Jacques Carette
McMaster University

CICM — Thursday July 8th, 2010

Context
Lessons
Tools

Results

Mechanized
Mathematics

V==

I

7 QL §

R

| essons

_

——*

< /‘;‘
10GESN, "
A % W
(ESAN

Q)

*yge0?

»

=

i

gl L‘I- -
= o 9 S1H13
e ——— 1 e b w AY . ‘J' ___,

—rss"’—-.-

A
L

,,.
]....—-...

'
ol

i

V==

I

7 QL §

R

The Mathematics Process

In mathematics, we

vV VvV VvV V. Y VY vV VY

define/represent new concepts and new notations

state, in convenient ways, problems to be solved

conduct experiments

make conjectures

prove theorems

gain insight through proofs, computations and visualization
turn theorems into algorithms; compute

make connections between theories

communicate results

reuse previous results

The Mathematics Process

In mathematics, we

vV VvV VvV V. Y VY vV VY

define/represent new concepts and new notations

state, in convenient ways, problems to be solved

conduct experiments

make conjectures

prove theorems

gain insight through proofs, computations and visualization
turn theorems into algorithms; compute

make connections between theories

communicate results

reuse previous results

The Mathematics Process

In mathematics, we

vV VvV VvV V. Y VY vV VY

define/represent new concepts and new notations

state, in convenient ways, problems to be solved

conduct experiments

make conjectures

prove theorems

gain insight through proofs, computations and visualization
turn theorems into algorithms; compute

make connections between theories

communicate results

reuse previous results

The Mathematics Process

In mathematics, we

vV VvV VvV V. Y VY vV VY

define/represent new concepts and new notations

state, in convenient ways, problems to be solved

conduct experiments

make conjectures

prove theorems

gain insight through proofs, computations and visualization
turn theorems into algorithms; compute

make connections between theories

communicate results

reuse previous results

The Mathematics Process

In mathematics, we

vV VvV VvV V. Y VY vV VY

define/represent new concepts and new notations

state, in convenient ways, problems to be solved

conduct experiments

make conjectures

prove theorems

gain insight through proofs, computations and visualization
turn theorems into algorithms; compute

make connections between theories

communicate results

reuse previous results

The Mathematics Process

In mathematics, we

define/represent new concepts and new notations

state, in convenient ways, problems to be solved

conduct experiments

make conjectures

prove theorems

gain insight through proofs, computations and visualization
turn theorems into algorithms; compute

make connections between theories

communicate results

vV VvV VvV V. Y VY vV VY

reuse previous results

Goal: build a tool that helps us do all of that.

Expressions
are
syntax

Some expressions
are
meaningless

diff

Expression > Expression
o |11
R — R > R—R

Meaningless statements

f'(x) = principal partw

. € infinitesimal

>~ nlx" denotes a unique function on R

x? + 1 has exactly 2 roots.

Meaningless statements

Distributions

[Z F(x)da(x)dx = f(a)
Non-standard analysis

f'(x) = principal partw, ¢ infinitesimal
Resummation

>~ nlx" denotes a unique function on R

Complex numbers
x? + 1 has exactly 2 roots.

What is meaningful
changes over time

Experimenting

Wide range of requirements and usage patterns.

End System
users developers

Need very different views onto the same system.

Wide range of requirements and usage patterns.

End

users

Context
Dependent

Need very different views onto the

same system.

System
developers

Defines
Contexts

Wide range of requirements and usage patterns.

End System
users developers
High-level Network
of Tiny
Theory]
Theories

Need very different views onto the same system.

Wide range of requirements and usage patterns.

End System
users developers
H Network
of Tiny
Theory ;
Theories
Very Rich Minimalistic

Need very different views onto the same system.

