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What Lies Beneath—A Survey of Affective
Theory Use in Computational Models of Emotion

Geneva M. Smith and Jacques Carette

Abstract—Studying and developing systems that can recognize, express, and “have” emotions is called affective computing. To create
a Computational Model of Emotion (CME), one must first identify what kind of system to build, then find emotion theories that match its
requirements. The relevant literature is vast. This survey aims to help design CMEs that generate emotions—separated into emotion
representation and elicitation tasks—in computer agents and interfaces. We give an overview of 67 CMEs from different domains, and
identify which emotion theories they use and why. To better understand why CMEs use some theories, we also analyze instances
where these CMEs use theories to express emotion. Lastly we summarize how CMEs generally use each theory. The survey is meant
to be a guideline for deciding which affective theories to use for new emotion-generating CME designs.

Index Terms—Affective computing, artificial intelligence, computational models of emotion (CME), psychology.
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1 INTRODUCTION

A FFECTIVE Computing introduces emotion as a concern
in programs so that they may recognize and respond

to human users more intelligently [1, pp. 3, 50]. There are
three main affective computing tasks [2, pp. 4], [3, pp. 2]
that enable this human-centered approach:

• Emotion Recognition, to capture user information like
speech and gesture to infer their current affective state,

• Emotion Generation, to produce an affective state given
the current program and environment state, and

• Emotion Effects on Behavior, to change a program’s be-
havior (e.g. facial expressions, gestures, or movements)
given its affective state.

Infrequently another task, Emotion Effects on Cognitive
Processes or Cognitive Consequences of Emotions [4, pp. 100] is
added. We choose to focus on emotion generation and some
aspects of emotion effects on behavior because the relevant
literature is vast.

1.1 Computational Models of Emotion

A Computational Model of Emotion (CME) is a software
system that is influenced by emotion research, embodying
at least one emotion theory as the basis for its stimuli evalua-
tion, emotion elicitation, and emotional behavior generation
mechanisms [5, pp. 2, 14].

But what are emotions? While there is no agreed-on, pre-
cise definition, researchers agree on a fuzzy working defini-
tion and typical examples of emotions, which are sufficient
for meaningful comparisons between theories [6, p. 248–
249]. An emotion is a short-term affective state representing
the coordinated physiological and behavioral response of
the brain and body to events that an organism perceives
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to be relevant [7, pp. 4], [8, pp. 249], [9, pp. 138–139], [10,
pp. 349], [11, pp. 121].

Some researchers hypothesize that each emotion has
a signature—the coordinated response pattern it typically
causes in an organism [12, pp. 133], [13, pp. 108] including:
behavioral and expressional characteristics; somatic and
neurophysiological factors that prepare the body for action;
cognitive and interpretive evaluations that give rise to the
emotion; and experiential and subjective qualities unique
to an individual. Elements of the signature can be innate
or learned [14, pp. 6]. Emotions are also characterized by
their high intensity relative to other types of affect (e.g.
personality, mood), their tendency to come and go quickly,
their association with a specific triggering event, object, or
person, and clear cognitive contents [7, pp. 4], [9, pp. 139–
140], [10, pp. 350].

These characteristics differentiate emotions from other
kinds of affect such as mood (enduring, less intense, and
more diffuse states than emotions, often without apparent
cause and/or object) and personality (set of stable affective
traits) [7, pp. 4–5], [9, pp. 140–141], [10, pp. 351]. It is
common to see CMEs that model more than emotion alone,
as they serve related—but different—purposes [15, pp. 88],
[16, pp. 354].

Choosing emotion theories for CME creation is diffi-
cult because each theory typically focuses on a subset of
emotion process stages and has their own assumptions on
how different components integrate and how to differentiate
emotions [2, pp. 10–11]. Given the large number of emotion
theories available (we’ve seen at least 27), trying to under-
stand them all is unrealistic. By first focusing on families of
theories, grouped by core assumptions or focus [2, pp. 11,
20], one can identify a subset of theories that might satisfy
a CME’s requirements, including their level of empirical
validation and how they might be used together.

This survey explores 67 CMEs that are stand-alone appli-
cations (e.g. GAMYGDALA (61)) or part of a broader system
(e.g. in Kismet (53)). Its aim is to give an overview of some
affective theories that appear in CME designs and the rea-
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TABLE 1
Main Theories Used

Theory Abbr. References
Izard Iz. [18], [19], [20]
Ekman Ek. [21], [22]
Plutchik Plu. [23], [24]
Valence & Arousal V-A [25], [26], [27]
Pleasure-Arousal-
Dominance Space PAD [28]

Frijda Frj. [8], [29]
Lazarus Laz. [30]
Scherer Sch. [13]
Roseman Ros. [31], [32], [33]
Ortony, Clore, & Collins OCC [34], [35], [36]
Smith & Kirby S & K [11], [37]
Oatley & Johnson-Laird O & JL [38], [39], [40], [41]
Sloman Slo. [42]
Damasio Dam. [43]
LeDoux LD [44]

sons for that choice1. Seeing affective theories in context has
two advantages. First, CMEs translate theories into concrete
computational representations, thus dispelling the fuzziness
of the theories’ natural language presentations. The second
and greater advantage is that a CME targeted at a specific
application domain will illustrate the underlying theory’s
strengths and how it could be mechanized. In practice,
designers often combine theories—sometimes implicitly—to
achieve the desired CME functionality because single theo-
ries do not address all aspects of emotion or the available
empirical data [17, pp. 10]. The role assigned to a theory in
a CME could be an indicator of its strengths.

1.2 Paper Reading Guide
Section 2 reviews the survey’s scope and methods, then
Section 3 organizes CMEs into categories by the creator’s
original intent to help give context for their design decisions.
Next, Section 4 presents how CMEs use theories for emotion
representation, elicitation, and expression. In Section 5 we
examine the theories that appear in CMEs at least five
times (Table 1) to synthesize commonalities and strengths.
We also note theory combinations. Section 6 explores other
information that could be useful for designing CMEs. We
use abbreviations—some of them our own—throughout the
survey to increase the legibility of the text.

2 SURVEY SCOPE AND METHODS

We only include CMEs that generate emotion due to our
focus. Our search protocol follows the PRISMA-S guide-
lines [45]2. Fifteen systems are direct iterations of prior
designs3. Prior systems are not surveyed unless they are suf-
ficiently different (i.e. use different emotion theories, have
differing designer intents) to warrant exploration. Prior sys-
tems that are not psychologically grounded (e.g. based on

1. See [10, pp. 370–372] for some historical context too.
2. See Supplementary Material Section 1 for the full protocol.
3. See Supplementary Material Section 2 for CME “genealogy”.

physical brain structures, empirical data) are also omitted,
though mentioned when important ideas are borrowed from
them.

We found 166 CMEs accompanied by a published de-
scription. We removed one because its bibliographic data
was uncertain. Our selection protocol is partially based on
citations, which take time to accumulate, so recent papers
(2020 and later) were examined by hand for scope fit. Two
of seven did. Of those from 2019 or earlier, 73 had strictly
more than our threshold of 1.5 Citations per Year (C/Y). We
included all CMEs with C/Y > 2.5 in the survey, and an
additional handful chosen subjectively as they seemed to
bring something interesting to the discussion. We made an
exception for ELSA (26) with 0.43 C/Y due to its unique
implementation of Sch., and for Scherer’s involvement in its
creation (see Section 5.2). We survey 67 CMEs in total.

3 CLASSIFYING CMES

We group CMEs by application domain according to the
creator’s documented intent (Table 2) because this would have
guided their selection of emotion theories. These categories
are not exclusive—someone could use a CME successfully
in a different domain.

• Multi-Purpose CMEs (Systems 1–18) are not limited to
one domain. These systems: explicitly list multiple,
sufficiently different potential uses [12], [46, pp. 3–6],
[47], [48]; name a general type of CME environment [15,
pp. 10], [49], [50], [51], [52], [53], [54], [55], [56], [57],
[58, pp. 60], [59]; and allow users to integrate their own
implementations of emotion theories [60], [61].

• Natural Language Processing CMEs (Systems 19) read,
decipher, comprehend, and analyze human language,
focusing on affective content [62].

• Cognitive Architectures (Systems 20–22) implement the-
ories concerned with the components of the mind and
interactions between them [63], [64], [65].

• Scientific Research CMEs (Systems 23–27) explore aspects
of affect or affective system design. They are typically
stricter about the system’s behaviors, as they aim to
test an affective theory [66], [67] or replicate observed
affective phenomena [68], [69], [70].

• Military and Emergency Training CMEs (Systems 28–34)
help train personnel for emotionally-charged scenarios
in consequence-free environments [71], [72], [73], [74],
or run simulations where emotion is a factor [75], [76],
[77].

• CMEs for Soft Skills Training (Systems 35–39) help train
life skills that can be difficult to hone with traditional
techniques, such as emotional intelligence [78, pp. 153],
problem solving under pressure [79], empathy [80],
interview skills [81], healthy eating habits, and respon-
sibility for pets [82].

• Virtual Social Agents with CMEs (Systems 40–48) have a
virtual embodiment, interacting with users in a conver-
sational capacity. They focus on: believability [83], [84],
[85], [86]; improving interface usability [87], [88], [89],
[90]; or both [78, pp. 158].

• CMEs for Social Robots (Systems 49–56) are different
from virtual assistants because of a robot’s physical
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TABLE 2
Documented Application Domains

Domain Systems

Multi-Purpose

1) Affective Reasoner (AffectR), 2) Cathexis, 3) Emotion Model (EmMod), 4) FLAME,
5) SCREAM, 6) MAMID, 7) TABASCO, 8) WASABI, 9) Maggie, 10) AKR Scheme, 11) General
Virtual Human (GVH), 12) ParleE, 13) Interdependent Model of Personality, Motivations,
Emotion, and Mood (IM-PMEB), 14) GenIA3, 15) InFra, 16) FAtiMA Modular (FAtiMA-M),
17) Hybrid Model of Emotion-Eliciting Conditions (HybridC), 18) GEmA

Natural Language Processing 19) SOM
Cognitive Architecture 20) Soar, 21) LIDA, 22) CLARION
Scientific Research 23) ACRES, 24) EMA, 25) Will, 26) ELSA, 27) GAMA-E,

Military and Emergency Training 28) Émile, 29) EMOTION, 30) HumDPM-E, 31) JBdiEmo, 32) DETT, 33) EP-BDI,
34) MicroCrowd

Soft Skills Training 35) Puppet, 36) CBI, 37) FAtiMA, 38) TARDIS, 39) PUMAGOTCHI,

Virtual Social Agents 40) Greta, 41) ALMA, 42) Eva, 43) PPAD-Algorithm (PPAD-Algo), 44) Peedy the Parrot,
45) ERDAMS, 46) TEATIME, 47) Mobile Medical Tutor (MMT), 48) Presence

Social Robots
49) Partially Observable Markov Decision Process for Cognitive Appraisal (POMDP-CA),
50) iPhonoid, 51) Ethical Emotion Generation System (EEGS), 52) Plutchik’s Wheel of
Emotions Inspired (PWE-I), 53) Kismet, 54) Roboceptionist (R-Cept), 55) GRACE, 56) TAME

Art and Entertainment

57) Artificial Emotion Engine™ (AEE), 58) FeelMe, 59) Socioemotional State (SocioEmo),
60) The Soul, 61) GAMYGDALA, 62) Mob Simulation (MobSim), 63) Artificial Psychosocial
Network (APF), 64) MEXICA, 65) Narrative Planning with Emotions (NPE), 66) Em/Oz, 67)
S3A

embodiment [91, pp. 120]. These CMEs aim to human-
ize robots and improve human-robot interactions by
adding a social dimension to them [92], [93], [94], [95,
pp. 209]—sometimes over extended time frames [91,
pp. 122–124], [96]—and to provide companionship [97],
[98].

