Mechanized Mathematics

Jacques Carette

McMaster University

CICM - Thursday July 8th, 2010

Outline

Context

Lessons

Tools

Results

Mechanized

 Mathematics

$$
-\frac{10}{6}
$$

The Mathematics Process

In mathematics, we

- define/represent new concepts and new notations
- state, in convenient ways, problems to be solved
- conduct experiments
- make conjectures
- prove theorems
- gain insight through proofs, computations and visualization
- turn theorems into algorithms; compute
- make connections between theories
- communicate results
- reuse previous results

The Mathematics Process

In mathematics, we

- define/represent new concepts and new notations
- state, in convenient ways, problems to be solved
- conduct experiments
- make conjectures
- prove theorems
- gain insight through proofs, computations and visualization
- turn theorems into algorithms; compute
- make connections between theories
- communicate results
- reuse previous results

The Mathematics Process

In mathematics, we

- define/represent new concepts and new notations
- state, in convenient ways, problems to be solved
- conduct experiments
- make conjectures
- prove theorems
- gain insight through proofs, computations and visualization
- turn theorems into algorithms; compute
- make connections between theories
- communicate results
- reuse previous results

The Mathematics Process

In mathematics, we

- define/represent new concepts and new notations
- state, in convenient ways, problems to be solved
- conduct experiments
- make conjectures
- prove theorems
- gain insight through proofs, computations and visualization
- turn theorems into algorithms; compute
- make connections between theories
- communicate results
- reuse previous results

The Mathematics Process

In mathematics, we

- define/represent new concepts and new notations
- state, in convenient ways, problems to be solved
- conduct experiments
- make conjectures
- prove theorems
- gain insight through proofs, computations and visualization
- turn theorems into algorithms; compute
- make connections between theories
- communicate results
- reuse previous results

The Mathematics Process

In mathematics, we

- define/represent new concepts and new notations
- state, in convenient ways, problems to be solved
- conduct experiments
- make conjectures
- prove theorems
- gain insight through proofs, computations and visualization
- turn theorems into algorithms; compute
- make connections between theories
- communicate results
- reuse previous results

Goal: build a tool that helps us do all of that.

Expressions

are

syntax

Some expressions

are

meaningless

Expression
 diff
 Expression

$$
\begin{aligned}
& \llbracket \cdot \rrbracket \downarrow \\
& \mathbb{R} \rightarrow \mathbb{R} \xrightarrow[\partial]{\longrightarrow} \quad \mathbb{R} \rightarrow \mathbb{R}
\end{aligned}
$$

Meaningless statements

$$
\int_{-\infty}^{\infty} f(x) \delta_{a}(x) d x=f(a)
$$

$f^{\prime}(x)=$ principal part $\frac{f(x+\epsilon)-f(x)}{\epsilon}, \epsilon$ infinitesimal
$\sum n!x^{n}$ denotes a unique function on \mathbb{R}^{+}
$x^{2}+1$ has exactly 2 roots.

Meaningless statements

Distributions

$$
\int_{-\infty}^{\infty} f(x) \delta_{a}(x) d x=f(a)
$$

Non-standard analysis

$$
f^{\prime}(x)=\text { principal part } \frac{f(x+\epsilon)-f(x)}{\epsilon}, \epsilon \text { infinitesimal }
$$

Resummation
$\sum n!x^{n}$ denotes a unique function on \mathbb{R}^{+}
Complex numbers

$$
x^{2}+1 \text { has exactly } 2 \text { roots. }
$$

What is meaningful changes over time

Wide range of requirements and usage patterns.

Need very different views onto the same system.

Wide range of requirements and usage patterns.

Context
Dependent
Defines
Contexts

Need very different views onto the same system.

Wide range of requirements and usage patterns.

High-level
Theory

Network
of Tiny
Theories

Need very different views onto the same system.

Wide range of requirements and usage patterns.

