Mechanized Mathematics

Jacques Carette

McMaster University

CICM - Thursday July 8th, 2010

Outline

Context

Lessons

Tools

Results

Mechanized Mathematics

- define/represent new concepts and new notations
- state, in convenient ways, problems to be solved
- conduct experiments
- make conjectures
- prove theorems
- gain insight through proofs, computations and visualization
- turn theorems into algorithms; compute
- make connections between theories
- communicate results
- reuse previous results

- define/represent new concepts and new notations
- state, in convenient ways, problems to be solved
- conduct experiments
- make conjectures
- prove theorems
- gain insight through proofs, computations and visualization
- turn theorems into algorithms; compute
- make connections between theories
- communicate results
- reuse previous results

- define/represent new concepts and new notations
- state, in convenient ways, problems to be solved
- conduct experiments
- make conjectures
- prove theorems
- ▶ gain insight through proofs, computations and visualization
- turn theorems into algorithms; compute
- make connections between theories
- communicate results
- reuse previous results

- define/represent new concepts and new notations
- state, in convenient ways, problems to be solved
- conduct experiments
- make conjectures
- prove theorems
- gain insight through proofs, computations and visualization
- turn theorems into algorithms; compute
- make connections between theories
- communicate results
- reuse previous results

- define/represent new concepts and new notations
- state, in convenient ways, problems to be solved
- conduct experiments
- make conjectures
- prove theorems
- ▶ gain insight through proofs, computations and visualization
- turn theorems into algorithms; compute
- make connections between theories
- communicate results
- reuse previous results

In mathematics, we

- define/represent new concepts and new notations
- state, in convenient ways, problems to be solved
- conduct experiments
- make conjectures
- prove theorems
- gain insight through proofs, computations and visualization
- turn theorems into algorithms; compute
- make connections between theories
- communicate results
- reuse previous results

Goal: build a tool that helps us do all of that.

are

syntax

Some expressions are meaningless

$$\int_{-\infty}^{\infty} f(x) \delta_a(x) dx = f(a)$$

$$f'(x)={\sf principal}\,\,{\sf part}rac{f(x+\epsilon)-f(x)}{\epsilon},\,\epsilon\,\,{\sf infinitesimal}$$

 $\sum n! x^n$ denotes a unique function on \mathbb{R}^+

 $x^2 + 1$ has exactly 2 roots.

Distributions

$$\int_{-\infty}^{\infty} f(x) \delta_a(x) dx = f(a)$$

Non-standard analysis

$$f'(x) = \text{principal part} \frac{f(x+\epsilon)-f(x)}{\epsilon}, \epsilon \text{ infinitesimal}$$

Resummation

 $\sum n! x^n$ denotes a unique function on \mathbb{R}^+

Complex numbers

 $x^2 + 1$ has exactly 2 roots.

What is meaningful changes over time

Experimenting

Don't Repeat Yourself

Duplication S Evil

Non-choices

efficiency correctness abstraction modularity usability

Tools

Denotational semantics Code generation Polymorphism First-class syntax **Domain Specific Languages** Universal algebra Type theory **Biform Theories** High-level theories

Partial evaluation Abstract interpretation Genericity Reflection Unicode Category theory Literate programming Chiron Proof generation

Using

Structure

```
Empty := Theory {}
Carrier := Empty extended by {U:type}
PointedCarrier := Carrier extended by \{e:U\}
UnaryOperation := Carrier extended by {prime: U \rightarrow U}
BinaryOperation := Carrier extended by \{**:(U,U) \rightarrow U\}
CarrierS := Carrier[U | -> S]
MultiCarrier := combine Carrier, CarrierS over Empty
PointedUnarySystem := combine UnaryOperation, PointedCarrier
                       over Carrier
Magma := BinaryOperation [** | -> *]
AdditiveMagma := BinaryOperation [** | -> +]
IdempotentMagma := Magma extended by {axiom:idempotent((*))}
PointedMagma := combine Magma, PointedCarrier over Carrier
CommutativeMagma := Magma extended by \{axiom: commutative((*))\}
CommutativeAdditiveMagma := AdditiveMagma extended by
    \{axiom: commutative((+))\}
```

skipping over Loop, Monoid, Group, ...

