
Property Inference for Maple:

An Application of Abstract Interpretation

Jacques Carette1 Stephen Forrest1

1McMaster University
1280 Main St. W., Hamilton, ON, Canada

Calculemus 2007

Outline

1. Introduction
◮ The Problem
◮ Static Analysis
◮ Properties of Interest

2. Tools
◮ Abstract Interpretation
◮ Constraints
◮ Recurrences

3. Results

4. Methodology and Design

5. Conclusion

The Problem: Understanding Maple code

◮ Consider the following basic features of Maple

1. Imperative and Functional style (including higher-order functions)

2. Dynamic typing (one can create a ‘halts’ type!)
3. Polymorphism: ad hoc, parametric, even intensional

4. Reflection and Reification

5. Dependent “types”
6. First-class “types”

The Problem: Understanding Maple code

◮ Consider the following basic features of Maple

1. Imperative and Functional style (including higher-order functions)

2. Dynamic typing (one can create a ‘halts’ type!)
3. Polymorphism: ad hoc, parametric, even intensional

4. Reflection and Reification

5. Dependent “types”
6. First-class “types”

◮ Solutions?

1. No traditional type system can handle all these.

2. Type-and-effect systems help a little.
3. Axiom/Aldor/Focal-style types do not capture enough [but contain

many useful ideas]

4. Haskell type classes also fall short [but are another source of ideas]

From Inference to Static Analysis

◮ We wish to “infer”

1. as much as possible (precision)

2. without executing the code, (offline)

3. while terminating,
4. and remaining sound.

From Inference to Static Analysis

◮ We wish to “infer”

1. as much as possible (precision)

2. without executing the code, (offline)

3. while terminating,
4. and remaining sound.

◮ (Classical) Solution: Look for approximatable properties of

1. Our values

2. Our programs

Properties of Interest

◮ Values
◮ type! Approximation implemented: set of possible surface types
◮ Sequence length. Approx: length range (like 5 . . . 12) I(N)
◮ Length (nops – number of operands). Approx: range I(N)
◮ “Dependence”. Approx: set of (possible) dependencies

Properties of Interest

◮ Values
◮ type! Approximation implemented: set of possible surface types
◮ Sequence length. Approx: length range (like 5 . . . 12) I(N)
◮ Length (nops – number of operands). Approx: range I(N)
◮ “Dependence”. Approx: set of (possible) dependencies

◮ Programs
◮ Variable reads. Approx: range I(N)
◮ Variable writes. Approx: range I(N)
◮ Reaching definition (current assignment). Approx: sets of (variable,

program location).

Properties – Applications

◮ Variable with no type means code contains a mistake.

◮ Variable read 0 times can be eliminated (and associated pure

computations).

◮ Variable read once can have their definition inlined.

◮ Sequence length = 1..1 means the variable is not a sequence!

◮ Dependence = ∅ means value is “pure”

◮ Dependence = {Digits} means ??

Example

Consider:

S imple Int := proc (x , n) l oca l c , i ;

i f n=−1 then log (x)

else c := 1/(n+1);

for i from 1 to n+1 do c := c∗x end do ;

c ;

end i f ;

end proc :

◮ Obfuscated way of computing
∫

xn dx for n > −1.

◮ Though SimpleInt contains no explicit types, a “successful” run

clearly imposes constraints upon the input. Using these, want to to

deduce (amongst other facts) that the result is an “expression” and

n ∈ Z.

◮ We also want to be as precise as possible in estimating the behaviour

of the assignment in the loop context.

(Classical) Abstract Interpretation

◮ General Methodology particularly well suited to program analyses.

◮ Let C and A be complete lattices, of Concrete and Abstract values.

◮ A pair α : C → A (abstraction) and γ : A → C (concretization) of

monotonic, continuous lattice functions.

◮ Pair is a Galois connection if ∀c.c ⊑C γ(α(c)) and ∀a.α(γ(a)) ⊑A a.

◮ Given f : C → C and g : A → A, g is a sound approximation of f iff if

∀c.α(f(c)) ⊑A g(α(c))

◮ To all program points, transfer funtion fij : C → C

(Semi-classical) Constraints

◮ (Like modern type systems): first pass just collects constraints.

◮ Rich constraint language:
◮ lattice values (ex: 0 . . . 2, 1 . . . 1, sets of types, etc),
◮ lattice operators (ex: ∧, ∨, ⊑),
◮ logical operators (and only for now)
◮ abstract interpretation operations, (like lifted ⊕ on intervals, as well as

widenings)
◮ recurrences (V3(n + 1) = V3(n) ⊕ 1 . . . 1)

◮ Second pass: solve constraints (being formalized)

(New?) Symbolic Recurrences over monoidal lattices

◮ Recurrences (1) encode the iteration of any transfer function over any

lattice.