Don't
Repeat
Yourself

Duplication
IS
Evil

Non-choices

efficiency
correctness
abstraction
modularity
usability

Tools

Tools

Denotational semantics
Code generation
Polymorphism

First-class syntax

Domain Specific Languages
Universal algebra

Type theory

Biform Theories

High-level theories

Partial evaluation
Abstract interpretation
Genericity

Reflection

Unicode

Category theory
Literate programming
Chiron

Proof generation

Results

Using
Structure

Empty := Theory {}

Carrier := Empty extended by {U:type}

PointedCarrier := Carrier extended by {e:U}

UnaryOperation := Carrier extended by {prime:U —> U}

BinaryOperation := Carrier extended by {xx*:(U,U) —> U}

CarrierS := Carrier [U |—> S]

MultiCarrier := combine Carrier ,CarrierS over Empty

PointedUnarySystem := combine UnaryOperation, PointedCarrier
over Carrier

Magma := BinaryOperation [*x |[—> x]

AdditiveMagma := BinaryOperation [**x |—> +]

IdempotentMagma := Magma extended by {axiom:idempotent((x*))}

PointedMagma := combine Magma, PointedCarrier over Carrier

CommutativeMagma := Magma extended by {axiom:commutative ((*))}

CommutativeAdditiveMagma := AdditiveMagma extended by

{axiom: commutative ((+))}

skipping over Loop, Monoid, Group, ...

LeftNearSemiring := (combine Semigroup, AdditiveMonoid
over Carrier) extended by {
axiom: leftDistributive ((*x),(+));
axiom: leftAnnihilative ((x),0) }

LeftNearRing := combine LeftNearSemiring, AdditiveGroup
over AdditiveMonoid
LeftSemirng := combine LeftNearSemiring, AdditiveCommutativeMonoid
over AdditiveMonoid
LeftRng := combine LeftNearRing, LeftSemirng over LeftNearSemiring
Monoidl := Monoid [e |—> 1]
LeftSemiring := combine LeftSemirng, Monoidl over Semigroup
LeftRing := combine LeftRng, LeftSemiring over LeftSemirng
Semirng := LeftSemirng extended by
{ axiom:leftDistributive ((flipuc ((*))).(+)) }
Rng := combine LeftRng, Semirng over LeftSemirng
SemiRing := combine LeftSemiring , Semirng over LeftSemirng
Dioid := SemiRing extended by {axiom:idempotent((+))}
Ring := combine Rng, SemiRing over Semirng
CommutativeRing := Ring extended by {axiom:commutative((x*))}
BooleanRing := CommutativeRing extended by {axiom:idempotent ((*))}
Domain := Ring extended by {
axiom: forall x:leftDomain((*)).zeroDivisor((*),x,0) implies (x=0)}
IntegralDomain := Domain extended by {axiom:commutative ((*))}
DivisionRing := Ring extended by {

axiom: forall x:leftDomain ((x)).
(not (x=0)) implies invertible(x,(x*),1) }
Field := combine DivisionRing , CommutativeRing over Ring

LeftRing := Theory {

U : type; * : (U, U) —>U; + : (U, U) —>U; — : (U, U) > U;
— : (U, U) =>U; o0 :U; 1 : U; neg : U—> U;

neg(x) = (0 — x);

axiom leftldentity_x_1 := forall x : U. (1 % x) = x;
axiom rightldentity_x_1 := forall x : U. (x * 1) =
axiom left0 := forall x : U. (0 * x) =

axiom rightldentity_+-0 := forall x : U. (x + 0) =
axiom leftldentity_4+.0 := forall x : U. (0 + x) = x;

axiom leftDistributive_x_4 :=
forall x,y,z:U. (x * (y + 2)) = ((x *xy) + (x * z));
axiom rightAbsorb_+_— =
forall x, v : U. (((y — x) + x) =y and ((y + x) — x) =vy);
axiom leftAbsorb_+_— :
forall x, y : U. (
axiom associative_+ :
forall x:U.forall y:U. forall z:U.((xty)+z) = (x+(y+z));
axiom associative_x :=
forall x,y,z:U. y) * z) = (x * (y x z));
axiom commutative + = forall x,y:U.(x+y)=(y+x);
theorem inverse_neg :=
forall x:U.(x+(neg x))=0 and forall x:U.((neg x)+x)=0)}

+ (x — y)) =y and (x — (x +y)) =vy):