High-level
Theory
Network
of Tiny
Theories

Very Rich
Minimalistic

Need very different views onto the same system.

$$
\begin{aligned}
& \text { Don't } \\
& \text { Repeat } \\
& \text { Yourself }
\end{aligned}
$$

Duplication
 IS
 Evil

Non-choices

efficiency

correctness
abstraction
modularity
usability

Tools

Denotational semantics
Code generation
Polymorphism
First-class syntax
Domain Specific Languages
Universal algebra
Type theory
Biform Theories
High-level theories

Partial evaluation
Abstract interpretation
Genericity
Reflection
Unicode
Category theory
Literate programming
Chiron
Proof generation

USing


```
Empty := Theory {}
Carrier := Empty extended by {U:type}
PointedCarrier := Carrier extended by {e:U}
UnaryOperation := Carrier extended by {prime:U -> U}
BinaryOperation := Carrier extended by {**:(U,U) -> U}
CarrierS := Carrier[U |-> S]
MultiCarrier := combine Carrier, CarrierS over Empty
PointedUnarySystem := combine UnaryOperation, PointedCarrier
over Carrier
Magma := BinaryOperation [** |-> *]
AdditiveMagma := BinaryOperation [** |-> +]
IdempotentMagma := Magma extended by {axiom:idempotent((*))}
PointedMagma := combine Magma, PointedCarrier over Carrier
CommutativeMagma := Magma extended by {axiom:commutative((*))}
CommutativeAdditiveMagma := AdditiveMagma extended by
    {axiom:commutative((+))}
skipping over Loop, Monoid, Group, ...
```

LeftNearSemiring $:=$ (combine Semigroup, AdditiveMonoid over Carrier) extended by
axiom: leftDistributive ((*) , (+)) ;
axiom: leftAnnihilative ((*), 0) \}
LeftNearRing := combine LeftNearSemiring, AdditiveGroup over AdditiveMonoid
LeftSemirng := combine LeftNearSemiring, AdditiveCommutativeMonoid over AdditiveMonoid
LeftRng := combine LeftNearRing, LeftSemirng over LeftNearSemiring Monoid1 := Monoid [e |-> 1] LeftSemiring := combine LeftSemirng, Monoid1 over Semigroup LeftRing := combine LeftRng, LeftSemiring over LeftSemirng Semirng := LeftSemirng extended by
\{ axiom: IeftDistributive ((flipuc ((*))), (+)) \}
Rng := combine LeftRng, Semirng over LeftSemirng SemiRing $:=$ combine LeftSemiring, Semirng over LeftSemirng Dioid $:=$ SemiRing extended by \{axiom:idempotent $((+))\}$ Ring := combine Rng, SemiRing over Semirng CommutativeRing $:=$ Ring extended by \{axiom:commutative ((*)) \} BooleanRing := CommutativeRing extended by \{axiom:idempotent ((*)) \} Domain := Ring extended by \{
axiom: forall x:leftDomain ((*)).zeroDivisor ((*), x,0) implies $(x=0)\}$ IntegralDomain := Domain extended by \{axiom:commutative ((*)) \}
DivisionRing := Ring extended by \{
axiom: forall x:leftDomain ($(*)$).
(not $(x=0)$) implies invertible (x,(*), 1) \}
Field $:=$ combine DivisionRing, CommutativeRing over Ring