• CMEs for Art and Entertainment (Systems 57–67) are of-
ten used for improving agent believability, changing the
focus from strict adherence to psychological validity to
interesting and entertaining behaviors. However, agent
behaviors must remain plausible to be effective [99,
p. 216–217]. There are CMEs for: developer tools [100],
[101], [102], [103], [104], [105], [106]; narrative plan-
ning [107], [108]; and agent architectures [109, pp. 31],
[110].

4 SURVEY

We document the following tasks performed by CMEs:
• Emotion Representation (Table 3): CMEs might use a

theory to specify what kinds of emotion it supports.
Although several CMEs tend to use the same theory to
both represent and elicit emotion, these are examined
separately because differences might indicate other as-
pects of the theory relevant to CME design.

• Emotion Elicitation (Table 4): Since there are emotion
theories that do not, or vaguely, describe the process of
emotion generation, this use is separated from emotion
representation to clarify the difference.

• Emotion Expression (Table 5): We examine affective the-
ories selected for expression separately because they
are distinct tasks. CMEs that do both generation and
expression might use separate theories for each task or
the same combination of theories for both.

Eight CMEs (i.e. EmMod (3), WASABI (8), FAtiMA-M
(16), HybridC (17), CLARION (22), Greta (40), Presence
(48), GRACE (55)) do not implement one or more theories,
but instead use them as design guides. These also reveal

decision rationale, so we make note of this. When a CME
can be programmed with a user’s choice of theories (i.e.
GenIA3 (14), InFra (15), FAtiMA-M (16), FeelMe (58)), we
examine its default implementation.

4.1 Emotion Representation

Twenty-eight CMEs appear to use the same theory to repre-
sent and elicit emotion, with the decision driven by elicita-
tion requirements (marked with a † in Table 3). The others
make representation choices independently of elicitation or
appear to start with a representation and build an elicitation
process from it (see Section 4.2).

Four CMEs reference Plu. for emotion representation be-
cause of its ability to “create” new emotions as combinations
of its emotion categories (i.e. InFra (15) [57, pp. 35]4, Hy-
bridC (17) alongside Iz. [58, pp. 63], SOM (19) [62, pp. 217–
218], PWE-I (52)). PWE-I also uses Plu.’s emotion structure
which can be implemented as a 2D space, affording emotion
dynamics and interactions while also using its emotion
categories [95, pp. 210–211].

Kismet (53) uses a dimensional space that includes V-
A to combine disparate information sources and unify the
emotion elicitation process, internal representations, and
facial expression generation [91, pp. 133, 148, 151]. However,
it also found that a third dimension, stance, was necessary to
prevent accidental activation of emotions that are similar in
the simpler 2D space [91, pp. 139–140]. PAD, a 3D space,
appears in eleven CMEs for emotion representation as a
common space to define elicitation and expression mech-
anisms, as well as their interactions. FeelMe (58) uses PAD
because “[it] argues that any emotion can be expressed in
terms of values on these three dimensions, and provides
extensive evidence for this claim...makes his three dimen-
sions suitable for a computational approach. Second, since
the PAD scales are validated for both emotional-states and

4. Inferred from InFra’s (15) design goals [57, pp. 27].
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TABLE 3
Theories Used for Emotion Representation

Iz. Ek. Plu. V-A PAD Frj. Laz. Sch. Ros. OCC S&K O&JL Slo. Dam. LD

1 AffectR† – – – – – – – – – r – – – – –
2 Cathexis R R – – – – – – – – – R – – –
3 EmMod – R – – – – – – – – – R – – –
4 FLAME† – – – – – – – – r r – – – – –
5 SCREAM† – – – – – – – – – r – – – – –
6 MAMID† – – – r – – – r – – r – – – –
7 TABASCO† – – – – – – – – – – r – – – –
8 WASABI – R r – R – – – – r – – r R R
9 Maggie – – – – – – – – – r1 – – – – –
10 AKR – r – – – r – r r r – – – – –
11 GVH – R – – – – – – – r – – – – –
12 ParleE† – – – – – – – – R (4) R – – – – –
13 IM-PMEB – – – – r (41) – – – – r – – – – –
14 GenIA3 – – – – r (41) – – – – r (24, 41) – – – – –
15 InFra – – r – – – – – – – – – – – –
16 FAtiMA-M† – – – – – – – – – R (37) – – – – –
17 HybridC R R R – – – – – – – – r – – –
18 GEmA† – – – – – – – – – R – – – – –
19 SOM – – R – – – – – – – – – – – –
20 Soar† – – – – – – – r2 – – – – – – –
21 LIDA† – – – – – – – r2 – – – – – – –
22 CLARION† – – – – – – – r – – – – – – –
23 ACRES† – – – – – R – – – – – – – – –
24 EMA† – – – – – – – – – r (1) – – – – –
25 Will† – – – – – R – – – – – – – – –
26 ELSA† – – – – – – – R – – – – – – –
27 GAMA-E – – – – – – – – – r – – – – –

28 Émile† – – – – – – – – – r (1) – – – – –
29 EMOTION – – – – – – – – – r (11)3 – – – – –
30 HumDPM-E† – – – – – – – r – – – – – – –
31 JBdiEmo† – – – – – – – – – r4 – – – – –
32 DETT† – – – – – – – – – r – – – – –
33 EP-BDI – – – – – – – – – r1 – – – – –
34 MicroCrowd† – – – – – – – – – r – – – – –
35 Puppet – R – – – – – – – R – – – – –
36 CBI† – – – – – – R – – – – – – – –
37 FAtiMA† – – – – – – – – – r (24, 67) – – – – –
38 TARDIS – – – – r (41, 59) – – – – r – – – – –
39 PUMAGOTCHI† – – – – – – – – – r – – – – –
40 Greta – r – – – – – – – r – – – – –
41 ALMA – – – – R – – – – r – – – – –
42 Eva – – – – r (41) – – – – r1 – – – – –
43 PPAD-Algo – – – – R – – – – r (41) – – – – –
44 Peedy – – – R – – – – – – – – – – –
45 ERDAMS – – – – – – – – – R – – – – –
46 TEATIME – – – – – – – – r – – – – – –
47 MMT† – – – – – – – – – r – – – – –
48 Presence – – – – – – – – – R – – – – –
49 POMDP-CA† – – – – – – – – R – – – – – –
50 iPhonoid – – – – r – – – – – – – – – –
51 EEGS† – – – – – – – – – r – – – – –
52 PWE-I – – R – – – – – – – – – – – –
53 Kismet R R R R5 – – – – – – – – – – –

Continued on next page
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TABLE 3
(Continued.) Theories Used for Emotion Representation

Iz. Ek. Plu. V-A PAD Frj. Laz. Sch. Ros. OCC S&K O&JL Slo. Dam. LD

54 R-Cept – r – – – – – – – – – – – – –
55 GRACE† – – – – – – – r – r – – – – –
56 TAME – R – – – – – – – – – – – – –

57 AEE – r – – – – – – – – – – – – –
58 FeelMe – – – – R – – – – – – – – – –
59 SocioEmo – – – – r (41) – – – – R1 (12) – – – – –
60 The Soul – – – – R – – – – r – – – – –
61 GAMYGDALA – – – – R – – – – R – – – – –
62 MobSim – – – – R – – – – R – – – – –
63 APF – – – – – – – – – r4 (59) – – – – –
64 MEXICA – – – – – – – – – r – – – – –
65 NPE – – – – – – – – – r – – – – –
66 Em/Oz – – – – – – – – – R – – – – –
67 S3A† – – – – – – – – – r – – – – –

R: Reasons for choosing the theory are clear; r: Reasons are unclear; (#): System borrowed from/is influenced by System #
† Used as a consequence of theories chosen for emotion elicitation (Section 4.2).
1 Based on [35, pp. 193], a simplified model developed by Ortony for believable “artifacts” [85, pp. 23], [48, pp. 62], [102, pp. 285].
2 Not yet implemented [111, pp. 271], [64, pp. 26].
3 Builds on [112, pp. 2], a successor of GVH (11).
4 Uses the OCCr model [74, pp. 195, 197], [106, pp. 702] a reinterpretation of the OCC model that aims to clarify the model’s logical structure and

address ambiguities [113, pp. 1].
5 Also uses a stance dimension to measure the approachability of a stimulus [91, pp. 133].

traits, they provide a useful basis for a computational frame-
work that consistently integrates states and traits...provides
an extensive list of emotional labels for points in the PAD
space” [101, pp. 212]. The Soul (60) uses PAD because it is
“[a] simple yet powerful model for representing emotional
reactions...”, “... is able to represent a broad range of emo-
tions. It can be compared to creating a whole spectrum of
colors using only red, green and blue”, and “...it uses only
three axes, which furthermore are almost orthogonal to each
other, as we are used to, for example, in 3D space” [103,
pp. 338–339]. WASABI (8) uses PAD because it felt that
“...three dimensions are necessary and sufficient to capture
the main elements of an emotion’s connotative meaning—
at least in case of simpler emotions such as primary or
basic ones” [15, pp. 58]. A dimensional space also affords
numerical measurements and calculations so that emotions
and other types of affect can influence each other and
another view of the emotion state [15, pp. 89, 97].

Eleven of the CMEs using PAD pair it with OCC for emo-
tion representation. GAMYGDALA (61) starts with OCC be-
cause it is “...a well-known and accepted theory of emotions,
it is a componential model of emotion that fits the needs of a
computational framework, components are generic enough
to allow for a wide set of emotions, it accounts for both
internal emotions and social relationships which in games
are quite important, and most importantly many computa-
tional models have been built on it”, combining it with PAD
because it “...complements the OCC model...” [104, pp. 33,
37]. Five CMEs reference ALMA (41) for the combination of
OCC and PAD [56, pp. 68], [60, pp. 5:17–5:18], [81, pp. 5],
[85, pp. 24], [86, pp. 216–217, 224], [102, pp. 289], [103,
pp. 340], [105, pp. 2146–2148]. ALMA maps OCC emotion
categories to points in PAD space to afford interactions with

other types of affect [84, pp. 31], and MobSim (62) found
that using PAD as an intermediary representation between
elicitation and expression prevents “erratic behaviors” due
to rapid changes in emotion intensity [105, pp. 2151–2152].
APF (63) does not reference PAD to accompany its use of
OCC, but does create a dimensional space using Multidi-
mensional Scaling (MDS) [106, pp. 698–699].