—
I x

—

AbelianAdditiveGroup, AbelianGroup, AdditiveCommutativeMonoid, AdditiveGroup, AdditiveMagma, AdditiveMonoid, Band, BiMagma, BinaryOperation,
BinaryRelation, BooleanAlgebra, BooleanRing, BoundedDistributiveLattice, BoundedJoinSemilattice, BoundedLattice, BoundedMeetSemilattice,
BoundedModularlLattice, Carrier, CarrierS, Category, Chain, CommutativeAdditiveMagma, CommutativeBand, CommutativeMagma, CommutativeMonoid,
CommutativeRing, CommutativeRingAction, CommutativeSemigroup, ComplementedLattice, Digraph, Dioid, DistributiveLattice, DivisionRing, Domain,
DoublyPointed, DualSemilattices, Empty, EquivalenceRelation, Field, FunctionSpace, FunctionalComposition, Funtionalldentity, GoedelAlgebra, Graph, Group,
Heap, HeytingAlgebra, IdempotentMagma, IdempotentSemiheap, IdempotentUpDirectedSet, IntegralDomain, InvolutiveUnarySystem, JoinSemilattice,
KleeneAlgebra, KleeneLattice, Lattice, LeftGroup, LeftGroupAction, LeftLoop, LeftMagmaAction, LeftMagmaActionP, LeftMonoidAction, LeftNearRing,
LeftNearSemiring, LeftOperation, LeftQuasiGroup, LeftRModule, LeftRing, LeftRingAction, LeftRng, LeftSemigroupAction, LeftSemiring, LeftSemirng,
LeftUnital, Loop, Magma, MeetDirectoid, MeetSemilattice, ModalAlgebra, ModularLattice, ModularOrtholattice, Monoid, Monoid1, MoufangLoop,
MultiCarrier, NonassociativeRing, OrderRelation, Ortholattice, Orthomodularlattice, PartialOrder, PointedCarrier, PointedCommutativeMagma,
PointedMagma, PointedSteiner, PointedUnarySystem, Preorder, PrimeAdditiveGroup, PseudoGraph, Quandle, QuasiGroup, RModule, Rack,

ReflexiveOrderRelation, RightGroupAction, RightM Action, RightM ActionP, RightMonoid, RightMonoidAction, RightOperation, RightQuasiGroup,

RightRModule, RightRingAction, RightSemigroupAction, RightUnital, Ring, Rng, SemiRing, Semigroup, Semiheap, Semirng, SimpleGraph, Sink, Sloop,
Squag, StarSemiring, Steiner, SubType, TernaryOperation, TotalOrder, TotalPreorder, TraceMonoid, TransitiveOrderRelation, UnaryOperation, UnaryRelation,

Unital, UpDirectedSet, VectorSpace.

137 purely axiomatic theories, 82 properties, using 320 lines of definitions.
Should be ~ 2807 (Less?) We stopped expanding because that would cause
too much duplication.

137 purely axiomatic theories, 82 properties, using 320 lines of definitions.
Should be ~ 2807 (Less?) We stopped expanding because that would cause
too much duplication.

Expanded: 2877 lines of property and theory definitions. 303 automatically
defined theory morphisms.

137 purely axiomatic theories, 82 properties, using 320 lines of definitions.
Should be ~ 2807 (Less?) We stopped expanding because that would cause
too much duplication.

Expanded: 2877 lines of property and theory definitions. 303 automatically
defined theory morphisms.

Can also automatically define (universal algebra, category theory):
» type, sub-structure, homomorphism, free structure, etc,
> type of 'term algebra’ over structure, and related morphism(s),

» various transformers (including printing to text, latex, MathML), ...

Also have structures (Bit, Peano Naturals) and constructors (Maybe, Either,
List, ...)

Using
Structure

Generic and
(Generative
Programming

Code Generation - algorithm families

Problem: Encode “design concepts” present in a “software product line"
composed of variants of an algorithm.

Code Generation - algorithm families

Problem: Encode “design concepts” present in a “software product line"
composed of variants of an algorithm.

Case study: Gaussian Elimination & LU Decomposition.
Rationale: found 80 different implementations in Maple's library.

