 The Big Picture

The SAGA program is a compiler for the SAGA DSL. It parses a story

description file as well as a configuration file, and creates some internal data

structures based on these. Once the program processes the input and creates

some representation, the next step is to prepare the solution code, but in an

abstract way. Doing this makes the generation of code for multiple languages

an easier process. Once this abstract code is created it can be passed to a

certain rendering mechanism of a particular language, which will generate

the final usable code.

The program is implemented in Haskell, a purely functional language,

for a number of reasons. Haskell allows for higher-order functions to be

created in a more concise manner than a language like C++. In C++ it is

somewhat clumsy to use function pointers to specify a function as an input

parameter to a higher-order function. Haskell has a lightweight syntax that

promotes readability [8]. Constructs like folding and functional composition

allow a programmer to produce powerful code in very little actual lines of

code. Once a developer overcomes the initial functional paradigm learning

curve, clean, concise code can be written very quickly to accomplish any

task.

Figure 6.1 below shows a general picture of how the story description

27

DSL and compiler will interact with the game compilation and execution.

Figure 6.1: The Big Picture

6.2 Parsers

As mentioned earlier, the SAGA program is a compiler. This means the

first action that the program has to perform is lexical analysis and parsing

of a source [10].

For these scanning and parsing duties there exists the parser combina-

tor library Parsec. Parsec is simple to use, well documented, and provides

good error reporting messages that specify position, unexpected input and

expected productions. Many of the advanced features of Parsec were not

required to build a parser for the DSL, but it still allowed for an easy cre-

ation. Once the BNF grammar of a language is known it is relatively simple

to implement the required parser in Parsec.

There are various design decisions to be made when making a parser

in Parsec. Things must be considered like case sensitivity, whitespace re-

quirements, valid identifiers, comment style, and reserved operations and

keywords.

6.2.1 Story Parser

Since a story description looks mostly like natural language, the keywords

must be capitalized in order to be recognized. This makes them stand out

28

from the labels used to denote names of sections, nodes, and events. The

whitespace layout of the language is completely irrelevant, except that at

least some amount is required between keywords. This means the person

writing a description can align their code however they like.

Comma punctuation marks are used to separate transition definitions.

These are required to delimit the label of the events of a transition and

the following transition’s tail node label. The parser also supports C-style

comments, both line and block varieties.

6.2.2 Configuration Parser

The required configuration file utilizes a parser as well. Clearly by the EBNF

definition below it is very simple and is currently used to choose the desired

language for code generation. If the tool were to be developed further there

could be many other configuration options added.

Listing 6.1: EBNF Grammar of the Configuration File

c on f i g = opt whi te space , ’ Generation ’ , whitespace ,

’ Language ’ , whitespace , ’= ’ , whitespace ,

language , opt whi te space ;

language = ’C#’ | ’C++’ | ’ Java ’ ;

whitespace = whi te space char , { white space char } ;

wh i t e space char = ? any white space cha rac t e r ? ;

opt whi te space = [whitespace] ;

6.3 Code Generation

The purpose of the SAGA tool is to generate a story manager to be used in

a video game. In order to accomplish this the tool must produce compilable

code in the same language in which the game is developed. The modules

responsible for code generation make up the majority of the SAGA program.

29

6.3.1 Story Manager Details

The overall picture of how the SAGA tool is used for game development

was shown in Figure 6.1. The generated story manager module has some

interaction with the rest of the game code. These interactions will now be

explained in more detail.

When a story is specified using the SAGA DSL there are many events

that describe how the story may progress through transitions. These critical

story events will be arranged into a list, and will become part of the state of

the story manager. These events can occur at some time during gameplay.

At the beginning of execution of the game none of the events will have

occurred yet. There will be a list of boolean values that corresponds to the

list of event labels, indicating whether each event has occurred yet or not.

The order of these events will be the order in which the labels occurred in

the SAGA specification.