Representing emotions with OCC does appear to be
connected to how CMEs elicit emotions, perhaps by limiting
which categories a CME includes due to the needs of the
domain (i.e. Maggie (9) [48, pp. 62], GAMA-E (27) [70,
pp. 94], EMOTION (29) [72, pp. 2], TARDIS (38) [81, pp. 2],
MMT (47) [90, pp. 9844], GRACE (55) [97, pp. 137–139], NPE
(65) [108, pp. 118]), but there might be other reasons too. For
example, Puppet (35) and Presence (48) use OCC because
it is “...readily amenable to the intentional stance, and so
ideally suited to the task of creating concrete representa-
tions/models of...emotions with which to enhance the illu-
sion of believability in computer characters.” [78, pp. 151].
WASABI (8) requires an emotion representation that de-
pends on cognition (“secondary emotions”) because it “...af-
fords a more complex interconnection of the agent’s emotion
dynamics and its cognitive reasoning abilities” [15, pp. 93].
It uses OCC for this, choosing a subset of emotion categories
that rely on past events and future expectations [15, pp. 87,
100]. WASABI makes a clear distinction between cognitive
and noncognitive-dependent emotions, choosing simpler
emotion representations from other theories, even though
they are defined in OCC: Fear as proposed by LD due to its
work on animal brain studies [15, pp. 47, 87]; and Plu. to
define Anger as a reactive response tendency [15, pp. 85].

CMEs also use OCC to represent emotion because it:
distinguishes emotions about the self and about others
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TABLE 4
Theories Used for Emotion Elicitation

Iz. V-A PAD Frj. Laz. Sch. Ros. OCC S&K O&JL Slo. Dam. LD

1 AffectR – – – – – – – e – – – – –
2 Cathexis e – – – – – – – – – – E E
3 EmMod – – – – – – – e – – – e –
4 FLAME – – – – – – e e – – – – e
5 SCREAM – – – – – – – e (66) – – – – –
6 MAMID – e – – – e – – e – – – –
7 TABASCO – – – e – e – – e – – – –
8 WASABI – – – – – – – e – – e E E
9 Maggie – – – – E – – E1 – – – – –
10 AKR‡ – – – e – e e e – – – – –
11 GVH – – – – – – – e – – – – –
12 ParleE – – – – – – E E (4, 66) – e – – –
13 IM-PMEB – – – – – – – e – – – – –

14 GenIA3 – – – – – – – e (24, 41,
45) – – – – –

15 InFra – – – – – e – e (4) – – – – –
16 FAtiMA-M – – – – e (37) E – E (37) – – – – –
17 HybridC – – – – – E E E – – – – –
18 GEmA – – – – – – – E – – – – –
20 Soar – – – – – e2 – – – – – – –
21 LIDA – – – – – e2 – – – – – – –
22 CLARION – – – – – e – – – – – – –
23 ACRES – – – E – – – – – – – – –
24 EMA – – – – e – – e (1, 28) – – – – –
25 Will – – – E – – – – – – – – –
26 ELSA – – – – – E – – – – – – –
27 GAMA-E – – – – – – – e – – – – –

28 Émile – – – – E2 – – e (1, 66) – e e – –
29 EMOTION – – – – – – – e (11)3 – – – – –
30 HumDPM-E – – – – – e – – – – – – –
31 JBdiEmo – – – – – – – e4 – – – – –
32 DETT – – – – – – – e – – – – –
33 EP-BDI – – – – – – – e1 – – – – –
34 MicroCrowd – – – – – – – E – – – – –
35 Puppet – – – – – – – E – – – – –
36 CBI – – – – E – – – – – – – –
37 FAtiMA – e – – e (24) – – e (24, 67) – – – – –
38 TARDIS – – – – – – – e – – – – –
39 PUMAGOTCHI – – – – – – – e – – – – –
40 Greta‡ – – – – – – – e – e – – –
41 ALMA – – – – – – – e – – – – –
42 Eva – – – – – – – e1 – – – – –
43 PPAD-Algo – – E – – – – e (41) – – – – –
45 ERDAMS – – – – – E e E (1, 66) – – – – –
46 TEATIME‡ – – – E – – E – – – – – –
47 MMT – – – – – – – e – – – – –
48 Presence – – – e – – – E – – e e –
49 POMDP-CA – – – – – – E – – – – – –
50 iPhonoid – – – – – – – e – – – – –
51 EEGS – – – – – e – e E – – – –
53 Kismet – – – – – – – – – – – E –
55 GRACE – – – – – e – e – – – – –
58 FeelMe – – – – – e – – e – – – –

Continued on next page
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TABLE 4
(Continued.) Theories Used for Emotion Elicitation

Iz. V-A PAD Frj. Laz. Sch. Ros. OCC S&K O&JL Slo. Dam. LD

59 SocioEmo – – – – – – – E (28, 66) – – – – –
60 The Soul‡ – – – – – – – e (41) – – – – –
61 GAMYGDALA – – – – – – – E (66) – – – – –
62 MobSim – – – – – – – E5 – – – – –
63 APF – – – – – – – e4 (59) – – – – –
64 MEXICA – – – – – – – e – – – – –
65 NPE – – – – – – – e – – – – –
66 Em/Oz – – – – – – – E – – – – –
67 S3A – – – E – – – e – – – – –

E: Reasons for choosing the theory are clear; e: Reasons are unclear; (#): System borrowed from/is influenced by System #
‡ Used as a consequence of theories chosen for emotion representation (Section 4.1).
1 Based on [35, pp. 193], a simplified model developed by Ortony for believable “artifacts” [85, pp. 23], [48, pp. 62], [102, pp. 285].
2 Not yet implemented [111, pp. 271], [64, pp. 26], [71, pp. 331].
3 Builds on [112, pp. 2], a successor of GVH (11).
4 Uses the OCCr model [74, pp. 195, 197] a reinterpretation of the OCC model that aims to clarify the model’s logical structure and address

ambiguities [113, pp. 1].
5 Process derived from [114].

TABLE 5
Theories Used for Emotion Expression

Iz. Ek. Plu. V-A PAD Frj. Laz. Ros. OCC S&K Slo. Dam. LD

1 AffectR – – – – – – – – x1 – – – –
2 Cathexis – – – – – – – – – – – x –
3 EmMod – x – – – – – – – – – x –
5 SCREAM – x – – – – – – x2 – – – –
7 TABASCO – – – – – X x – – – – – –
8 WASABI – X – – – – – – – – – – –

10 AKR – x – – – x – – – – – – –
11 GVH – X – – – – – – – – – – –
12 ParleE X X – – – – – – – – – – –
14 GenIA3 – – – – – – x (24) – x2 – – – –
15 InFra – – – – – – – – – – – – x
20 Soar – – – X – – – – – – – – –
22 CLARION – – – – – – x – – – – – –
23 ACRES – – – – – X – – – – – – –
24 EMA – – – – – x x – – x – – –
25 Will – – – – – X – – – – – – –
28 Émile – – – – – – – – – – – x –
35 Puppet – X – – – – – – – – – – –
36 CBI – – – – – – X – – – – – –
37 FAtiMA – – – – – – x (36) – – – x – –
40 Greta – X – – – – – – – – – – –
46 TEATIME – – – – – – – X – – – – –
48 Presence – – – X – – – – X – – – –
50 iPhonoid – x – – – – – – – – – – –
53 Kismet X x X X3 – – – – – – – – –
55 GRACE – – – – – – x – – – – – –
60 The Soul – X – – X – – – – – – – –
66 Em/Oz – – – – – – – – X1 – – – –
67 S3A – – – – – – – – X (66) – – – –

X: Reasons for choosing the theory are clear; x: Reasons are unclear; (#): System borrowed from/is influenced by System #
1 Based on an unpublished work which AffectR describes [46, pp. 50] and Em/Oz duplicates and expands on [109, pp. 104].
2 Based on [35, pp. 193, 198], a simplified model developed by Ortony for believable “artifacts” [51, pp. 234], [60, pp. 5:5].
3 Also uses a stance dimension to measure the approachability of a stimulus [91, pp. 133, 140].
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(“empathetic emotions”) necessary for some conversational
agents like Greta (40) [83, pp. 94, 111]5, Eva (42) [85, pp. 21,
23], and ERDAMS (45) [88, pp. 412], social simulations like
GAMA-E (27) [70, pp. 94], EP-BDI (33) [76, pp. 425–426], and
MicroCrowd (34) [77, pp. 91], and narrative planners like
MEXICA (64) [107, pp. 90] and NPE (65) [108, pp. 118]; rep-
resents emotion as both categories and classes of triggering
conditions (i.e. PUMAGOTCHI (39) [82, pp. 64], SocioEmo
(59) [102, pp. 282, 285]); and its hierarchical organization
of emotion categories (APF (63) [106, pp. 703], Em/Oz
(66) [109, pp. 73]).

Six CMEs that aim to express emotions via facial expres-
sions (see Section 4.3) chose an emotion representation to
ensure a smooth connection between them. Ek. emotion cat-
egories appear for this, as in TAME (56) “...in part because
these basic emotions have universal, well-defined facial
expressions, are straightforwardly elicited, and would be
expected, perhaps subconsciously, on a humanoid’s face, as
appearance does affect expectations” [98, pp. 211] and AEE
(57) [100]. It is possible to generate expressions from affec-
tive dimensions, but these might be more difficult than dis-
tinct categories such as those provided by Ek. [96, pp. 324].
GVH (11) uses the OCC categories to define emotions,
but reorganizes and expands them into the six categories
defined by Ek. which “...enables us to handle relatively
less number of emotional states still retaining completeness
necessary for expressive conversation” [54, pp. 108–109].
Puppet (35) chose a subset of OCC emotions to match Ek.
facial expressions due to evidence of the associated emo-
tions’ universality and distinctive facial expressions which
children can recognize [78, pp. 155], whereas Greta (40) also
cites Ek. and OCC for their representation but adds facial
expressions to match the possible emotion representation
states [83, pp. 91]. Representations based on categories from
Ek., Iz., Plu., and/or O & JL have also been cited for reasons
such as: evidence of universality and facial expressions [49,
pp. 71]; “...they are easy to explain and understand” [50,
pp. 65]; their association with evolutionary, cross-species,
and social functions [91, pp. 129]; and their connection to
emotions that are hardwired and do not require cognitive
processing (“primary emotions” in WASABI (8) [15, pp. 84,
100], HybridC (17) [58, pp. 63–64]).

Three CMEs appear to choose their emotion represen-
tation before their elicitation methods because they align
with the CMEs’ goals. Peedy (44) represents emotion with
V-A because it “...corresponds more directly to the univer-
sal responses...that people have to the events that affect
them” [87, pp. 199–200]. TEATIME (46) aims to strongly con-
nect emotion to speech acts, stating that “...emotions cannot
be reduced to a label or a vector: these are only a description
of the state of the individual”, and therefore focuses on
“...action tendency...defined as the will to establish, modify,
or maintain a particular relationship between the person
and a stimulus” as defined by Frj. [89, pp. 144, 145–150].
This led it to draw from both Frj. and Ros., which emphasize
action tendencies in their theories, to represent emotion. In
the case of AKR (10), part of its goal is to define a taxonomy
of emotion and other types of affect [53, pp. 594, 596–597,
599–600, 606]. This lead it to pull from a range of emotion

5. Inferred from Greta’s example [83, pp. 84].

theories to represent emotion: Ek., presumably to connect
to facial expressions; Sch., Ros., and OCC for appraisal vari-
ables, although Ros. is presumably for representing Surprise;
and Frj. for action tendencies.