Code Generation - algorithm families

Problem: Encode “design concepts” present in a “software product line"
composed of variants of an algorithm.

Case study: Gaussian Elimination & LU Decomposition.
Rationale: found 80 different implementations in Maple's library.

Method:
1. MetaOCaml gives typed generators for typed programs.

2. Uses Functors, Monads, Continuation-passing style, Phantom types
(rows and objects, aka open products and open sums), and abstract
interpretation.

3. Mostly conditional-free; purely static dispatch

Code Generation - algorithm families

Problem: Encode “design concepts” present in a “software product line"
composed of variants of an algorithm.

Case study: Gaussian Elimination & LU Decomposition.
Rationale: found 80 different implementations in Maple's library.

Method:
1. MetaOCaml gives typed generators for typed programs.

2. Uses Functors, Monads, Continuation-passing style, Phantom types
(rows and objects, aka open products and open sums), and abstract
interpretation.

3. Mostly conditional-free; purely static dispatch

Result:

1. result code is identical to human-written versions for some target cases.
No abstractions left at all.

2. over 10,000 variants

3. generator gives domain-specific error messages

Instantiation Example

module GVCl = GenericVectorContainer(IntegerDomainlL)
module LA = GenLA(GVCI)

module GenlV5 = GenGE(struct

module Det = AbstractDet

module PivotF = FullPivot

module PivotRep = PermList

module Update = FractionFreeUpdate
module Input = InpJustMatrix

module Output = OutUMatDetRank end)

From code

module IntegerDomain = struct
type v = int
let zero =0
let one =1

let plus x y = x + vy
let div x y =x /vy

let better_than = Some (fun x y —> abs x > abs vy)
let normalizerf = None
end

to monadic generator

module IntegerDomain = struct
type v = int
type 'a vc = ('a,v) code
let zero = .< 0 >.
let one = < 1 >.

let plus x y = ret .< ."x + ."y>.
let div x y = ret .< ."x / .Ty>.

let better_than = Some

(fun x y —> ret .<abs ."x > abs
let normalizerf = None

end

Ty

Design Concepts

Design Dim. Abstracts Design Dim. Abstracts
Domain Matrix values Packed L and U as one?
Normalization domain needs it? Lower track lower L 7
ZeroEquivalence | decidability of =0 Code Rep codegen options

Representation

Matrix representation UserInformation

user-feedback

Fraction-free

use of division Augmented

matrix is augmented

Pivoting Strategy

ex:use length? Input

choice of input

Pivoting Choice

no/row/column/total Logging

trace algorithm

Pivot Rep list, array, matrix Structure ex: tri-diagonal

Full Division division in domain Warning warn on 07 pivot
Rank track rank? In-place res. stored in input
Determinant determinant tracking Error-on-singular | input (near) singular
Output choice of output Conditioning cond. numb. est.

Design space for LU Decomposition > 24 dimensional!

Abstraction, correctness and efficiency can co-exist

Multiple
Interpretations

Type-safe interpreters for embedded DSLs

A fold on an inductive data type is an interpreter of a domain-specific
language.

wammar) () Cocom) -

Type-safe interpreters for embedded DSLs

A fold on an inductive data type is an interpreter of a domain-specific

language.
grammar

value parse typeset evaluate

schedule pretty-print perform compile

The same language can be interpreted in many useful ways.

Type-safe interpreters for embedded DSLs

A fold on a tagless final type is an interpreter of a domain-specific language.

s Criem)

evaluate
compile
specialize pretty-print

CPS transform

Church-Scott dual encoding at the constructor level

Type-safe interpreters for embedded DSLs

A fold on a tagless final type is an interpreter of a domain-specific language.

i (o)

evaluate
compile
specialize pretty-print

CPS transform

Term typechecked once. Interpretations are compositional.

