
Trustable Communication Between
Mathematics Systems?

Jacques Carette, William M. Farmer, and Jérémie Wajs

Department of Computing and Software
McMaster University

1280 Main Street West
Hamilton, Ontario L8S 4K1

Canada

{carette,wmfarmer,wajs}@mcmaster.ca

Abstract. This paper presents a rigorous, unified framework for faci-
litating communication between mathematics systems. A mathematics
system is given one or more interfaces which offer deductive and compu-
tational services to other mathematics systems. To achieve communica-
tion between systems, a client interface is linked to a server interface by
an asymmetric connection consisting of a pair of translations. Answers
to requests are trustable in the sense that they are correct provided a
small set of prescribed conditions are satisfied. The framework is robust
with respect to interface extension and can process requests for abstract
services, where the server interface is not fully specified.

Keywords: Mechanized mathematics, computer theorem proving, com-
puter algebra, intersystem communication, knowledge representation.

1 Introduction

Current mechanized mathematics systems (MMSs), by and large, fall into
one of three camps: numerics-based (like Matlab, Octave, and Scilab),
symbolic (Maple, Mathematica, MuPAD, and a whole host of smaller
systems), and theorem provers (Coq, hol, imps, Isabelle, Nqthm, Nuprl,
Otter, and pvs, to name just a few). Each has its strong points, although
many are more often bemoaned for their weaknesses. These weaknesses
are frequently all the more frustrating for users of many of these systems,
as one system’s weakness is another’s strength. An increasing majority
of users are growing to be agnostic in their choice of MMS, worrying
more about getting a particular task done than whether one übersystem
can do it all. Furthermore, it is important to remark that the expertise
needed to build each kind of system is markedly different for all three
flavors. Although there has been some efforts at making some of these
MMSs broader, familiarity with them quickly dispels any notion that
? This research was supported by Bell Canada and MITACS.

1

this dabbling is particularly successful. It would perhaps be wiser for the
builders of these systems to stay within their sphere of expertise, and
enable their software to instead request the services of other systems that
can better perform these tasks.

In simple terms, the problem we wish to address, illustrated in Fi-
gure 1, is the following: if system A needs access to a certain function-
ality f which it does not currently implement, but a service providing
this functionality is offered by system B, then A should be able to send
a request to B containing a translation of its exact problem into the lan-
guage of B, wait for B to perform the service, and then finally receive an
answer in its own language.

A-problem
translation−−−−−−−−→ B-problem

f

y yB-service

A-answer
translation←−−−−−−−− B-answer

Fig. 1. The basic communication problem

Informally, we wish to think of “perform f” as a request, the pair of
translations above as a connection, and the set of available functions from
B-problems to B-answers as B’s services. We then want to assert that
meaningful communication happens when the diagram above commutes.

In this paper we present a unified framework which clearly defines
these various concepts (interfaces, services, connections, requests,
and answers) in precise mathematical terms. The overarching concern
is that of trust: when one system requests a service from another, can it
trust the result it gets back? Certainly any system which purports to be
trustable must also insist that any communication it makes to another
system satisfy the same requirements.

1.1 Useful Communication

Certainly examples of useful communication between systems abound!
Commercial system builders are definitely convinced of this fact, as ev-
idenced by Mathematica’s J/Link, Maple’s Matlab package, Matlab’s
Symbolic Toolbox, and so on. Research papers in this area are also plen-
tiful, as we will see later.

For example, polynomial arithmetic is frequently a necessary step in a
proof; typical theorem provers will, at best, implement this using rewrite
rules (or their equivalent), which is at least an order of magnitude slower
than any implementation by any Computer Algebra System (CAS) [8]. In

2

the opposite direction, closed-form integration of even simple expressions
containing parameters involves complex algorithms but also complex side
conditions which must be verified, forcing a CAS to call a theorem prover
(see [1] and the references therein).

There are also other cases where for exact problems it is possible to
compute an exact condition number for the associated numerical problem—
one can then use arbitrary precision arithmetic as a decision procedure
to test zero-equivalence. Achieving this could involve communication be-
tween more than two systems.

1.2 Obstacles

The rise in various technologies like TCP/IP, sockets, and XML has pro-
vided some convenient solutions for some of the old obstacles to commu-
nicating between MMSs. But a much larger obstacle has arisen: that of
semantics. Referring back to Figure 1, it should be clear that describing
the semantics of each arrow, in all cases and for all possible services, is
nontrivial. To achieve our aim of trustability, this issue is inescapable.

To a lesser extent, these is also a problem of interpretability: even
if the answer makes sense in System A, is it “the” answer? The notion
of “the” answer in a theorem proving system is qualitatively different
than from a system centered on numerical analysis, even though both are
rigorously and uniquely defined.

1.3 What is Needed

To overcome the obstacles listed in the previous section, one is quite nat-
urally led to formalizing each of the components of Figure 1. Informally,
given a system X, let us define an X-problem as an expression E of X.
Given a function f : E 7→ E′ in X, then define an X-solution to simply
be that expression E′.