4.2 Emotion Elicitation

Three CMEs appear to choose theories for emotion elicita-
tion based on their choice for representation (marked with a
‡ in Table 4) and six others elicit emotion independently
of a theory with methods such as affine mapping and
fuzzy inference mechanisms (SOM (19) [62, pp. 219, 244]),
Bayesian Networks (Peedy (44) [87, pp. 204]), hard-coded
values (R-Cept (54) [96, pp. 324]), and/or signal processing-
based approaches (TAME (56) [98, pp. 211], PWE-I (52) [95,
pp. 211–213], AEE (57) [100]). The rest ground elicitation
methods directly in emotion theories. Methods can be
broadly grouped into cognitive and noncognitive elicitation
and a CME need not be limited to one type.

None of the CMEs implement noncognitive elicitation
alone, instead realizing it as a mechanism or process that
complements cognitive elicitation. One CME, Kismet (53),
uses Dam. alone to create a “mixed” elicitation system [91,
pp. 133–134]). Six CMEs use multiple, coexisting theories
for this purpose. TABASCO (7) references Sch. and S & K
to create a multi-layer appraisal system which has different
appraisal mechanisms for different types of information [52,
pp. 265–266, 268–269]. It also applies this to a Frj.-based
monitor which ensures that actions influence appraisals. The
five remaining CMEs reference at least one of Slo., Dam.,
and LD to define a “mixed” elicitation system. Presence (48)
differentiates cognitive and noncognitive emotion processes
using Slo. and Dam. so that it aligns with recent affec-
tive computing research [78, pp. 160–161]. It implements
noncognitive emotions using heuristics and combines Frj.’s
process with OCC in a BDI model for cognitive emotion
elicitation. FLAME (4) uses LD for learning noncognitive,
conditioned behavior and Ros. and OCC for cognitive ap-
praisal [47, pp. 227–228, 237–238]. Cathexis (2) also uses
LD for noncognitive behavior, this time combined with
Dam. for cognitive, memory-driven emotion elicitation [49,
pp. 71–72]. It references Iz. to differentiate between cognitive
and noncognitive emotion elicitors.

WASABI (8) references both OCC and Dam. for the
division of its cognitive layer into a reactive and reasoning
layer to differentiate between cognitive and noncognitive
elicitation [15, pp. 50, 54, 84, 87, 90–92, 97–98, 102]. WASABI
drew assumptions about Dam.’s connection between mem-
ories and cognitive elicitation such that it could be formal-
ized. In a separate emotion module, it uses Slo. to define
a dynamics system that accepts valenced pulses as inputs
and creates an “alarm” signal that is translated into PAD as
a primary emotion encoded by pleasure and arousal values.
WASABI uses OCC for cognitive emotion elicitation because
it requires high-level reasoning, but manually codes their
intensity values [15, pp. 95, 100].

The other 51 CMEs choose to focus exclusively on
cognitive elicitation. Sch. appears in the three cognitive
architectures [111, pp. 272–273, 277–278], [65, pp. 9, 11],
chosen—at least in part—for its focus on the cognitive
contents of emotion [64, pp. 26–27]. ELSA (26) chose Sch.
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due to its dynamic systems view and focus on emotion
as emergent phenomena of time-dependent, componential
changes rather than events with specific labels [67, pp. 99–
102, 143]. HumDPM-E (30) uses Sch. to generate emotion
patterns such that each possible emotion type is assigned a
value [73, pp. 74, 76]. This allows HumDPM-E to define
different agents based on their “susceptibility” to differ-
ent emotions. MAMID (6) uses Sch., in combination with
S & K, for its domain independent appraisal variables,
multiple levels of resolution, multi-stage appraisals, and—
potentially—because they account for some effects of emo-
tion on cognition [12, pp. 134, 136]. MAMID also draws from
V-A for part of its emotion intensity specification and to
serve as another perspective on the emotion state. FeelMe
(58) is also based on a combination of Sch. and S & K to
enable a scalable design with modular components [101,
pp. 210–211, 213]. It shows that this structure can be com-
bined with dimensions from other theories, such as PAD.
Although it also draws from Sch. for emotion elicitation,
EEGS (51) creates a parallel appraisal process as in S & K:
“The rationale behind this is that human brain is multi-
processing and several evaluations occur simultaneously.
This is the reason EEGS uses multi-threading approach in
order to represent the true mechanism of emotion genera-
tion that occurs in humans” [94, pp. 236]. FAtiMA-M (16),
although it implements OCC as its default, generalized its
design requirements so that it could represent Sch., “...one
of the most complex Appraisal Theories” [61, pp. 45].

Four CMEs choose theories because they provide func-
tionality central to their design, such as CBI’s (36) use of
Laz. for its integration of coping in appraisal [79, pp. 301–
302, 306]. ACRES (23) and Will (25) chose their underlying
theory—Frj.—because their aim is to implement that theory
as a computational system [66, pp. 247], [68, pp. 138, 151–
152]. POMDP-CA (49) uses Ros., not for its functionality, but
because “[i]t has concrete definitions of criteria of cognitive
appraisal and a structure that is amenable to computational
implementation” [92, pp. 268].

Twenty-six CMEs use OCC alone to define rules and/or
conditions for emotion elicitation, both independently of an
architecture [51, pp. 230], [54, pp. 109, 112], [56, pp. 68],
[59], [72, pp. 4–5], [81, pp. 4], [82, pp.63], [84, pp. 33], [85,
pp. 23], [90, pp. 9841], [93, pp. 217, 220], [104, pp. 37–39],
[106, pp. 698, 702], [107, pp. 90], [108, pp. 117, 121] or
integrated into a Belief-Desire-Intention (BDI) design [60,
pp. 5:2, 5:4–5:5, 5:12, 5:17–5:18], [70, pp. 92], [75, pp. 993–
994], [76, pp. 424], [77, pp. 90], [78, pp. 153–154], [83, pp. 88,
94–95, 97], [88, pp. 417]. The reason for choosing OCC is not
always clear, but at least four reference its computational
tractability [55, pp. 135–136], [58, pp. 66], [77, pp. 89] and/or
prevalence in affective computing [104, pp. 37]. Em/Oz
(66) is explicit in its reasoning, stating that it chose OCC
because it was “...designed to be implemented computa-
tionally...reasonably simple to understand...”, and because
Em/Oz’s users “...will not have much formal psychology
training...” [109, pp. 28, 52–54, 59–60]. The emphasis on
computational tractability and intuitiveness motivated other
versions of OCC (e.g. [35]) which appear in CMEs [48,
pp. 62], [74, pp. 195, 197]. MobSim (62) claims that OCC
allows one to “...formally define the rules that determine
an agent’s evaluation of its surrounding events and rela-

tionships with other agents, [providing] a suitable basis for
crowd simulation applications” and uses [114] to aid in its
mechanization of OCC [105, pp. 2149–2150]. SocioEmo (59)
uses the OCC version in [35], partially because “[g]ame
developers are usually not specialists of AI [Artificial In-
telligence] or cognitive psychology. This guided us toward
models which are relatively simple to use” [102, pp. 282,
285]. GEmA (18) uses OCC for “...events and actions assess-
ment [because] it includes comprehensive local and global
variables to compute intensity of emotions and methods for
[assessing] events and actions.” [59, pp. 2642]. AffectR (1) is
less clear, but its focus on reasoning about an agent’s emotion
might be the motivation [46, pp. 27, 30]. Both AffectR and
Em/Oz have influenced later CMEs, such as ParleE (12) [55,
pp. 117–125], EMA (24) [69, pp. 282–283, 285], Émile (28) [71,
pp. 326–329], and ERDAMS (45) [88, pp. 421–422].

Fifteen CMEs also use OCC for emotion elicitation but
combine it with other theories for their unique strengths,
such as:

• Emotion intensity functions based on a PAD vector
space (PPAD-Algo (43) [86, pp. 217, 223–224]), single
dimensions like arousal (FAtiMA (37) [80, pp. 131]), and
explicit plan representations in Slo. and/or O & JL
(ParleE (12) [55, pp. 117–125], Émile (28) [71, pp. 328])

• Ros. for defining eliciting conditions for Surprise (Par-
leE (12) [55, pp. 118–119, 135–136], HybridC (17) [58,
pp. 66]) or Anger (ERDAMS (45 [88, pp. 417]))

• Appraisal variables from Sch. (InFra (15) [57, pp. 30, 32],
HybridC (17) [58, pp. 66], ERDAMS (45) [88, pp. 416],
EEGS (51) [115, pp. 214–216], GRACE (55) [97, pp. 137–
138])

• Elicitation process from Frj. because it “...complements
the OCC model” (S3A (67) [110, pp. 48])

• Laz. process (FAtiMA-M (16) [61, pp. 44, 46–48], EMA
(24) [69, pp. 272]), coping (Émile (28) [71, pp. 331],
FAtiMA (37) [80, pp. 130–134]), or emotion themes
(Maggie (9) [48, pp. 60]) which are integrated into
emotion elicitation

• Dam. to define a deliberative architecture layer that
relies on cognition (EmMod (3) [50, pp. 63])

• O & JL to frame cognition as a knowledge transfor-
mation process to drive cognitive appraisals (Greta
(40) [83, pp. 94])

4.3 Emotion Expression

Twenty-nine emotion-generating CMEs also specify how the
emotion state is expressed. Two CMEs draw from emotion
theories to define an interface between internal emotion
states and external behavior systems (e.g. InFra (15) uses
LD to define an emotion-to-expression interface [57, pp. 27])
and Presence (48) uses OCC emotion types and V-A values
to annotate actions such as speech and body gesture gen-
eration [78, pp. 161–162]). One CME relates their potential
emotions to the functions they serve (Kismet (53) references
Iz. and Plu. for this [91, pp. 129]), but eleven reference action
tendencies—“...readiness for different actions having the
same intent” and that “...account for behavior flexibility” [8,
pp. 70–71].

CMEs use four emotion theories to define action ten-
dencies (e.g. Laz. in FAtiMA (37) [80, pp. 131, 134], Ros. in
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TEATIME (46) [89, pp. 149–150]), the most commonly refer-
enced ones being Frj. and OCC. AKR is unclear in its choice
to use Frj. for this [53, pp. 596–597], whereas TABASCO
(7)—which uses an underlying system that is “very close to
the functionality” of Frj.—compares the action tendencies to
“flexible programs” that allow behavior variations and can
be influenced by feedback processes [52, pp. 267]. ACRES
(23) is an implementation of Frj. [66, pp. 247]. With Will as
ACRES’s successor [68, pp. 138, 146], Frj.’s use in these two
CMEs is unsurprising.

Two CMEs use a “simplified” version of OCC [51,
pp. 234], [60, pp. 5:5–5:6] that includes a hierarchy of
response tendencies grouped by type [35]. The hierarchy
might be a simplification of unpublished work intended
for the full theory, which AffectR (1) and Em/Oz (66)—
which S3A (67) builds on [110, pp. 52–53]—incorporate [46,
pp. 50–53], [109, pp. 86, 100, 104]. The hierarchy elements
are not uniquely associated with OCC emotion categories,
so the hierarchy can be implemented to allow the cate-
gorization of display mechanisms—encouraging modular
development—and assign the same behavior to different
tendencies, affording more control over emotional displays.