LeftNearSemiring := (combine Semigroup, AdditiveMonoid over Carrier) extended by { **axiom**: leftDistributive ((*), (+)); **axiom**: leftAnnihilative((*),0) } LeftNearRing := **combine** LeftNearSemiring, AdditiveGroup over AdditiveMonoid LeftSemirng := **combine** LeftNearSemiring, AdditiveCommutativeMonoid over AdditiveMonoid LeftRng := combine LeftNearRing, LeftSemirng over LeftNearSemiring Monoid1 := Monoid [e | -> 1]LeftSemiring := combine LeftSemirng, Monoid1 over Semigroup LeftRing := combine LeftRng, LeftSemiring over LeftSemirng Semirng := LeftSemirng extended by { axiom:leftDistributive((flipuc ((*))),(+)) } Rng := combine LeftRng, Semirng over LeftSemirng SemiRing := combine LeftSemiring, Semirng over LeftSemirng Dioid := SemiRing extended by $\{axiom: idempotent((+))\}$ Ring := combine Rng, SemiRing over Semirng CommutativeRing := Ring extended by $\{axiom:commutative((*))\}$ BooleanRing := CommutativeRing extended by $\{axiom: idempotent((*))\}$ Domain := Ring extended by { axiom: forall x:leftDomain((*)).zeroDivisor((*),x,0) implies (x=0)} IntegralDomain := Domain extended by {axiom:commutative((*))} DivisionRing := Ring extended by { axiom: forall x: leftDomain((*)). (not (x=0)) implies invertible (x, (*), 1) }

Field := combine DivisionRing, CommutativeRing over Ring

LeftRing := Theory { U : type; * : (U, U) -> U; + : (U, U) -> U; - : (U, U) -> U; -- : (U, U) -> U; 0 : U; 1 : U; neg : U -> U; neg(x) = (0 - x); axiom leftIdentity_*_1 := forall x : U. (1 * x) = x; axiom rightIdentity_*_1 := forall x : U. (x * 1) = x; axiom left0 := forall x : U. (0 * x) = 0; axiom rightIdentity_+_0 := forall x : U. (x + 0) = x; axiom leftIdentity_+_0 := forall x : U. (0 + x) = x; axiom leftIdentity_+_0 := forall x : U. (0 + x) = x; axiom leftIdentity_+_0 := forall x : U. (0 + x) = x; axiom leftIdentity_+_1 = = forall x : U. (0 + x) = x; axiom leftDistributive_*_+ :=

forall x,y,z:U. (x * (y + z)) = ((x * y) + (x * z));axiom rightAbsorb_+_ :=

forall x, y : U. (((y - x) + x) = y and ((y + x) - x) = y);axiom leftAbsorb_+_ :=

forall x, y : U. ((x + (x - y)) = y and (x - (x + y)) = y);axiom associative_+ :=

forall x:U. forall y:U. forall z:U.((x+y)+z) = (x+(y+z)); axiom associative_* :=

forall x,y,z:U. ((x * y) * z) = (x * (y * z));
axiom commutative_+ := forall x,y:U.(x+y)=(y+x);
theorem inverse_neg := (

forall x:U.(x+(neg x))=0 and forall x:U.((neg x)+x)=0)