LeftRing := Theory \{
$\mathrm{U}:$ type; $*:(\mathrm{U}, \mathrm{U}) \rightarrow \mathrm{U} ;+:(\mathrm{U}, \mathrm{U}) \rightarrow \mathrm{U} ;-$: $(\mathrm{U}, \mathrm{U}) \rightarrow \mathrm{U}$; - : $(U, U) \rightarrow U ; 0: U ; 1: U$; neg : U $\rightarrow \mathbf{U}$;
$\operatorname{neg}(x)=(0-x)$;
axiom leftldentity_*_1 $:=$ forall $x: U .(1 * x)=x$;
axiom rightldentity_*_1 $:=$ forall $x: U .(x * 1)=x$;
axiom lefto $:=$ forall $x: U .(0 * x)=0$;
axiom rightldentity_+_0 $:=$ forall $x: U .(x+0)=x$;
axiom leftldentity_+_0 $:=$ forall $x: U .(0+x)=x$;
axiom leftDistributive_*_+ :=
forall $x, y, z: U .(x *(y+z))=((x * y)+(x * z))$;
axiom rightAbsorb_+_- :=
forall $x, y: U .(((y-x)+x)=y$ and $((y+x)-x)=y)$;
axiom leftAbsorb_+_- :=
forall $x, y: U . \quad((x+(x--y))=y$ and $(x--(x+y))=y)$;
axiom associative_+ :=
forall $x: U$.forall $y: U$. forall $z: U .((x+y)+z)=(x+(y+z))$;
axiom associative_* :=
forall $x, y, z: U .((x * y) * z)=(x *(y * z)) ;$
axiom commutative_+ := forall $x, y: U .(x+y)=(y+x)$;
theorem inversenneg $:=$ (
forall $x: U .(x+(n e g x))=0$ and forall $x: U .((\operatorname{neg} x)+x)=0)\}$

AbelianAdditiveGroup, AbelianGroup, AdditiveCommutativeMonoid, AdditiveGroup, AdditiveMagma, AdditiveMonoid, Band, BiMagma, BinaryOperation, BinaryRelation, BooleanAlgebra, BooleanRing, BoundedDistributiveLattice, BoundedJoinSemilattice, BoundedLattice, BoundedMeetSemilattice, BoundedModularLattice, Carrier, CarrierS, Category, Chain, CommutativeAdditiveMagma, CommutativeBand, CommutativeMagma, CommutativeMonoid, CommutativeRing, CommutativeRingAction, CommutativeSemigroup, ComplementedLattice, Digraph, Dioid, DistributiveLattice, DivisionRing, Domain, DoublyPointed, DualSemilattices, Empty, EquivalenceRelation, Field, FunctionSpace, FunctionalComposition, Funtionalldentity, GoedelAlgebra, Graph, Group, Heap, HeytingAlgebra, IdempotentMagma, IdempotentSemiheap, IdempotentUpDirectedSet, IntegraIDomain, InvolutiveUnarySystem, JoinSemilattice, KleeneAlgebra, KleeneLattice, Lattice, LeftGroup, LeftGroupAction, LeftLoop, LeftMagmaAction, LeftMagmaActionP, LeftMonoidAction, LeftNearRing, LeftNearSemiring, LeftOperation, LeftQuasiGroup, LeftRModule, LeftRing, LeftRingAction, LeftRng, LeftSemigroupAction, LeftSemiring, LeftSemirng, LeftUnital, Loop, Magma, MeetDirectoid, MeetSemilattice, ModalAlgebra, ModularLattice, ModularOrtholattice, Monoid, Monoid1, MoufangLoop, MultiCarrier, NonassociativeRing, OrderRelation, Ortholattice, Orthomodularlattice, PartialOrder, PointedCarrier, PointedCommutativeMagma, PointedMagma, PointedSteiner, PointedUnarySystem, Preorder, PrimeAdditiveGroup, PseudoGraph, Quandle, QuasiGroup, RModule, Rack, ReflexiveOrderRelation, RightGroupAction, RightMagmaAction, RightMagmaActionP, RightMonoid, RightMonoidAction, RightOperation, RightQuasiGroup, RightRModule, RightRingAction, RightSemigroupAction, RightUnital, Ring, Rng, SemiRing, Semigroup, Semiheap, Semirng, SimpleGraph, Sink, Sloop, Squag, StarSemiring, Steiner, SubType, TernaryOperation, TotalOrder, TotalPreorder, TraceMonoid, TransitiveOrderRelation, UnaryOperation, UnaryRelation, Unital, UpDirectedSet, VectorSpace.

137 purely axiomatic theories, 82 properties, using 320 lines of definitions. Should be ≈ 280 ? (Less?) We stopped expanding because that would cause too much duplication.