CMEs targeting specific domains typically specify what
types of behaviors their CMEs produce. At least nine sys-
tems intended for face-to-face interactions with people use
facial expressions to convey emotion. Ek. is often refer-
enced for this. For example, GVH (11) is concerned with
the facial representation of virtual humans and uses Ek.’s
facial expression specification because they are “...recog-
nized as universal by many facial expression and emotion
researchers” [54, pp. 108–109]. Puppet (35) chose Ek. due
to evidence of the associated emotions’ universality and
distinctive facial expressions that children can recognize [78,
pp. 155]. ParleE (12) cites the universality of Ek. and Iz.’s
given facial expressions, building a generation system on
FACS [22] [55, pp. 142–143, 146]. Although unclear, several
other CMEs also seem to cite Ek. for its work on facial
expressions [15, pp. 84, 100], [50, pp. 66], [53, pp. 596–597]6,
[116, pp. 740], potentially in connection to FACS [22] which
documents facial muscles with respect to expressions [83,
pp. 91]. Kismet (53) and The Soul (60) use Ek. to define
points in dimensional models so that facial expressions can
be procedurally generated [91, pp. 140, 143], [103, pp. 338,
340–343]. SCREAM (5) references Ek.’s rules for when emo-
tions are outwardly displayed given social and interaction
contexts (“display rules”) to regulate when their CME can
show their emotions [51, pp. 231–232].

Specific effects of emotions on behavior can also refer to
the effects that emotions have on other processes within or
directly connected to the CME. Cathexis (2), EmMod (3), and
Émile (28) reference Dam. to specify how emotion influences
decision-making and planning [49, pp. 72], [50, pp. 63], [71,
pp. 330]. EMA (24) draws from Frj. and S & K to define
attentional focus necessary for coping [69, pp. 286, 297].

CMEs tend to use Laz. when coping itself is central to the
CME’s purpose (CBI (36) [79, pp. 302, 306]) whose design
has been adopted by others (FAtiMA (37) [80, pp. 131,
134]), and because it can be implemented with a planner
when viewed as a “planful process” (TABASCO (7) [52,

6. This decision is inferred.

TABLE 6
Number of Uses of Emotion Theories

Emotion
Representation

Emotion
Elicitation

Emotion
Expression

Total

OCC 42 46 6 94
Ek. 12 – 11 23
Sch. 8 15 – 23
PAD 13 1 1 15
Frj. 3 7 5 15
Laz. 1 6 7 14
Ros. 5 7 1 13
Dam. 1 5 3 9
V-A 3 2 3 8
Plu. 6 – 1 7
S & K 2 4 1 7
Iz. 3 1 2 6
O & JL 2 3 – 5
Slo. 1 3 1 5
LD 1 3 1 5

pp. 267]). EMA (24) and GRACE (55) are unclear in their
reasons for choosing Laz. for coping [69, pp. 272, 278], [97,
pp. 136, 138]. CLARION (22) uses Laz. for coping so that
emotions can influence decision-making, goal management,
and regulatory processes [65, pp. 10, 12]. GenIA3 (14) is
more modest in its use of Laz.-based coping, allowing it
to return to a previous emotion state and/or modify the
agent’s beliefs [60, pp. 5:5–5:6]. Emotions can also influence:
learning, such as in Soar’s (20) use of V-A to define reward
signals for reinforcement learning because the dimensions
can be unified with appraisal theories [111, pp. 279–280];
and emotion-driven plan selection such as the use of Slo. in
FAtiMA (37) [80, pp. 134].

5 OBSERVATIONS FROM THE SURVEY

Surveying CMEs and the affective theories they use brought
out some commonalities. We discuss some use trends for each
theory and psychologist influences.

5.1 Use Trends
The CMEs use a variety of theories for different purposes
(Table 6). The reasons for choosing particular theories are
not always clear. However, there are clear trends in how
CMEs use affective theories. Even in CMEs without a doc-
umented choice rationale, these uses align with different
aspects of the theories. This is indicative of their strengths,
which tend to be similar within each perspective.

We use the broad categories of [4]—discrete, dimensional,
appraisal, and neurophysiologic—to organize emotion theo-
ries. Other ways are available, such as [117, pp. 280].

5.1.1 Discrete Theories
These appear when emotion “types” must be clearly distin-
guished. This reflects a strength of discrete theories, which
build a small set of emotion categories that are theorized to
have evolved via natural selection [118, p. 305]. The discrete
perspective is associated with the most empirical evidence
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of observed emotion effects to emotions [17, pp. 10]. How-
ever, discrete theories do not give many details on emotion
generation processes, so they are often combined with an-
other theory or used in hand coded designs (e.g. R-Cept
(54) [96, pp. 324]). This is due to a core assumption that
emotions are innate, hard-wired features with dedicated
neural circuitry which circumvents cognitive processing [6,
pp. 250]. There are differences in the definition of “primary”
emotions but these are not mutually exclusive [119, p. 2–3].
However, they do change which emotions are considered
“basic”. Ek. and Iz. are part of the “biologically basic” view,
which tend to focus on facial expressions as indicators of
primality, whereas Plu. is part of the “elemental” view that
seeks emotions that cannot be defined with other emotions
(i.e. “mixtures” of other emotions). Still, identifying and
labeling emotion categories helps delimit them, making it
easier to talk about them both formally and informally [10,
pp. 353], [117, pp. 286].

5.1.1.1 Izard (Iz.): Although it does not tend to
appear by itself, CMEs use Iz. to define facial expressions
along side Ek. (e.g. ParleE (12)) and “mixed” emotions and
the functional role of emotions with Plu. (e.g. HybridC (17)
and Kismet (53)). This is likely because Iz. shares some of
the same assumptions with them [120, pp. 64–65, 83, 85–92,
97]. However, there could be untapped potential in Iz., such
as its differentiation between cognitive and noncognitive
emotion elicitors (e.g. Cathexis (2)).

5.1.1.2 Ekman (Ek.): This theory is common in
CMEs that express emotions via facial expressions (Sec-
tion 4.3), and often use Ek.’s emotion categories to en-
sure a one-to-one mapping from internal state to facial
configuration. This aligns with Ek.’s focus [21, pp. 1] and
the resulting FACS [22], which breaks the face down into
individual muscles and shows how they can combine into
expressions. This makes Ek. a strong candidate, potentially
“...the de facto standard for analysis and description of facial
expressions, and serves as the foundation of...the synthesis
of emotion expressions in virtual agents and robots.” [17,
pp. 4].

Ek. could be combined with: Iz. (e.g. ParleE (12)), which
shares similar views [21, pp. 3] and also has a system
for identifying facial expressions [121]; and O & JL (e.g.
Cathexis (2)) as there is deliberate overlap in their “primary”
emotion categories [39, pp. 209, 217].

5.1.1.3 Plutchik (Plu.): Plu. appears most often
when CMEs want to represent “mixed” emotions as com-
binations of emotion categories, which allows a CME to add
“more” emotion types. This is unsurprising, as Plu. “...has
one of the better developed theories of emotion mixes” [44,
pp. 113] and experiments have shown that laypeople tend
to agree on the components of emotion “mixtures” [24,
pp. 204–205]. Plu. identifies its “primary” emotions from
evidence of a finite set of adaptive behaviors that aim to
maintain internal homeostasis by acting on the environ-
ment [24, pp. 203, 215]. This effectively connects behaviors
to action tendencies [8, pp. 72] and motivations [2, pp. 13],
which can help specify an emotion’s function (e.g. WASABI
(8), Kismet (53)).

Using self-reports on the meanings of emotion words,
Plu. arranges its emotion categories on a circumplex [24,
pp. 204]. This affords the use of arbitrarily chosen axes

because they are only reference points [122, pp. 13], which
can serve as affective dimensions. The result is a 3D color
space analogy—with intensity as the third dimension—that
is familiar to computer scientists [15, pp. 21]. There is also
evidence that the circumplex can act as a common space
for different types of affect [122, pp. 30–31], which can help
visualize affective dynamics using Plu.’s color analogy (e.g.
PWE-I (52)).

5.1.2 Dimensional Theories
These appear when CMEs need a simple and effective emo-
tion model, as another perspective of emotion categories,
and/or as a common space for modeling different affective
phenomena and their interactions. The dimensional per-
spective’s strength lies in its description of affect in a simple
way—usually two or three dimensions [4, pp. 97]—where
any affective phenomena, including emotions [17, pp. 9],
can be mapped. However, the dimensions can lose informa-
tion about an emotion state if it has a higher information
resolution than their dimensions can represent [10, pp. 353],
[123, pp. 172]. This might not be appropriate for all CMEs.
Dimensional theories focus on what kind of mental states
emotions are, how to construct them, and how they fit into a
general taxonomy of mental states [6, p. 250]. Consequently,
they say little about how to generate emotions and what
their effects are [17, p. 10], making them unsuitable for
defining a complete computational model [6, p. 250].

5.1.2.1 Valence-Arousal (V-A): The valence and
arousal dimensions are the two most widely agreed on
affective dimensions [1, pp. 168] and are common in dimen-
sional theories [117, pp. 280]. They form a simple model
that captures most affective phenomena, including aspects
of emotion, in a numerical form that is computationally
efficient and can be used in emotion intensity functions (e.g.
MAMID (6)), as inputs to other CME processes (e.g. Soar
(20)), and to coordinate emotion expression modalities (e.g.
Presence (48)) and/or generation (e.g. Kismet (53)).

The ability to represent different kinds of affective in-
formation can make V-A useful for combining disparate
information sources and external behavior systems with a
single representation, helping them work in concert so that
the CME “...not only does the right thing, but also at the
right time and in the right manner” [91, pp. 151]. How-
ever, two dimensions might not be enough to distinguish
between every emotion a CME might need [91, pp. 139–
140]. This implies that V-A is only ideal for CMEs with a set
of emotions that are conceptually easy to distinguish both
as internal representations and external expressions.

5.1.2.2 Pleasure-Arousal-Dominance Space (PAD):
PAD is similar to V-A. Its pleasure dimension fills the same
role as valence, and arousal is shared by both theories. The
third dimension, dominance, distinguishes emotions such as
Anger and Fear that are otherwise indistinguishable (i.e.
have similar valence and arousal values) by quantifying how
much control one believes they have (i.e. one tends to feel
that they have low control when experiencing Fear, and high
control in Anger) [28, pp. 263–264]. The empirical nature
and ability to map emotions to three continuous dimensions
might make PAD easy to understand using parallels to RGB
color space [103, pp. 339] and “...suitable for a computa-
tional approach” [101, pp. 212].
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As with V-A, CMEs often choose PAD to specify a simple
model for representing emotion and its interactions with
other types of affect (e.g. CMEs 41, 50, 58) that can also be
used in numerical-based functions such as emotion intensity
(e.g. PPAD-Algo (43)), affective dynamics (e.g. WASABI (8)),
facial expression generation (e.g. The Soul (60)) and behav-
ior mediation (e.g. MobSim (62)), or as an alternate view of
emotion categories (e.g. WASABI (8), GAMYGDALA (61)).
PAD’s pervasiveness in CMEs suggests its usefulness for
creating a unified space for multiple types of affect and
interfacing between theories. Caution is required as sound-
ness depends on how rigorously concepts are matched.