AbelianAdditiveGroup, AbelianGroup, AdditiveCommutativeMonoid, AdditiveGroup, AdditiveMagma, AdditiveMonoid, Band, BiMagma, BinaryOperation, BinaryRelation, BooleanAlgebra, BooleanRing, BoundedDistributiveLattice, BoundedJoinSemilattice, BoundedLattice, BoundedMeetSemilattice, BoundedModularLattice, Carrier, CarrierS, Category, Chain, CommutativeAdditiveMagma, CommutativeBand, CommutativeMagma, CommutativeMonoid, CommutativeRing, CommutativeRingAction, CommutativeSemigroup, ComplementedLattice, Digraph, Dioid, DistributiveLattice, DivisionRing, Domain, DoublyPointed, DualSemilattices, Empty, EquivalenceRelation, Field, FunctionSpace, FunctionalComposition, FuntionalIdentity, GoedelAlgebra, Graph, Group, Heap, HeytingAlgebra, IdempotentMagma, IdempotentSemiheap, IdempotentUpDirectedSet, IntegralDomain, InvolutiveUnarySystem, JoinSemilattice, KleeneAlgebra, KleeneLattice, Lattice, LeftGroup, LeftGroupAction, LeftLoop, LeftMagmaAction, LeftMagmaActionP, LeftMonoidAction, LeftNearRing, LeftNearSemiring, LeftOperation, LeftQuasiGroup, LeftRModule, LeftRing, LeftRingAction, LeftRng, LeftSemigroupAction, LeftSemiring, LeftSemiring, LeftUnital, Loop, Magma, MeetDirectoid, MeetSemilattice, ModalAlgebra, ModularLattice, ModularOrtholattice, Monoid, Monoid1, MoufangLoop, MultiCarrier, NonassociativeRing, OrderRelation, Ortholattice, Orthomodularlattice, PartialOrder, PointedCarrier, PointedCommutativeMagma, PointedMagma, PointedSteiner, PointedUnarySystem, Preorder, PrimeAdditiveGroup, PseudoGraph, Quandle, QuasiGroup, RModule, Rack, ReflexiveOrderRelation, RightGroupAction, RightMagmaAction, RightMagmaActionP, RightMonoid, RightMonoidAction, RightOperation, RightQuasiGroup, RightRModule, RightRingAction, RightSemigroupAction, RightUnital, Ring, Rng, SemiRing, Semigroup, Semiheap, Semirng, SimpleGraph, Sink, Sloop, Squag, StarSemiring, Steiner, SubType, TernaryOperation, TotalOrder, TotalPreorder, TraceMonoid, TransitiveOrderRelation, UnaryOperation, UnaryRelation, Unital, UpDirectedSet, VectorSpace,

137 purely axiomatic theories, 82 properties, using 320 lines of definitions. Should be \approx 280? (Less?) We stopped expanding because that would cause too much duplication.

137 purely axiomatic theories, 82 properties, using 320 lines of definitions. Should be \approx 280? (Less?) We stopped expanding because that would cause too much duplication.

Expanded: 2877 lines of property and theory definitions. 303 automatically defined theory morphisms.

137 purely axiomatic theories, 82 properties, using 320 lines of definitions. Should be \approx 280? (Less?) We stopped expanding because that would cause too much duplication.

Expanded: 2877 lines of property and theory definitions. 303 automatically defined theory morphisms.

Can also automatically define (universal algebra, category theory):

- ► type, sub-structure, homomorphism, free structure, etc,
- ▶ type of 'term algebra' over structure, and related morphism(s),
- ▶ various transformers (including printing to text, latex, MathML), ...

Also have *structures* (Bit, Peano Naturals) and constructors (Maybe, Either, List, ...)

Using

Structure

Generic and Generative Programming

Problem: Encode "design concepts" present in a "software product line" composed of variants of an algorithm.

Problem: Encode "design concepts" present in a "software product line" composed of variants of an algorithm.

- Case study: Gaussian Elimination & LU Decomposition.
- Rationale: found 80 different implementations in Maple's library.