137 purely axiomatic theories, 82 properties, using 320 lines of definitions. Should be ≈ 280 ? (Less?) We stopped expanding because that would cause too much duplication.

Expanded: 2877 lines of property and theory definitions. 303 automatically defined theory morphisms.

137 purely axiomatic theories, 82 properties, using 320 lines of definitions. Should be ≈ 280 ? (Less?) We stopped expanding because that would cause too much duplication.

Expanded: 2877 lines of property and theory definitions. 303 automatically defined theory morphisms.

Can also automatically define (universal algebra, category theory):

- type, sub-structure, homomorphism, free structure, etc,
- type of 'term algebra' over structure, and related morphism(s),
- various transformers (including printing to text, latex, MathML), ...

Also have structures (Bit, Peano Naturals) and constructors (Maybe, Either, List, ...)

USing

Generic and

 Generative Programming
Code Generation - algorithm families

Problem: Encode "design concepts" present in a "software product line" composed of variants of an algorithm.

Code Generation - algorithm families

Problem: Encode "design concepts" present in a "software product line" composed of variants of an algorithm.
Case study: Gaussian Elimination \& LU Decomposition.
Rationale: found 80 different implementations in Maple's library.

Code Generation - algorithm families

Problem: Encode "design concepts" present in a "software product line" composed of variants of an algorithm.
Case study: Gaussian Elimination \& LU Decomposition.
Rationale: found 80 different implementations in Maple's library.
Method:

1. MetaOCaml gives typed generators for typed programs.
2. Uses Functors, Monads, Continuation-passing style, Phantom types (rows and objects, aka open products and open sums), and abstract interpretation.
3. Mostly conditional-free; purely static dispatch

Code Generation - algorithm families

Problem: Encode "design concepts" present in a "software product line" composed of variants of an algorithm.
Case study: Gaussian Elimination \& LU Decomposition.
Rationale: found 80 different implementations in Maple's library.
Method:

1. MetaOCaml gives typed generators for typed programs.
2. Uses Functors, Monads, Continuation-passing style, Phantom types (rows and objects, aka open products and open sums), and abstract interpretation.
3. Mostly conditional-free; purely static dispatch

Result:

1. result code is identical to human-written versions for some target cases. No abstractions left at all.
2. over 10,000 variants
3. generator gives domain-specific error messages

Instantiation Example

```
module GVCI = GenericVectorContainer(IntegerDomainL)
module LA = GenLA(GVCI)
module GenIV5 = GenGE(struct
    module Det = AbstractDet
    module PivotF = FullPivot
    module PivotRep = PermList
    module Update = FractionFreeUpdate
    module Input = InpJustMatrix
    module Output = OutUMatDetRank end)
```


From code

module IntegerDomain = struct
type $v=i n t$

$$
\begin{aligned}
& \text { let zero }=0 \\
& \text { let one }=1 \\
& \text { let plus } x y=x+y \\
& \text { let div } x y=x / y
\end{aligned}
$$

let better_than $=$ Some (fun $x \quad y \rightarrow$ abs $x>a b s y)$
let normalizerf $=$ None end

to monadic generator

module IntegerDomain = struct
type $v=$ int
type 'a vc $=($ ' $a, v)$ code
let zero $=.<0>$.
let one $=.<1>$.
let plus x y $=$ ret $.<\sim^{\sim} x+\tilde{\sim}^{\sim} y>$.
let div $x y=$ ret. $<\sim^{\sim} x / \sim^{\sim} y>$.
let better_than = Some
(fun x y \rightarrow ret. $<$ abs $. \sim x>$ abs $\left.\sim^{\sim} y>.\right)$
let normalizerf $=$ None
end

Design Concepts

Design Dim.	Abstracts	Design Dim.	Abstracts
Domain	Matrix values	Packed	L and U as one?
Normalization	domain needs it?	Lower	track lower L ?
ZeroEquivalence	decidability of $=0$	Code Rep	codegen options
Representation	Matrix representation	UserInformation	user-feedback
Fraction-free	use of division	Augmented	matrix is augmented
Pivoting Strategy	ex:use length?	Input	choice of input
Pivoting Choice	no/row/column/total	Logging	trace algorithm
Pivot Rep	list, array, matrix	Structure	ex: tri-diagonal
Full Division	division in domain	Warning	warn on 0? pivot
Rank	track rank?	In-place	res. stored in input
Determinant	determinant tracking	Error-on-singular	input (near) singular
Output	choice of output	Conditioning	cond. numb. est.