5.1.3 Appraisal Theories

CMEs often use these theories [4, pp. 97], [124, pp. 55]. This
might be due to the theories’ ability to comprehensively
represent the complexity of emotion processes, receiving
consistent empirical support for their hypothesized mech-
anisms [117, pp. 281–282]. However, they are based on
cognition and CMEs seeking to use these theories must be
able to account for it [10, pp. 354].

Appraisal theories emphasize distinct components of
emotion, including appraisal dimensions or variables [4,
pp. 97]. Analyzing stimuli for meaning and consequences
with respect to an individual produce values for these
variables [6, pp. 250], [125, pp. 819], regardless of process
sophistication [69, pp. 273] and independent of biological
processes [126, pp. 559]. Appraisals are continuous and
change with the situation, the individual’s behaviors, and
their attempts to appraise the situation differently [127,
pp. 28]. This can account for the personal, transactional, and
temporal character of emotion with respect to a changing
environment, applied coping strategies, and continuous ap-
praisals. This makes appraisal theories of particular interest
for decision-making, action selection, facial animations, and
personality [69, pp. 274]. However, there is little empirical
data associating individual appraisal variables to expressive
behaviors or behavioral choices [17, pp. 10].

5.1.3.1 Frijda (Frj.): CMEs tend to use Frj. to explic-
itly connect emotions to action tendencies (e.g. TEATIME
(46)) and define an action-driven appraisal process (e.g.
CMEs 7, 23, 25). This aligns with Frj.’s proposal that
emotions—outputs of a continuous information processing
system—are changes in action readiness [8, pp. 453, 466].
“Action readiness” refers to motivational states which are
associated with goals rather than actions or behaviors [29,
pp. 143]. Frj.’s description of action tendencies appears to
transfer to designs that do not implement its appraisal
process (e.g. AKR (10), Presence (48)), since many of the
identified action tendencies are associated with an emotion
label [8, pp. 87–90].

The conceptualization of emotion elicitation as an infor-
mation processing system is a useful analogy and can pro-
vide the necessary mechanization framework for structure-
oriented theories like Ros. (e.g. TEATIME (46)) and OCC
(e.g. S3A (67)). It is also possible to abstract and apply
different elements independent of the broader theory, such
as implicit appraisal checks (e.g. TABASCO (7)), information
filtering (e.g. S3A (67)), and mechanisms whose behavior
changes with the system state (e.g. EMA (24), TAME (56)).

5.1.3.2 Lazarus (Laz.): CMEs tend to use Laz. to
specify coping behavior, a deliberative process whereby the
individual can suppress action tendencies and choose other
strategies to influence the current situation [128, pp. 628].
The appearance of Laz. in this context is unsurprising, as
coping plays a critical role in the theory [30, pp. 39–40]. Cop-
ing can be incorporated directly into the appraisal process as
an influencing factor (e.g. CMEs 14, 24, 36) and to plan agent
behaviors (e.g. CMEs 7, 22, 28, 55). FAtiMA (37) successfully
paired Laz. with a separately defined component for quick,
reactionary behaviors. The coping models in EMA (24),
Émile (28), and CBI (36) have been particularly influential
for other CMEs [129, pp. 353], [130].

Laz. also describes a reappraisal process to explain
the continuous and responsive nature of the emotion sys-
tem [30, pp. 134]. This is directly tied to coping which
can affect changes in an individual’s interpretation of the
environment. This concept has also appeared alone in CMEs
that reprocess information after deliberative processes like
coping (e.g. FAtiMA-M (16), FAtiMA (37)), which could
result in different emotions compared to purely reactive
systems.

Another feature of Laz. is its connection between re-
lational themes and emotions [30, pp. 122] which treats
appraisal as a comprehensive unit rather than a set of
individual dimensions. This emulates discrete categories, al-
lowing CMEs to treat each emotion separately (e.g. Maggie
(9)).

5.1.3.3 Scherer (Sch.): Sch. tends to appear where
CMEs need multi-level and/or multi-stage appraisals (e.g.
CMEs 6, 7, 58), allowing them to use different appraisal
mechanisms and/or sources of variable complexity to-
gether. These features are inherent in Sch. [13, pp. 99, 103].
Notably, the list of CMEs that use Sch. include the cognitive
architectures (e.g. CMEs 20–22). This is likely because Sch.
“...is the most elaborate appraisal theory, [and] doesn’t
necessarily make it the most suitable starting point for an
affective computing researcher” [124, pp. 58]. FAtiMA-M
(16) explicitly mentioned this complexity in their require-
ments to ensure that it could support Sch. if desired. ELSA
(26) calls itself a neural network (NN), which makes it dif-
ficult to understand [67, pp. 143–144], but aligns with NN-
based illustrations of connections and activation patterns in
Sch. [13, pp. 105].

CMEs can simplify Sch. by only using its appraisal
variables (e.g. AKR (10))—sometimes combining them with
variables from other theories like OCC (e.g. CMEs 15, 17, 45,
51)—or take inspiration from its process model to connect
emotion generation to other subsystems (e.g. GRACE (55)).
HumDPM-E (30) cleverly leverages Sch.’s “modal” emo-
tions [13, pp. 113], allowing it to produce and store different
emotions simultaneously. This suggests that some CMEs can
comfortably use pieces of Sch. independent of the complete
theory.

5.1.3.4 Roseman (Ros.): CMEs commonly use Ros.
to define Surprise as an emotion because they use other
theories—usually Sch. and/or OCC—that do not explicitly
define it (e.g. 10, 12, 17). These unions appear to be sound.
OCC agrees with Ros. that unexpectedness elicits Surprise [34,
pp. 32], and Sch.’s suddenness variable in the novelty check
appears to do a comparable evaluation [13, pp. 95]. Anger is
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an emotion that Ros. shares with OCC, but it limits its scope
to events caused by other agents, which a CME might find
more helpful (e.g. ERDAMS (45)). Ros. can also help define
action tendencies and map emotions to them (e.g. TEATIME
(46), combined with Frj.).

Choosing Ros. is partially driven by its computational
tractability. POMDP-CA (49) cites this, also noting that—of
the two theories identified in [1] for cognitive appraisal—
Ros. systematically built a model between appraisal vari-
ables and emotions from empirical studies [31, pp. 267–268]
which makes it more plausible [92, pp. 265]. The larger issue
is that Ros. does not specify an emotion generation process.
CMEs have compensated for this by using Markov Models
(e.g. POMP-CA (49) [92, pp. 267]), fuzzy logic (e.g. FLAME
(4) [47, pp. 227–228]), and combining Ros. with process-
based theories like Sch. (e.g. HybridC (17)) and Frj. (e.g.
TEATIME (46)).

5.1.3.5 Ortony, Clore, and Collins (OCC): This is
the most used [70, pp. 91], [97, pp. 136], [131, pp. 292]
and widely accepted theory in affective computing [72,
pp. 1] despite cautioning that “...we view each emotion
specification, or characterization, as a proposal rather than
as an empirically established fact.” [34, pp. 87–88] and not
being as popular in psychology [69, pp. 278].

The widespread use of OCC is partially due to its
hierarchical emotion structure and event-driven eliciting
conditions [34, pp. 18–19] (e.g. CMEs 5, 17, 18, 33, 34, 39,
47, 61–64) which feels familiar to computer scientists [15,
pp. 44], [124, pp. 57] and is more amenable to computation
than other theories [1, pp. 195], [10, pp. 362], [17, pp. 8], [34,
pp. 2, 181–182]. There has been significant strides towards
refining [114], formalizing [113], [132], and re-framing OCC
for applications like agent believability [35]. A further ben-
efit of OCC’s comparison to a computational approach is
that it can be easier to understand without a background in
psychology [102, pp. 282], [109, pp. 28]. This might make
it more “clear and convincing” [116, pp. 741] than other
appraisal theories.

OCC’s structure also shows which variables contribute
to an emotion’s intensity, proposing that it is evaluated
with a weighted function [34, pp. 69, 82]. Unfortunately, it
does not propose what those weights should be, nor the
function’s nature. CMEs have compensated by designing a
separate tool for empirically deriving intensity parameters
(e.g. ALMA (41) [133, pp. 209], The Soul (60)), translating
OCC emotion categories to a dimensional space (e.g. PPAD-
Algo (43)), defining their own functions or values from OCC
variables with no clear empirical basis (e.g. CMEs 4, 8, 9,
18, 32, 42, 45, 47, 50, 51, 61, 64, 66, 67), or not concerning
themselves with intensity at all (e.g. CMEs 1, 27, 39).

Strictly speaking, the weighted function used by these
CMEs is not an intensity function. OCC proposes that a
weighted combination of the variables leading to an emo-
tion category along the hierarchy is an emotion potential—
a higher potential means a higher chance of experiencing
that kind of emotion [34, pp. 81–82]. The difference between
an emotion threshold and this value is its intensity, which
MMT (47) incorporates [90, pp. 9844]. CMEs have also used
this difference modulate to simulate other types of affect [15,
pp. 92–93], [50, pp. 65–66], [55, pp. 119], [59, pp. 2645], [61,
pp. 48], [80, pp. 131], [83, pp. 103, 109–110], [110, pp. 51].

Ironically, OCC’s authors believe that computers cannot
have emotion but it is still useful to reason about them:
“...we do not consider it possible for computers to expe-
rience anything until and unless they are conscious. Our
suspicion is that machines are simply not the kinds of things
that can be conscious...There are many AI endeavors in
which the ability to understand and reason about emotions
or aspects of emotions could be important” [34, pp. 182].
AffectR (1) adheres to this when reasoning about another
agent’s actions [46, pp. 27]. One could also view narrative
planners (e.g. MEXICA (64), NPE (65)) as an exercise in
reasoning about character emotions. However, OCC can be
applied to emotion generation as well [1, pp. 195], also
shown by AffectR, because the process of reasoning about
emotions could be understood as reasoning about the emo-
tional significance of an event to the agent [51, pp. 230]. The
focus on reasoning makes OCC amenable to an intentional
stance, which enhances agent believability [78, pp. 151–152],
because users can “see” the agent’s thought processes.

The “fortunes of others” emotions (e.g. Happy-For) might
be unique to OCC which rely on evaluations of how someone
else feels. These are critical for empathetic agents (e.g. Greta
(40), ERDAMS (45)) and agents that model relationships
(e.g. CMEs 27, 33, 34, 42, 59, 61, 63–65). However, OCC
does not include Surprise—which is important for some
CMEs—because they believe that it is not inherently positive
or negative [34, pp. 32]. Instead, they categorize it as a
cognitive state tied to a global unexpectedness variable. CMEs
that need Surprise draw from Ros. (e.g. ParleE (12), HybridC
(17)) because it shares this hypothesis and explicitly defines
Surprise as an emotion [31, pp. 269].