Figure 6.2 shows the information that is passed between the game code

and the story manager. The game logic will keep track of the important

story events in a list of boolean values having the same length as the num-

ber of story events of which the story manager is aware. At the start of

game execution all of the values will be initialized as false as no events have

occurred yet. As events are triggered by the player or environment the

corresponding boolean values will be assigned true.

Figure 6.2: Interactions Between Story Manager and Game Code

30

Now there is the matter of communicating this data to the story manager

to be analyzed. The story manager has a function that will take the event

data from the game in some standard container form depending on the

implementation language. Depending on the truth of these event values the

story manager can determine if the story has progressed. The function will

return the current story state as a story Node. The game logic can then

check the label of this Node and decide how this affects the game. If the

story has changed state then perhaps the game will display a cinematic,

interface element, or perform any one of various responses.

6.3.2 Abstract Code - An Intermediate Representation

When using the SAGA language to describe a story, some problem infor-

mation is supplied to the SAGA compiler. The SAGA source code itself

provides no indication of how this problem information is transformed into

a solution. There is a mechanism provided in the SAGA compiler that

performs this transformation.

The SAGA program contains a module responsible for structuring a

generic solution to the story manager creation problem. This generic solu-

tion consists of a set of abstract modules. These modules, when instantiated

with problem data, represent the various object-oriented classes used in the

generated code. In order to represent these somewhat complex modules,

many Haskell data structures have been defined. The abstract code struc-

ture is a many-layered data structure that is built up from structures of

packages, modules, state variables, and functions. These structures also re-

quire some notions of state types, function types, and parameters in order

to be constructed.

The abstract code should be designed in such a way such that it is

language independent. The meaning of this is that the abstract code rep-

resentation should be able to be processed into code of any language. This

is of course difficult because of the vast differences that exist between pro-

gramming languages. During the design process of the abstract code it

was desired to be able to represent code of both imperative and functional

31

paradigms. This was attempted at first, but it was realized that this goal was

ambitious and outside the scope of this particular project. It was decided

that the abstract code would be designed with object-oriented languages in

mind, and in particular “C Family Languages” like C#, C++, and Java [1].

A comparison was discussed earlier about external and internal DSLs.

The SAGA language is an external DSL, as it uses a stand-alone compiler

to produce code. The abstract code representation can be thought of as an

internal DSL. It is present inside the Haskell host language and is meant

to look like a new language. Many assistive functions have been created in

order to help the abstract code definitions to be visually similar to actual

object-oriented code. Haskell provides means to easily define new operators

and their characteristics such as right/left association and precedence.

The important module modeled using abstract code language is the story

manager. This manager will contain a story as part of it’s state, and also

functionality to interact with game code. In order to construct this story

state many other modules are required. These include modules to represent

nodes in a story, the larger collections of story nodes referred to as sec-

tions, and also transitions between nodes and transitions between sections.

These four modules together are utilized in a story module, which can then

construct a story object for the story manager.

The problem information provided through the SAGA source is im-

planted into some initial data structures. Then this story-specific informa-

tion is passed through a function that instantiates this data into the generic

story manager solution. However, not all of the story manager logic is de-

pendent on the problem data. There contains functionality that is already

defined by the generic solution. This logic is “hard-coded” into the abstract

code. The actual functions that interact with the story data, such as setting

and getting functions for node and transition modules, will be defined in

this way. Now that a fully defined solution has been created it is ready to

be transformed into it’s final form through a rendering process.

32

Chapter 7

SAGA Program Output and

Code Interactivity

7.1 Rendering Usable Code

All of the logic needed for the actual generated code is present in the in-

termediate representation of the abstract code. All of this information is

represented as Haskell data structures, and so another step is required to

translate to the final generated code. See Figure 7.1 below for a general

control flow through the SAGA compiler.

Figure 7.1: SAGA Data Flow

33

Since the intermediate representation must be rendered into different

languages there must be a renderer for each one. That is not to say that

all rendering is language-specific. Because the syntax of the three currently

renderable languages is very similar there are quite a few functions that

are usable across languages. These functions do however take a parameter

indicating the desired rendering language, and so are language-parametric

functions.