◮ Loops (and recursion) induce (2) recurrences
◮ sometimes trivial,
◮ often simple

◮ Monoids:
◮ Set of iterates is a monoid in the space of transfer functions
◮ Most of our lattices have monoid structures (⊕ for I(N), ∪ for sets)

◮ Formalize in constraint language
◮ add a few extra symbols to language
◮ add constraint generators
◮ add a new “iteration counter” variable

◮ Ad hoc solvers (for now)

A Worked Example

Maple procedure which returns a boolean result indicating whether the

argument is prime. In the event it is composite, the set of factors is also

returned as the second element of an expression sequence.

A Worked Example (cont)

Each of the indicated locations is a program point with associated

properties, which is the basis for the constraint system. The constraints

are derived from Maple’s operational semantics.

A Worked Example (cont)

Constraints for the Expression Sequence Length analysis:V2 = V3, V4 = ProInitVal(0),V4 � ES(1 . . . 1), V3 � ES(1 . . . 1), V6 � ES(1 . . .1),V7 = V8, V8 = ES(1 . . . 1) ⊕ V9, V10 = ES(1 . . .1),V11 = V7 ∨ V10

◮ ES(x . . . y) denotes a expression size approximation,

◮ ProInitVal(u) denotes the initial size of a parameter,

◮ Vn denotes a variable corresponding to the value of the program

point n.

∨ and ⊕ are the join and summation operations in I(N).

Another Example

p := proc (u) l oca l x , y ;

x := 2 ,3 ,4 ,5 ; y := 1;

while y < 10 do x := (x , 1) ; y := y∗u ; end do ;

(x , y) ;

end proc :

The two assignments within the while-loop body induce the following

recurrences in the Expression Sequence Length Analysis:LoopIC(x) = ES(4 . . . 4)LoopIC(y) = ES(1 . . . 1)LoopStepFinal(x) = LoopStepInit(x) ⊕ ES(1 . . . 1)LoopStepFinal(y) = ES(1 . . .∞) ∧ TPROD(LoopStepInit(x), ES(1 . . . 1))

◮ TPROD(a, b) is the induced transfer function (on I(N)) for a product.

◮ The meet with ES(1 . . .∞) is needed because Maple does not allow a

product of length 0.

Another Example (cont)

When we solve these recurrences, we obtain the results:LoopFinalVal(x) = ES(1 . . . 1) ⊗ ESize(NumLoopSteps)LoopFinalVal(y) = ES(1 . . . 1)

◮ NumLoopSteps is a symbolic quantity which we may be able to

determine by context, or by performing other analyses. If so, we can

obtain an exact estimate on the size of x.

◮ Maple semantics implies thatTPROD(ES(1 . . . 1), ES(1 . . . 1)) = ES(1 . . . 1)

so our recurrence for y has an exact solution.

Error Detection

Our approach can sometimes detect programming errors.

p := proc () l oca l L ;

L := [1 , 2];

s in (L) ;

end proc :

◮ As L is a list, it is unacceptable as an argument to sin.

◮ Our Surface Type Analysis recognizes this by estimating the set of

surface types which L may match as ∅.

◮ Generally, estimates corresponding to ⊥ in our lattice signify

programming errors.

Results (overall)

Expression Sequence Length Procedures

Local with estimate 6= [0 . . .∞] 862

Local with finite upper bound 593

Local with estimate [1 . . .∞] 374

Local with estimate [0 . . . 1] 43

Solvable loop recurrences 127

Total analyzed 1276

Figure: Expression sequence length analysis on Maple library source

Results (overall)

Surface Type Procedures

Local type is (TExpression 827

Local w/ fully-inferred type 721

Local whose value is a posint 342

Local whose value is a list 176

Local whose value is a set 56

Solvable loop recurrences 267

Total analyzed 1330

Figure: Surface type analysis on Maple library source

Methodology and Design

Methodology:

◮ All analyses based on abstract interpretation and constraints

◮ Analyses divided into 2 stages: constraint generation and constraint

solving.

◮ Try to leverage the underlying CAS (ex: recurrences)

Design:

◮ Constraint Generation is completely generic (i.e. parametric in the

abstract domain)

◮ Constraint generation done in 2 passes throught AST:

1. Determine local constraints

2. Aggregate constraints into system

◮ Constraint solving is partly generic, partly ad hoc

Conclusion and Future Work

Done:

◮ Definitely improve “error” reporting

◮ Improves understanding of extra polymorphism in Maple code

◮ Enables a lot of further work

Still needs done:

◮ Extend approach to additional properties

◮ Use various product lattices for analysis domains

◮ Handle more varieties of recurrences

◮ Use these analyses in other tools (e.g. mint, compiler, partial

evaluator)