A shortcoming of OCC is a lack of emotion elicitation
processes. This is a deliberate omission because OCC views
it as a general cognitive psychology problem, but stresses
the role of cognition in such processes [34, pp. 2]. CMEs
have realized OCC in plan-based systems (e.g. CMEs 12,
24, 28, 37, 64, 65), which are a step towards explainable
behaviors. They provide context for elicited emotions [71,
pp. 328], aligning with the OCC’s focus on reasoning about
emotions [34, pp. 182]. Another approach, supported by
[36], is to integrate OCC in a biologically-inspired approach
(e.g. Maggie (9), IM-PMEB (13)) or architecture (e.g. Em-
Mod (3), WASABI (8)) due to OCC’s reliance on cognition.
CME commonly use a BDI-inspired system or architecture
to account for cognitive activities (e.g. CMEs 14, 27, 31–
35, 45), but this can make the CME difficult to modify if
it is integrated too deeply into the host architecture [83,
pp. 111–112]. Other approaches include combining OCC
with process-oriented theories like Frj. (e.g. S3A (67)) or Sch.
(e.g. HybridC (17), GRACE (55)), other resources such as [1]
(e.g. AKR (10)), and fuzzy logic (e.g. CMEs 4, 15, 38, 39).
Many CMEs set their emotion model between input and
output modules to mediate their interactions (e.g. CMEs 11,
29, 37, 41, 42, 50, 59, 63). If the goal is not to create “correct”
behaviors, this strategy is sufficient if it meets the CME’s
other design goals [109, pp. 44–45].

5.1.3.6 Smith & Kirby (S & K): This theory only
seems to appear when CMEs want to integrate multiple,
parallel input sources into one unit for appraisal, which is
its distinguishing feature [11, pp. 129–130].

S & K always appears with Sch. to combine appraisal
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information from sources on multiple levels of resolution
(e.g. CMEs 6, 7, 51, 58). This might be because Sch. is
better validated [11, pp. 129] and computationally tractable.
Scherer also draws parallels between sequential check reg-
isters and S & K’s integrated appraisal [13, pp. 105, 120].
Another possibility for this pairing is a misconception that
Sch. is strictly a sequential appraisal process [94, pp. 236]
when it is not [13, pp. 100, 103].

An exception is EMA (24), which combines S & K with
Frj. to define an attention mechanism [69, pp. 286]. This is
likely because [29, pp. 149] compares its “blackboard control
structure” to S & K’s appraisal register. This suggests that
CMEs can combine S & K with other theories that have some
comparable work to the appraisal register concept.

5.1.3.7 Oatley & Johnson-Laird 7 (O & JL): CMEs
use O & JL to define what emotions they support and con-
nect emotion intensity to changes in computational plans. O
& JL typically have a supporting role for defining emotions
in CMEs with Ek. as the main theory present for defining
CME emotions (e.g. CMEs 2, 3, 17). This connection is
sound, as O & JL considered Ek. as evidence when iden-
tifying their set of basic emotions [40, pp. 57–61].

O & JL propose that there is no emotion process, arguing
that emotions are states entered at plan junctures, that
might include conflicts between different goals, agents, and
resource demands [40, pp. 22, 24–25, 31–36]. CMEs have
taken this information to define emotion intensity in relation
to an agent’s goals and plans (e.g. ParleE (12), Émile (28)).
This also frames cognition as a knowledge transformation
process, which is amenable to computation (e.g. Greta (40)).

Perhaps the most useful element of O & JL is its focus on
the social and communicative role of emotions [38, pp. 41–
42]. This has implications for multi-agent applications with
affective content because each agent is an independent
module in a larger system [40, pp. 178, 181–182]. Conversa-
tional agents might also benefit from this view, which casts
conversations as a form of mutual planning. As the field of
social affective agents progresses, O & JL could come to play
a larger role in the field.

5.1.4 Neurophysiologic Theories
Biological neural circuitry and brain structures inspire the
neurophysiologic theories of affect, which offer a grounded
view of how emotion systems might be organized and
connected to the body [4, pp. 98–99]. They tend to appear
when a CME wants to distinguish between reactive, noncog-
nitive and deliberative, cognitive emotion processes. All
three theories claim mechanisms for fast, “stupid” reactions
and slower, deliberative plans that people collectively call
“emotions” [42, pp. 230], [43, pp. 133], [44, pp. 161–165].

5.1.4.1 Sloman 8 (Slo.): Slo. conceptualizes emotion
as a product of a central information-processing system,
distinguishing between types of emotion based on their
architectural requirements [42, pp. 204, 211]. CMEs use this
distinction to specify elicitation mechanisms with varying

7. Although it does not name appraisal dimensions, O & JL talk about
evaluating events relevant to plans and goals such that changes in
achievement probability induce emotions [40, pp. 50]. Therefore, it is
grouped with the appraisal theories.

8. Since Sloman views the brain as an information processing sys-
tem [42, pp. 206–207], it is grouped with the neurophysiologic theories.

performance requirements (e.g. WASABI (8), Presence (48)).
The distinction also makes it possible to specify individual
aspects of a CME such as goal importance for emotion
intensity functions (e.g. Émile (28)) and emotion-driven plan
selection (e.g. FAtiMA (37)).

WASABI (8) explicitly models aspects of Slo. for emotion
elicitation using signal impulses that “disturb” its home-
ostatic state [15, pp. 90]. Slo. views these “disturbances”
as a kind of emotion [42, pp. 230] which could be useful
for CMEs that do not have deliberative processes. When
deliberative processes are needed, Slo. might be particularly
amenable to BDI-based CMEs because it explicitly refer-
ences “beliefs”, “desires”, and “intentions” as architectural
features [42, pp. 208].

5.1.4.2 Damasio (Dam.): Dam. proposes two emo-
tion types: innate, evolution-based primary emotions and
learned, cognition-driven secondary emotions that trigger
the primary system [43, pp. 131–139]. CMEs use this to
motivate multiple, coexisting emotion elicitation processes
(e.g. 2, 8, 48).

Two of Dam.’s features have proven useful for CMEs.
One is emotion’s influence on decision-making [43, pp. 126,
128] which can drive the design of CME behavior (e.g.
Cathexis (2), Émile (28)) and/or the design of connections
between emotion elicitation and cognitive processes (e.g.
EmMod (3)). Directly related to decision-making, the second
feature is the Somatic Marker Hypothesis (SMH) which
describes how secondary emotions are learned and con-
nected to the primary emotion system [43, pp. 137, 145, 174].
CMEs have used the SMH as-described to elicit emotions
from memories via learned associations between stimuli
and emotions (e.g. Cathexis (2)) and as a clever way to
mark different types of inputs with common information
to coordinate further functions (e.g. Kismet (53)).

Damasio posits that CMEs cannot use this theory because
of the biological connection between the mind and body [43,
pp. 249–250], suggesting that Dam. cannot be implemented
in agents without a physical body. However, there is a
version of SMH that bypasses the body [43, pp. 155–158]
which WASABI (8) uses successfully in a virtual agent [15,
pp. 50, 56].

5.1.4.3 LeDoux (LD): LD views emotions as biolog-
ical functions with different neural systems that evolution
maintained across species [44, pp. 106–107, 171]. It proposes
that each emotion has a mechanism programmed to detect
and react to innate stimuli relevant to the system’s func-
tion [44, pp. 134, 143, 161–163, 165, 175–176]. This suggests
that some emotions like Fear do not necessarily require
higher reasoning to elicit (e.g. WASABI (8)) and they could
be a direct map to behaviors (e.g. InFra (15)). This proposal
also sets the stage for LD’s work on emotional conditioning
mechanisms—specifically Fear [44, pp. 127–128]—suggests
methods for emotional learning in CMEs (e.g. FLAME (4)).

Damasio and LeDoux applaud each other’s—mutually
relevant—work [43, pp. 133], [44, pp. 250, 298]. One focuses
on the “low road” (i.e. noncognitive) and the other on the
“high road” (i.e. cognitive) which could explain their co-use
or connection in some CMEs (e.g. Cathexis (2), WASABI (8)).
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5.2 Psychologists Directly Involved in CME Design
Translating a psychological theory into a CME is diffi-
cult because it involves formalizing informal concepts and
documenting hidden assumptions [134, pp. 22–23]. CMEs
designed with the participation of the theory’s creator stand
out as being “truest” to the theory.

Frijda supervised the development of both ACRES (23)
and the Will architecture (25). ACRES is designed as a partial
test of its functionality, treating the theory as a design spec-
ification [66, pp. 237, 247]. Will—the spiritual successor of
ACRES—proposes a reasonable extension of Frj.: emotion,
moods, sentiments, and personality are related by focus
and duration [68, pp. 135–136, 138]. This is convenient for
CMEs as it shows that these affective types can share the
same underlying structure. Scherer directly influenced the
design of ELSA (26) which is particularly relevant as its
purpose is to show that Sch.—which takes an information
systems view on emotion processes [13, pp. 103]—can be
implemented and used as a research tool [67, pp. 142–
143]. Ortony provided direct supervision for AffectR (1) [46,
pp. iv] which presumably makes it the most faithful account
of OCC emotion generation processes and action tendency
hierarchy.

In other cases, theory creators acted as consultants to
CME designers [15, pp. vii], [52, pp. 281], [69, pp. 303], [71,
pp. 332], [135, pp. 89] and/or drew from other CMEs that
were developed under that creator’s guidance [71, pp. 325].
Caution must be used in evaluating their faithfulness to the
theories, as it is usually not documented what parts relied
on consultation and which did not.

6 DISCUSSION

In our examination of these CMEs, we also found design de-
cisions and trade-offs relevant to implementing theories, how
CMEs could combine theories from different perspectives, CME
realism versus efficiency, and other sources of design influence.

6.1 Implementing Theories
Implementing an affective theory is challenging. Some
theories—Frj., Sch., OCC, O & JL, and Slo.—were explicitly
designed to be computationally tractable [66, pp. 247], [117,
pp. 279], [34, pp. 181], [38, pp. 30], [136, pp. 231] while
others—like Dam. and LD—argue that their theories cannot
be computationally realized [43, pp. 249–250], [44, pp. 41,
176]. Regardless, they have been implemented. Nonetheless,
how accurately a CME adheres to a theory and/or observed
emotion phenomenon tends to be directly proportional to
how complex the CME is.

Neurophysiologic theories might be more plausible than
appraisal theories [49, pp. 72–73] and align with current
findings better [78, pp. 160]. However, they require mod-
eling parts of the brain and body, which this is neither
feasible nor desirable for many CMEs. Furthermore, the
resulting system will not necessarily be accurate due to
gaps in our understanding of anatomical structures and
functions (although complete accuracy might not be useful
to anyone [124, pp. 60]).

Appraisal theories might be best suited for CMEs as they
touch on all components and phases of emotion process-
ing [2, pp. 13]. They are also relatively easy to implement

as they are often rule-based [1, pp. 225] and built on in-
formation processing analogies [124, pp. 59]. While some
have integrated neurophysiologic aspects, this increases
their complexity. For example, empirical test of Sch. have
been relatively successful in predicting different patterns in
emotion processes [13, pp. 93, 103, 117–118] but it is very
complex and involves implementations of components like
the Autonomic Nervous System (ANS) and memory while
allowing for multiple levels of information processing. This
might be why Sch. is favored by cognitive architectures
and research CMEs like CLARION (22) and MAMID (6),
whose assumptions closely follow Sch.’s [12, pp. 136], [65,
pp. 6]. These systems purposefully sacrifice computational
efficiency for accuracy since their aim is to study emotion
phenomena. This complexity also makes them are to explain
and debug [67, pp. 143–144].