Each language’s renderer is responsible for producing the correct syntax.

For instance, while C# and Java use the keyword “Boolean” for a boolean

variable, C++ uses “bool” instead. All the various syntactical differences

such as these must be accounted for in the various renderers. Other consid-

erations include syntax for standard container usage, as well as the functions

that operate on them.

The rendering of C# and Java into code files was very similar. Each

abstract module is rendered into a file having the same name. Rendering

the C++ code is different since a header file is used. The rendering modules

are designed to allow the code output to be put into multiple files.

7.2 Other Output

7.2.1 Story Graph

In addition to generating compilable code for a game, the program also

produces a story graph for easy inspection. An example of this type of

graph was shown in Figure 5.2.

This visualization is performed via the DOT language, which is a part

of Graphviz, a graph visualization software [15]. As described earlier, after

the story description is parsed some data structures are constructed that

represent the story. There is a module in the program that handles DOT

code generation from these data structures.

During the execution of the program, the “dot” command is invoked to

produce a digital image of the story graph. This means that the Graphviz

software must be installed, and that the required binary “dot” is recognized

34

at the command-line. Of course if the “dot” executable is not recognized

the program will continue to perform it’s functions, but will not produce a

story graph.

7.3 Interaction Timing

One might begin to wonder about the timing of these interactions between

the story manager and game logic. A video game is a real-time system after

all, and events can occur very quickly and in succession depending on the

style of game. How often must be story manager be called upon to check

the state of the story?

The critical story events that the manager is considering will most likely

be few and far between. These junctions in the game’s story will be sig-

nificant, and will probably not occur in a short amount of time. For this

reason the interactions between the story manager and game need not be

frequent. There are some other considerations when speaking about the

timing of these interactions, namely game performance and human reaction

times.

Performance is a hugely important issue in video games. There are count-

less operations that must be performed every second to provide a seamless

experience for the player. People desire to have the highest frame rates

and smoothest gameplay experience. Because of this, calculations spent

on determining the story state should be minimized. Also, the number of

calculations performed by the story manager for a single check is low.

The manager only has to check the events relevant to all outgoing transi-

tions from the current story node. This can vary depending on how complex

the story is, but typically there should only be a few available important

story choices to make. Any available processing resources would be spent

more wisely on other aspects of the video game than checking the story

progression. The slowest possible story state checking would be optimal, as

long as it does not affect the game experience.

Perhaps the most crucial consideration to determine the timing of the

interactions can be decided by human nature. It is widely accepted that the

35

mean visual and aural reaction times for college-aged people are 190 ms and

160 ms respectively [21]. If a player cannot even physically react to more

than four to six stimuli per second then it is pointless to update the story

state more than this amount.

For the multiple reasons outlined above, the highest rate of story state

checking should be about six times per second. If a certain game is on a

tight computational budget then two or even one check per second would

probably be acceptable and not disturb the user experience.

Rather than utilizing this polling architecture, another more elegant so-

lution exists. Control inversion [12] can be utilized through an event-driven

approach. This method makes more sense because then only necessary calcu-

lations need to be performed. Instead of asking the story manager at regular

intervals whether something important has happened, the game engine will

tell the story manager when something has occurred.

The story manager will register the critical events with the game engine,

and so will be notified if one of these story-changing events occur. In this

way the story manager will only be called upon when required, and will

notify the game what effect this event has on the state of the story. The

game engine can then decide on it’s own schedule how to deal with this new

information it has received from the story manager.

36

Chapter 8

Conclusions

The results of this project show the power of utilizing DSLs, and how they

can improve the current state of video game development. Perhaps this

method is a step in the right direction of advancing game development, and

improving or sustaining time to market as game complexity increases.

In fact, it was not a very difficult task to create a human-readable lan-

guage for story management. Technology such as standard parsing libraries

and powerful programming languages allows the straightforward creation of

a tool such as SAGA.

The transformation from abstract code to compilable object-oriented

code was not an insurmountable feat. It does take some amount of effort and

time to implement this feature of course, but it is not a major predicament

that is difficult to solve. With an expressive enough intermediate represen-

tation, and general rendering framework it would be possible to “drop in”

new output languages with minimal effort.