module type Symantics =

type ('c,
val int
val boo
val add
val mul
val leq
val eql
val if_
val lam
val app
val fix
(('e,

end

"dv

)

repr

sig

int — (’'c,int,int) repr

bool —> ('c,bool,bool) repr
("c,int,int) repr as 'x > 'x —> 'x
("c,int,int) repr as 'x > 'x —> ’'x
("c,int, |nt) repr as 'x —> 'x —> ('c,bool, bool)
: ('c,’sa,’'da) repr as 'x —=> 'x —> ('c,bool, bool)
('c,bool, bool) repr -
(unit = 'x) —
(unit —> 'x) —> (('c,’sa,’'da) repr as ’'x)
(('c,’'sa,’'da) repr — ('c,’'sb,’'db) repr as 'x)
—> ('c,’'x,'da—>'db) repr
('"c,'x,"'da—>'db) repr
—> (('c,’'sa,’'da) repr —> ('c,’'sb,’'db) repr as
('x = 'x) —>
'c,'sa,’'da) repr —> ('c,’'sb,’db) repr, 'da—>'db)

N

repr
repr

'X)

repr

as

X

module R = struct
type ('c,’'sv,’'dv) repr = 'dv
let int (x:int) = x
let bool (b:bool) =b
let add el e2 = el + e2
let mul el e2 = el x e2
let leq x vy =X <=y
let eql x vy =X =y
let if_ eb et ee =
if eb then (et ()) else (ee ())
let lam f = f
let app el e2 = el e2
let fix f = let rec self n=1f self n in

end ;;

self

let build cast fl f2 = function
| {st = Some m}, {st = Some n} —> cast (fl m n)
| el, e2 — pdyn (f2 (abstr el) (abstr e2))

let monoid cast one fl f2 = function
| {st = Some e'}, e when e’ = one —> e
| e, {st = Some e'} when e’ = one —> e

| ee — build cast fl f2 ee

let ring cast zero one fl f2 = function
| ({st = Some e'} as e), _ when e’ = zero —> e
| -, ({st = Some e’} as e) when e' = zero —> e

| ee — monoid cast one fl f2 ee

let add el e2 monoid int 0 R.add C.add (el,e2)
let mul el e2 ring int 0 1 R.mul C.mul (el,e2)
let leq el e2 = build bool R.leq C.leq (el,e2)
let eql el e2 = build bool R.eql C.eql (el,e2)

Syntax &
Semantics

A Biform Theory, using Chiron

Theory Derivative-ReallD {
DERIVATIVE : (R — R) — (R — R)
axiom Vf : (R — R).Vx : R.
[f(x+€) = (x|

DERIVATIVE(f)(x) ~ lin})
€—>

DIFF : E(RHR) = E(RHR)
meaning Vf : Eg_g).[DIFF(f)] >~ DERIVATIVE([f])

}

A Biform Theory, using Chiron

Theory Derivative-ReallD {
DERIVATIVE : (R — R) — (R — R)
axiom Vf : (R — R).Vx : R.
[f(x+€) = (x|

DERIVATIVE(f)(x) ~ lin})
€—>

DIFF : E(RHR) = E(RHR)
meaning Vf : Eg_g).[DIFF(f)] >~ DERIVATIVE([f])

}

But that does not work! Term-rewriting based DIFF is actually

Vf : Er—R)- (TOTAL(f) A DIFFERENTIABLE(f)) =
([D1FF(f)] ~ DERIVATIVE([f]))

A Biform Theory, using Chiron

Theory Derivative-ReallD {
DERIVATIVE : (R — R) — (R — R)
axiom Vf : (R — R).Vx : R.
[f(x+€) = (x|

DERIVATIVE(f)(x) ~ lin})
€—>

DIFF : E(RHR) = E(RHR)
meaning Vf : Eg_g).[DIFF(f)] >~ DERIVATIVE([f])

}

But that does not work! Term-rewriting based DIFF is actually

Vf : Er—R)- (TOTAL(f) A DIFFERENTIABLE(f)) =
([D1FF(f)] ~ DERIVATIVE([f]))

1. This is not a silly as it seems. 2. [-] is very important. 3. Connections!

But also

v

Correct-by-construction software generation
» generate code (C, Java, Fortran) and proofs (Coq and PVs) in parallel

v

Vocabulary and Representation

v

On good error messages

v

The difference between an indeterminate, a symbol, a variable, a
parameter and a generic value

Thank You

	Context
	Lessons
	Tools
	Results