Design space for LU Decomposition ≥ 24 dimensional!
Abstraction, correctness and efficiency can co-exist

Multiple

Type-safe interpreters for embedded DSLs

A fold on an inductive data type is an interpreter of a domain-specific language.

Type-safe interpreters for embedded DSLs

A fold on an inductive data type is an interpreter of a domain-specific language.

schedule pretty-print perform compile

The same language can be interpreted in many useful ways.

Type-safe interpreters for embedded DSLs

A fold on a tagless final type is an interpreter of a domain-specific language.

Church-Scott dual encoding at the constructor level

Type-safe interpreters for embedded DSLs

A fold on a tagless final type is an interpreter of a domain-specific language.

Term typechecked once. Interpretations are compositional.

```
module type Symantics = sig
    type ('c,'sv,'dv) repr
    val int : int }->\mathrm{ ('c,int,int) repr
    val bool : bool }->\mathrm{ ('c,bool,bool) repr
    val add : ('c,int,int) repr as ' }x->>\mathrm{ ' }x->> '
    val mul : ('c,int,int) repr as 'x m 'x m 'x
    val leq : ('c,int,int) repr as 'x >> 'x >> ('c,bool,bool) repr
    val eql : ('c,'sa,'da) repr as 'x > 'x > ('c,bool,bool) repr
    val if_ : ('c,bool,bool) repr ->
    (unit -> 'x) ->
                        (unit }->>'x) -> (('c,'sa,'da) repr as 'x
    val lam : (('c,'sa,'da) repr }->\mathrm{ (''c,'sb,'db) repr as 'x)
                -> ('c,'x,'da->'db) repr
    val app : ('c,'x,'da->'db) repr
                        -> (('c,'sa,'da) repr -> ('c,'sb,'db) repr as 'x)
    val fix : ('x - 'x) ->
        (('c, ('c,'sa,'da) repr }->>('c,'sb,'db) repr,''da->'db) repr as 'x
end
```


module $\mathrm{R}=$ strict

type ('c,'sv,'dv) rear = 'dy
let int (x:int) $=x$
let boole (b:bool) $=b$
let add el en $=e 1+e 2$
let mule el en $=$ el * e2
let eq $x y=x<=y$
let eq $x y=x=y$
let if_ ob et ea $=$
if feb then (et ()) else (ea ())
let $\operatorname{lam} \mathrm{f}=\mathrm{f}$
let app el ez = el er
let fix $f=$ let rec self $n=f$ self n in self end ; ;
let build cast fy fo = function
$\{\mathrm{st}=$ Some m$\},\{\mathrm{st}=$ Some n$\} \rightarrow$ cast (fl mn) el, e2 $->$ pdyn (fl (abstr el) (abstr eZ))
let monoid cast one fy fo $=$ function $\left\{s t=\right.$ Some e'\}, e when $e^{\prime}=$ one $\rightarrow e$ e, $\left\{s t=\right.$ Some e'\} when $e^{\prime}=$ one $\rightarrow e$ ee $->$ build cast fy f2 ee
let ring cast zero one ff $\mathrm{f} 2=$ function
($\left\{\right.$ st $=$ Some $\left.e^{\prime}\right\}$ as e), - when $e^{\prime}=$ zero \rightarrow e -, ($\{$ st $=$ Some e'\} as e) when e' = zero $->$ e ee $->$ monoid cast one fy f2 ee
let add el ez = monoid int 0 R.add C.add (e1,e2) let mule el eZ = ring int 01 R.mul C.mul (e1,e2) let eq el eZ = build fol R.leq C.leq (e1,e2) let eq el ez = build fol R.eql C.eql (e1,e2)