6.2 How CMEs Could Combine Perspectives
Some theories are easily combined as they share a perspec-
tive based on coherent assumptions. For example, Izard,
Ekman, and Plutchik agree on the function of at least
four primary emotions—Joy/Happiness, Sadness, Anger, and
Fear—and their ability to interact to produce what people
recognize as other, more complex, emotions [20, pp. 254,
258–259], [21, pp. 69], [24, pp. 200, 204–205]. Similar over-
laps exist in the appraisal theories’ evaluation dimensions
and how they label distinct combinations. The dimensional
theories, V-A and PAD, are also obviously compatible—one
could directly layer V-A over the P-A plane. By staying
within one perspective, a CME design can use the individual
strengths of each theory with little worry of conflicting
assumptions or views.

Combining theories from different perspectives poses a
more complex challenge, but often necessary to address all
aspects of affect needed in the design. For example, OCC
is frequently combined with Ek.—which focuses on auto-
matic, hard-wired appraisals rather than evaluations [137,
pp. 51]—to produce facial expressions from cognitively-
evaluated events [54, pp. 109], [58, pp. 66], [78, pp. 155],
[116, pp. 740–741]. This connection is presumably due to
the OCC’s association of characteristically similar “linguistic
tokens” with each emotion [34, pp. 1–2, 87–88]. By finding
similar words, one can fit the discrete theories’ emotions into
the OCC structure. However, this relies on subjective inter-
pretations, and even the given lists lack empirical valida-
tion [34, pp. 172–176]. More pressingly, emotions of the same
name might represent different concepts. Fear and Anger in
OCC, as with many appraisal theories, are complex emo-
tions requiring flexible, cognitive evaluations [15, pp. 85, 87]
but the same emotions in discrete theories are simpler, trig-
gered by inflexible hard-wired systems. While they might be
expressed with the same physiological changes, behaviors,
and expressions, their eliciting mechanisms are not of the
same kind [2, pp. 15–16]. Whether or not this distinction
is important for a CME, it should still be addressed as it
affects how accurately the theories are modeled. Similar
considerations must be made when attempting to align the
dimensional theories with the dimensions of appraisal the-
ories and locating discrete emotions in dimensional space.

These conceptual mismatches does not mean that there
are “correct” and “incorrect” theories or that they are in-
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compatible, especially considering how they overlap and
converge on the role of emotion [2, pp. 10–11, 14–15], [10,
pp. 352, 354–355], [117, pp. 281]. Rather, they are different
views—perspectives—of a complete system, each focusing
on different aspects of emotions [8, pp. 259]. Emotion sys-
tems seem to rely on both fast, primary and deliberative,
secondary emotions [1, pp. 70]. This idea of two emotion
types is present in some affective theories, such as [19,
pp. 74], [137, pp. 51], [29, pp. 155], [13, pp. 102], and [138,
p. 93], and is also supported by empirical investigations of
the brain [43, pp. 136–139], [44, pp. 177–178]. Some CMEs
have explicitly modeled these two “pathways”, including
[15, pp. 98], [49, pp. 73], [50, pp. 63], and [78, pp. 160].
Correspondingly, one way that each perspective could be
assigned roles in CME designs to address different aspects
of emotion generation is:

• Neurophysiologic theories provide guidelines for how to
unite disparate emotion processing pathways into a
coherent system,

• Discrete theories drive the creation of a limited set of fast,
hard-wired [10, pp. 366] reactions to specific stimuli
(“primary emotions”, “low road”),

• Appraisal theories drive the deliberative, slower systems
for emotion elicitation that require planning and/or
reasoning (“secondary emotions”, “high road”) that can
account for language and sociocultural factors, allow-
ing for a broader range of identifiable emotions, and

• Dimensional theories provide a common space for merg-
ing the outcomes of each emotion pathway in the spirit
of appraisal registers [13, pp. 105], [138, p. 93] while
allowing other types of affect to interact with emotion.

6.3 CME Realism versus Computational Efficiency

For CMEs that focus on agent believability, enforcing re-
alism and rational intelligence can be detrimental to their
goals [109, pp. 11]. These systems typically interact with
users in (soft) real-time, so efficiency is more important
than accuracy. Being able to test and debug models is also
important. For example, dimensional theories are arguably
the simplest to implement efficiently. However, they also
have the lowest affective resolution. Nevertheless they are
considered “universal” and individual emotion “points” can
be labeled as needed [2, pp. 12, 15]. However, since they do
not define emotion generation, the designer must determine
how much of it they want to implement.

Efficient implementation of believable but not necessarily
sound emotion generation can be done in myriad ways:
with metadata [51, pp. 236], [84, pp. 33]; concepts like
Bayesian Networks [54, pp. 108], [87, pp. 204], Markov
Models [53, pp. 603], [55, pp. 115], and fuzzy logic [47,
pp. 229], [57, pp. 29–30], [81, pp. 3, 7], [82, pp. 68]; and AI
techniques like behavior trees and goal-oriented action plan-
ning [106, pp. 698]. Other theories—typically appraisal—are
also conscripted, but might not be modeled in full [104,
pp. 36], [109, pp. 52]. CMEs have also improved their
efficiency by considering their target domain’s limitations,
which might require fewer emotion categories [48, pp. 58],
[54, pp. 109], [72, pp. 2], and appraisal variables [89, pp. 150],
[108, pp. 118], while others are able to scale as needed [51,
pp. 239], [57, pp. 27], [61, pp. 44], [98, pp. 217], [101], [104,

pp. 35]. As these have all found some success in achieving
their goals, this further emphasizes that accuracy is not
always necessary. This opens up the design space to create
a CME that behaves “well enough” for its intended tasks.

6.4 Other Sources of Design Influence

A number of systems strengthen or extend their chosen the-
oretical foundations by supporting it with other comparable
or complementary theories [53, pp. 594, 599–600, 606], [57,
pp. 27], [58, pp. 63–64], [62, pp. 218, 247], [83, pp. 91], [91,
pp. 129], [100]. Some cite additional work to support per-
ceived short-comings in a foundational theory [47, pp. 223,
233–234, 239] or formally define concepts9 [92, pp. 269].
Yet other CMEs use additional sources to connect emotions
with other system components, such as social variables [70,
pp. 93], [85, pp. 22], [102, pp. 288], [106, pp. 698] and emotion
contagion [73, pp. 77], [77, pp. 91], [105, pp. 2151].

Emotion theories do not address all aspects of emotion
generation, such as emotion intensity and cognitive orga-
nization. Other sources of information are needed. Three
stand out: the work of Picard [1], Minsky’s theory [140], and
empirical data.

A pioneer of affective computing, Picard offers a com-
puter science-friendly view of emotion, proposing models
and ideas for CMEs that often guide the selection of their
underlying emotion theories. AKR (10) references them to
justify its use of Markov Models for emotion dynamics [53,
pp. 603]. IM-PMEB (13), FAtiMA (37), and SocioEmo (59)
reference Picard to define an emotion intensity decay func-
tion [56, pp. 68], [80, pp. 130–131], [102, pp. 289]. Presence
(48) cites Picard for their separation of primary and sec-
ondary emotion processing channels, motivating its use of
Slo. and Dam. [78, pp. 160]. Greta (40) cites Picard’s “tub
of water” metaphor, comparable to Plu., for addressing
coexistent emotions in its design considerations [83, pp. 99].
TAME (56) uses Picard for defining emotion dynamics as a
system response [98, pp. 211].

Minsky offers a model of human intelligence amenable
to AI. Since many emotion theories—especially appraisal
theories—rely on cognition, Minsky’s Society of Mind
presents a way to model it. O & JL explicitly draw paral-
lels to it [38, pp. 32, 39]. EmMod (3) cites Minsky as the
main inspiration for its architecture, producing complex
behaviors via the interactions of many, simple units [50,
pp. 63]. Cathexis (2) compares its models of secondary
emotions to Minsky k-lines, connecting primary emotions
to encountered stimuli [49, pp. 73].

Empirical data, as the best source for replicating ob-
servable phenomena, has been used for: defining degrees
of emotion positivity and negativity [141, pp. 4] and emo-
tion effects [12, pp. 136]; deriving emotion intensity func-
tions [88, pp. 419]; quantifying the relationship between
emotion intensity, desires, and expectations [47, pp. 232],
[55, pp. 125]; and gesture models [79, pp. 302]. Some systems
have moved to purely data-driven approaches (e.g. [142],
[143]).

9. POMDP-CA (49), which uses [139] to define unexpectedness, similar
to suddenness in Sch. [13, pp. 95]. This is necessary to appraise Surprise
in both Ros. [31, pp. 267] and OCC [34, pp. 126].
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7 CONCLUSION

We have examined how CMEs from different application
domains use emotion theories for emotion generation (i.e.
for emotion representation and elicitation) and expression.
We found that each type of emotion theory filled a similar
role regardless of the domain: discrete theories define which
emotions a CME can represent and express, and how it does
so; dimensional theories can provide a simple and powerful
representation that describes emotion numerically and with
respect to other types of affect; appraisal theories chiefly
drive the elicitation process; and neurophysiologic theories
unite the reactionary and deliberative emotion views, tying
them to measurable body states.

These roles can be complementary. Appraisal theories
seem the best starting point for emotion generation CMEs,
as they explicitly describe emotion processes and are rel-
atively easy to implement. Discrete theories can improve
a CME’s comprehensibility, and dimensional theories are
useful for their quantitative representation of emotions (and
other types of affect) in a common space. The neurophysio-
logic theories can contribute to emotion process definitions,
but tends to increase a CME’s overall complexity—they
should be used with care. Generally, the less realistic that
generated emotions need to be, the more efficient a CME
can be.

There are even more theories (e.g. see [117, pp. 280–
281]), models, and data to draw from for CME designs.
For example, if one is considering V-A then they might
consider [144] too due to their similarities. Lastly, future
CMEs might get inspiration from unlikely places (e.g. [145]).
This survey aims to be a resource for creating new CME
designs, providing a practical view of some emotion theories
and existing CMEs to borrow from and build on.
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Montréal, QC, Canada, May 13–17, 2019, pp. 2147–2149.

[143] Z. Bai, N. Yao, N. Mishra, H. Chen, H. Wang, and N. Mag-
nenat Thalmann, “Enhancing emotional experience by building
emotional virtual characters in vr volleyball games,” Comput.
Animation Virtual Worlds, vol. 32, no. 3–4, Jun.–Jul. 2021, Art. no.
e2008.

[144] J. A. Russell, “A circumplex model of affect,” J. Personality Social
Psychol., vol. 39, no. 6, pp. 1161–1178, Dec. 1980.

[145] S. N. Nallaperuma and A. S. Karunananda, “EME: An emergent
model of emotions,” in Proc. 2011 Int. Conf. Adv. ICT Emerg.
Regions (ICTer), Colombo, Sri Lanka, Sep. 1–2, 2011, pp. 19–25.

Geneva M. Smith received her M.A.Sc. in
software engineering from McMaster University,
Hamilton, ON, Canada, in 2017. She is work-
ing on her dissertation at the G-ScalE lab in
the Department of Computing and Software at
McMaster. Her main research focus is compu-
tational models of emotions for improving the
believability of digital game characters.

Jacques Carette received his Ph.D. in mathe-
matics from the Université de Paris-Sud, Orsay,
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