This being said, the component of the tool that required the most stren-

uous design effort was the development of the aforementioned abstract code.

It was designed to be as general as possible in order to account for multiple

output languages. Clearly some intelligent design had to be put forth to

accomplish the task. Fortunately this investment of strong design awarded

dividends. It is impressive that three output languages are available with

this tool, even if these languages are quite similar.

37

An attractive and ambitious end-goal would be the existence of some

standard video game development framework that makes use of multiple

DSLs. There could be custom languages to describe most of the features

of games. Employees could specialize in one or many of these languages,

perform very productively, and achieve results quickly. Of course this would

be good for development but possibly detrimental to competitiveness if this

framework was available to everyone.

The SAGA tool is not likely to be appropriate for use in a real-world

video game today. The tool has only been tested for simple proof of concept

examples. In order to assess it’s suitability for real game development the

tool must be applied to more practical situations. Further development must

be carried out to determine the capacity of a tool such as SAGA in the video

game industry.

38

Appendix A

Module Information

A.1 Module Hierarchy

Haddock, a tool for generating documentation for Haskell code, produced

the following module hierarchy output.

Figure A.1: SAGA Module Hierarchy

39

A.2 High-level Module Descriptions

A.2.1 Main

Contains the entry point for the SAGA program. This module holds the

logic of organizating operation of various I/O operations including: initiate

parsing, construction of required data types, and producing code files.

A.2.2 SAGA.Code

SAGA.Code

Contains the structure of the Code data type.

A.2.3 SAGA.CodeGeneration

SAGA.CodeGeneration

Contains the logic to construct Code data types from an AbstractCode, as

well as the logic to produce the actual generated code files.

SAGA.CodeGeneration.AbstractCode

Contains the structure of the AbstractCode data type, which is some in-

termediate representation (IR) of the desired code. Specifically, an Ab-

stractCode will be a logical structure of the solution that is desired to be

generated.

SAGA.CodeGeneration.LanguageRenderer

Contains the framework for a class of renderers. This module has functions

that define syntactical elements of the output languages. Some functions are

general across the output languages, and they simply accept a parameter to

denote language.

SAGA.CodeGeneration.LanguageRenderer.CSharpRenderer

Contains the logic to render compilable C# code from an AbstractCode.

40

SAGA.CodeGeneration.LanguageRenderer.CppRenderer

Contains the logic to render compilable C++ code from an AbstractCode.

SAGA.CodeGeneration.LanguageRenderer.JavaRenderer

Contains the logic to render compilable Java code from an AbstractCode.

A.2.4 SAGA.Parsers

SAGA.Parsers.ConfigParser

Contains the parsing logic for the SAGA configuration file.

SAGA.Parsers.StoryParser

Contains the parsing logic for the SAGA story description file.

A.2.5 SAGA.StoryManager

SAGA.StoryManager.DataTypes

Contains the structure of the data types that make up a story, as well as

functions to safely construct these.

SAGA.StoryManager.DotOutput

Contains the logic to render DOT code and produce a file recognized by

various DOT layout schemes.

SAGA.StoryManager.Helper

Contains various useful functions for processing, including turning strings

into valid variable names for the renderable output languages.

SAGA.StoryManager.Printing

Contains useful printing functions that are not present in the Haskell pretty-

printing library. The module holds logic to render the data types from the

41

DataTypes module into a finite form (since some of these types contain

information of each other, a regular attempt to output a value will result in

an infinite string).

A.3 Module Dependency Diagram

The module dependencies are shown below in Figure A.2.

Figure A.2: SAGA Module Dependencies

42

Bibliography

[1] The C Family of Languages: Interview with Dennis Ritchie, Bjarne

Stroustrup, and James Gosling. http://www.gotw.ca/publications/

c_family_interview.htm.

[2] Ernest Adams. Fundamentals of Game Design. Prentice Hall, 2009.