- Problem: Encode "design concepts" present in a "software product line" composed of variants of an algorithm.
- Case study: Gaussian Elimination & LU Decomposition. Rationale: found 80 different implementations in Maple's library. Method:
 - 1. MetaOCaml gives typed generators for typed programs.
 - 2. Uses Functors, Monads, Continuation-passing style, Phantom types (rows and objects, aka open products and open sums), and abstract interpretation.
 - 3. Mostly conditional-free; purely static dispatch

- Problem: Encode "design concepts" present in a "software product line" composed of variants of an algorithm.
- Case study: Gaussian Elimination & LU Decomposition. Rationale: found 80 different implementations in Maple's library. Method:
 - 1. MetaOCaml gives typed generators for typed programs.
 - 2. Uses Functors, Monads, Continuation-passing style, Phantom types (rows and objects, aka open products and open sums), and abstract interpretation.
 - 3. Mostly conditional-free; purely static dispatch
- Result:
 - 1. result code is *identical* to human-written versions for some target cases. No abstractions left at all.
 - 2. over 10,000 variants
 - 3. generator gives domain-specific error messages

```
module GVCI = GenericVectorContainer(IntegerDomainL)
module LA = GenLA(GVCI)
```

module GenIV5 = GenGE(struct module Det = AbstractDet module PivotF = FullPivot module PivotRep = PermList module Update = FractionFreeUpdate module Input = InpJustMatrix module Output = OutUMatDetRank end)

```
module IntegerDomain = struct
  type v = int
  let zero = 0
  let one = 1
  let plus x y = x + y
  let div x y = x / y
  . . .
  let better_than = Some (fun x y -> abs x > abs y)
  let normalizerf = None
end
```

```
module IntegerDomain = struct
  type v = int
  type 'a vc = ('a, v) code
  let zero = .< 0 >.
  let one = < 1 >.
  let plus x y = ret .< .~x + .~y>.
  let div x y = ret .< .~x / .~y>.
  . . .
  let better_than = Some
    (fun \times y \rightarrow ret .<abs .~x > abs .~y >.)
  let normalizerf = None
end
```

Design Dim.	Abstracts	Design Dim.	Abstracts
Domain	Matrix values	Packed	L and U as one?
Normalization	domain needs it?	Lower	track lower L ?
ZeroEquivalence	decidability of $= 0$	Code Rep	codegen options
Representation	Matrix representation	UserInformation	user-feedback
Fraction-free	use of division	Augmented	matrix is augmented
Pivoting Strategy	ex:use length?	Input	choice of input
Pivoting Choice	no/row/column/total	Logging	trace algorithm
Pivot Rep	list, array, matrix	Structure	ex: tri-diagonal
Full Division	division in domain	Warning	warn on 0? pivot
Rank	track rank?	In-place	res. stored in input
Determinant	determinant tracking	Error-on-singular	input (near) singular
Output	choice of output	Conditioning	cond. numb. est.

Design space for LU Decomposition \geq 24 dimensional!

Abstraction, correctness and efficiency can co-exist

Multiple Interpretations

A fold on an inductive data type is an interpreter of a domain-specific language.

A fold on an inductive data type is an interpreter of a domain-specific language.

The same language can be interpreted in many useful ways.

A fold on a tagless final type is an interpreter of a domain-specific language.

Church-Scott dual encoding at the constructor level

A fold on a tagless final type is an interpreter of a domain-specific language.

Term typechecked once. Interpretations are compositional.

```
module R = struct
 type ('c,'sv,'dv) repr = 'dv
  let int (x:int) = x
  let bool (b:bool) = b
  let add e1 e2 = e1 + e2
  let mul e1 e2 = e1 * e2
  let leq x y = x \ll y
  let eql x y = x = y
  let if _ eb et ee =
       if eb then (et ()) else (ee ())
  let lam f = f
  let app e1 e2 = e1 e2
  let fix f = let rec self n = f self n in self
end ::
```

let build cast f1 f2 = function
| {st = Some m}, {st = Some n} -> cast (f1 m n)
| e1, e2 -> pdyn (f2 (abstr e1) (abstr e2))

```
let monoid cast one f1 f2 = function
| {st = Some e'}, e when e' = one -> e
| e, {st = Some e'} when e' = one -> e
| ee -> build cast f1 f2 ee
```

```
let ring cast zero one f1 f2 = function
| ({st = Some e'} as e), _ when e' = zero -> e
| _, ({st = Some e'} as e) when e' = zero -> e
| ee -> monoid cast one f1 f2 ee
```

let add e1 e2 = monoid int 0 R.add C.add (e1,e2)
let mul e1 e2 = ring int 0 1 R.mul C.mul (e1,e2)
let leq e1 e2 = build bool R.leq C.leq (e1,e2)
let eql e1 e2 = build bool R.eql C.eql (e1,e2)