Syntax \&

A Biform Theory, using Chiron

Theory Derivative-Real1D \{

$$
\text { DERIVATIVE }:(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow(\mathbb{R} \rightarrow \mathbb{R})
$$

$$
\text { axiom } \forall f:(\mathbb{R} \rightarrow \mathbb{R}) . \forall x: \mathbb{R}
$$

$$
\operatorname{DERIVATIVE}(f)(x) \simeq \lim _{\epsilon \rightarrow 0} \frac{|f(x+\epsilon)-f(x)|}{\epsilon}
$$

$$
\begin{aligned}
& \text { DIFF }: E_{(\mathbb{R} \rightarrow \mathbb{R})} \rightarrow E_{(\mathbb{R} \rightarrow \mathbb{R})} \\
& \text { meaning } \forall f: E_{(\mathbb{R} \rightarrow \mathbb{R})} \cdot \llbracket \operatorname{DIFF}(f) \rrbracket \simeq \operatorname{DERIVATIVE}(\llbracket f \rrbracket)
\end{aligned}
$$

A Biform Theory, using Chiron

```
Theory Derivative-Real1D {
    DERIVATIVE: (\mathbb{R}->\mathbb{R})->(\mathbb{R}->\mathbb{R})
    axiom }\forallf:(\mathbb{R}->\mathbb{R}).\forallx:\mathbb{R}\mathrm{ .
    DERIVATIVE}(f)(x)\simeq\mp@subsup{\operatorname{lim}}{\epsilon->0}{}\frac{|f(x+\epsilon)-f(x)|}{\epsilon
    DIFF: E
    meaning }\forallf:\mp@subsup{E}{(\mathbb{R}->\mathbb{R})}{}\cdot\llbracket\operatorname{DIFF}(f)\rrbracket\simeq\operatorname{DERIVATIVE(\llbracketf\rrbracket)
}
```

But that does not work! Term-rewriting based DIFF is actually
$\forall f: E_{(\mathbb{R} \rightarrow \mathbb{R})} \cdot(\operatorname{TOTAL}(f) \wedge \operatorname{DIFFERENTIABLE}(f)) \Rightarrow$

$$
(\llbracket \operatorname{DIFF}(f) \rrbracket \simeq \operatorname{DERIVATIVE}(\llbracket f \rrbracket))
$$

A Biform Theory, using Chiron

```
Theory Derivative-Real1D {
    DERIVATIVE: (\mathbb{R}->\mathbb{R})->(\mathbb{R}->\mathbb{R})
    axiom }\forallf:(\mathbb{R}->\mathbb{R}).\forallx:\mathbb{R}\mathrm{ .
    DERIVATIVE}(f)(x)\simeq\mp@subsup{\operatorname{lim}}{\epsilon->0}{}\frac{|f(x+\epsilon)-f(x)|}{\epsilon
    DIFF: E
    meaning }\forallf:\mp@subsup{E}{(\mathbb{R}->\mathbb{R})}{}\cdot\llbracket\operatorname{DIFF}(f)\rrbracket\simeq\operatorname{DERIVATIVE (\llbracketf\rrbracket)
}
```

But that does not work! Term-rewriting based DIFF is actually

$$
\forall f: E_{(\mathbb{R} \rightarrow \mathbb{R})} \cdot(\operatorname{TOTAL}(f) \wedge \operatorname{DIFFERENTIABLE}(f)) \Rightarrow
$$

$$
(\llbracket \operatorname{DIFF}(f) \rrbracket \simeq \operatorname{DERIVATIVE}(\llbracket f \rrbracket))
$$

1. This is not a silly as it seems. 2. $\llbracket \cdot \rrbracket$ is very important. 3. Connections!

But also

- Correct-by-construction software generation
- generate code (C, Java, Fortran) and proofs (Coq and PVs) in parallel
- Vocabulary and Representation
- On good error messages
- The difference between an indeterminate, a symbol, a variable, a parameter and a generic value

Thank