[3] International Game Developers Association. Scriptwriting

for Games: Part 1: Foundations for Interactive Storytelling.

http://aii.lgrace.com/documents/IDGA_Foundations_of_

Interactive_Storytelling.pdf.

[4] International Game Developers Association. Scriptwriting for Games:

Part 2: Advanced Plot Story Structures. http://aii.lgrace.com/

documents/ScriptwritingforGames_Part_2_Parallel_OO.pdf.

[5] Eric Bangeman. Growth of gaming in 2007 far outpaces movies, music.

http://biae.clemson.edu/bpc/bp/Lab/110/reaction.htm.

[6] Magnus Christerson. Intentional Software at Work. http://www.

infoq.com/presentations/Intentional-Software-at-Work.

[7] Christophe de Dinechin. Concept Programming - The Art

of Turning Ideas into Code. http://xlr.sourceforge.net/

ConceptProgrammingPresentation.pdf.

[8] Sadek Drobi. Lennart Augustsson on DSLs Written in Haskell. http:

//www.infoq.com/interviews/DSL-Haskell-Lennart-Augustsson.

43

[9] Ubisoft Entertainment. About the Game. http://ruse.us.ubi.com/

index.php?page=about.

[10] James Alan Farrell. Compiler Basics. http://pages.prodigy.net/j_

alan/hitech/compiler/compmain.html.

[11] Brock Ferguson. Gaining Entry to Game Development. http:

//www.gamedev.net/page/reference/index.html/_/reference/

110/135/advice/gaining-entry-to-game-development-r1658.

[12] Martin Fowler. InversionOfControl. http://martinfowler.com/

bliki/InversionOfControl.html.

[13] Martin Fowler. Domain-Specific Languages. Addison-Wesley Profes-

sional, 2010.

[14] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of

Software Engineering. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 2nd edition, 2002.

[15] Graphviz. Graph Visualization. http://www.graphviz.org/About.

php.

[16] Frank Harary. Graph Theory. Westview Press, 1994.

[17] John Harris. Game Design Essentials: 20 Open World

Games. http://www.gamasutra.com/view/feature/1902/game_

design_essentials_20_open_.php.

[18] ISO and IEC. ISO/IEC 14977. http://www.cl.cam.ac.uk/~mgk25/

iso-14977.pdf.

[19] Kristine Jørgensen. Problem Solving: The Essence of Player Action in

Computer Games. In Copier Marinka and Raessens Joost, editors, Level

Up Conference Proceedings: Proceedings of the 2003 Digital Games Re-

search Association Conference, page CD Rom, Utrecht, November 2003.

University of Utrecht.

44

[20] Kurt Kalata. The History of Dragon Quest. http://www.gamasutra.

com/view/feature/3520/the_history_of_dragon_quest.php?

print=1.

[21] Robert J. Kosinski. A Literature Review on Reaction Time. http:

//biae.clemson.edu/bpc/bp/Lab/110/reaction.htm.

[22] Griffin McElroy. Mass Effect 2’s save game import fea-

tures explained. http://www.joystiq.com/2009/12/26/

mass-effect-2s-save-game-import-features-explained/.

[23] David Oso. Interactive Drama, is it really a new genre?

http://gamasutra.com/blogs/DavidOso/20110417/7447/

Interactive_Drama_is_it_really_a_new_genre.php.

[24] Richard E. Pattis. EBNF: A Notation to Describe Syntax. http:

//www.cs.cmu.edu/~pattis/misc/ebnf.pdf.

[25] Edward Rothstein. A New Art Form May Arise from the ’Myst’. The

New York Times, December 1994.

[26] IGN Staff. Starcraft. http://pc.ign.com/articles/152/152159p1.

html.

[27] TDA. The History of Real Time Strategy, Part 2.1: The

Glory Years. http://www.gamereplays.org/portals.php?show=

page&name=the_history_of_real_time_strategy_pt2_1.

[28] Daniel Terdiman. Video game sales explode in industry’s best month

ever. http://news.cnet.com/8301-13772_3-10435516-52.html.

45