Syntax &

Semantics

A Biform Theory, using Chiron

}

Theory Derivative-Real1D { DERIVATIVE : $(\mathbb{R} \to \mathbb{R}) \to (\mathbb{R} \to \mathbb{R})$ axiom $\forall f : (\mathbb{R} \to \mathbb{R}) . \forall x : \mathbb{R}.$ DERIVATIVE $(f)(x) \simeq \lim_{\epsilon \to 0} \frac{|f(x + \epsilon) - f(x)|}{\epsilon}$

DIFF: $E_{(\mathbb{R}\to\mathbb{R})} \to E_{(\mathbb{R}\to\mathbb{R})}$ meaning $\forall f : E_{(\mathbb{R}\to\mathbb{R})}.$ [DIFF(f)] \simeq DERIVATIVE([[f]])

A Biform Theory, using Chiron

Theory Derivative-Real1D {
DERIVATIVE :
$$(\mathbb{R} \to \mathbb{R}) \to (\mathbb{R} \to \mathbb{R})$$

axiom $\forall f : (\mathbb{R} \to \mathbb{R}) . \forall x : \mathbb{R}.$
DERIVATIVE $(f)(x) \simeq \lim_{\epsilon \to 0} \frac{|f(x+\epsilon) - f(x)|}{\epsilon}$

DIFF:
$$E_{(\mathbb{R}\to\mathbb{R})} \to E_{(\mathbb{R}\to\mathbb{R})}$$

meaning $\forall f : E_{(\mathbb{R}\to\mathbb{R})} \cdot [\text{DIFF}(f)] \simeq \text{DERIVATIVE}([[f]])$

But that does not work! Term-rewriting based DIFF is actually

$$orall f: E_{(\mathbb{R} o \mathbb{R})}. (ext{total}(f) \wedge ext{differentiable}(f)) \Rightarrow ([[ext{Diff}(f)]] \simeq ext{derivative}([[f]]))$$

A Biform Theory, using Chiron

Theory Derivative-Real1D {
DERIVATIVE :
$$(\mathbb{R} \to \mathbb{R}) \to (\mathbb{R} \to \mathbb{R})$$

axiom $\forall f : (\mathbb{R} \to \mathbb{R}) . \forall x : \mathbb{R}.$
DERIVATIVE $(f)(x) \simeq \lim_{\epsilon \to 0} \frac{|f(x+\epsilon) - f(x)|}{\epsilon}$

DIFF:
$$E_{(\mathbb{R}\to\mathbb{R})}\to E_{(\mathbb{R}\to\mathbb{R})}$$

meaning $\forall f: E_{(\mathbb{R}\to\mathbb{R})}.[DIFF(f)] \simeq DERIVATIVE([[f]])$

But that does not work! Term-rewriting based DIFF is actually

$$orall f: E_{(\mathbb{R} o \mathbb{R})}. ext{(total}(f) \land ext{differentiable}(f)) \Rightarrow \ (extsf{[diff}(f) extsf{]}) \simeq ext{derivative}(extsf{[}f extsf{]}))$$

1. This is not a silly as it seems. 2. [.] is very important. 3. Connections!

...

- Correct-by-construction software generation
 - ▶ generate code (C, Java, Fortran) and proofs (Coq and PVs) in parallel
- Vocabulary and Representation
- On good error messages
- The difference between an indeterminate, a symbol, a variable, a parameter and a generic value

Thank You