First, let us assume that systems A and B are known, and that the
arrow service is actually the identity. Meaningful communication between
A and B must necessarily imply that f is (at least) an equivalence re-
lation, and furthermore the translations between A and B must in some
sense be “meaning preserving”. Of course, the closer f is to the identity,
the more useful the results will be, but something weaker is all we need for
meaningful communication to occur. This needs to be made very precise,
and will lead to the definition of a connection.

3

Second, let us assume again that A and B are known and there is
connection between them. To get at B’s services, B must expose some of
its functionality, leading to the concept of an interface.

Up to now, neither issues of trustability nor interpretability have re-
ally been addressed. It is quite possible that the translation from an
A-problem to a B-problem is inaccurate, yet the answer returned by the
identity service is correct: for example, the A to B translation could swap
some symbols (like + and ∗) and the B to A translation swaps them back.
To ensure that both the problem and its answer are properly translated,
we first demand that types be respected. This helps but is not sufficient.
What we really have to do is to completely change the definition of a
solution: instead of getting an expression, we ask for a theorem, which
encodes both the problem and its solution. We can then insist that a
translation from B back to A be much stronger, that in fact it be an
interpretation. As we will show, this is enough to ensure that we get a
trustable, interpretable answer.

To be explicit, we wish to (re)define an X-solution as the theorem
f(E) ≡ f̃(E) where f̃ is a syntactic representation of the action of f .

1.4 Previous Proposals

Several attempts at addressing the problem of communication between
MMSs have been made. We can classify them into two categories: the
first category consists of work that attempts to deal with the problem in
general. Armando and Zini’s Logic Broker Architecture [2, 3], Bertoli, Cal-
met, Giunchiglia and Homann’s omscs [9], Kerber, Kohlhase and Sorge’s
Ω-mkrp [16], the OpenMath project [11], and OMDoc [17] fit in this cat-
egory. The new European mowgli project [4], which aims at providing
a common machine-understandable (semantics-based) representation of
mathematical knowledge and a platform to exploit it, likely fits here too.

The OpenMath project claims to provide a common platform for com-
munication between various mathematics systems. However, while it pro-
vides a common syntax, it fails in our view to specify a semantics for that
syntax, which is a major drawback when trying to make mathematics sys-
tems based on different logics communicate. In other words, there are too
many implicit assumptions behind OpenMath’s version of semantics for
it to apply outside the narrow (but useful) realm of standard operations
between the standard CASs.

A refinement to the OpenMath approach lies in OMDoc. The OMDoc
approach recognizes the need for semantics, and introduces them through
their notion of theories. However, OMDoc does not seem to address the

4

actual mechanics of getting different systems to communicate as much as
it provides a common language (syntax + semantics) for them to do so.

The Ω-mkrp approach argues that explicit proofs are needed, that
“external” systems cannot be trusted. This seems very impractical.

The omscs (Open Mechanized Symbolic Computation Systems) work
provides an architecture used to formally specify automated theorem
provers and CASs and to formally integrate them. However, it does not
seem to address the issues of trust or extending theories.

The Logic Broker Architecture attempts to define a general frame-
work for communication between MMSs. This approach is conceptually
very similar to ours. It defines interfaces for MMSs and uses a Logic Bro-
ker (LB) to perform communication between systems. The LB includes
facilities for translation of requests and meaning-preserving translation of
answers (thus addressing the question of trust), as well as (in theory) a
logical specification matcher to match requests to services offered. How-
ever, we believe that this architecture does not support extending theories
well, which we will show can be achieved effectively by our approach.

The second category of related work consists of ad hoc solutions. In
many such cases in the literature, only unidirectional cooperation exists:
one system acts as a master, generating requests, while the other one
serves as a slave, fulfilling those requests. This includes Howe’s work on
embedding an hol theory into Nuprl [15], Ballarin and Paulson’s work on
using the Sumit library for proofs in Isabelle [8, 6], and Ballarin, Homann
and Calmet’s work on an interface between Isabelle and Maple [7]. Bal-
larin and Paulson’s work clearly identifies the issue of trust, and distin-
guishes between trustable results, for which a formal proof exists, and ad
hoc results, based on approximations.

Another more evolved ad hoc case, intended for bidirectional cooper-
ation between MMSs, is Harrison and Théry’s work on combining hol
and Maple [14]. Similarly to Ballarin and Paulson, Harrison and Théry
classify the systems by degree of trust, for example trusting results proved
by hol while checking results given by Maple.

All these ad hoc solutions have the major drawback of not seeking
generality. Howe, for instance, does not attempt to make hol and Nuprl
communicate as much as he attempts to embed an hol theory into Nuprl.
Why should the machinery for hol be duplicated in Nuprl when it already
exists in hol itself? In addition, this approach is not valid when the
system to be integrated is a black box. Our approach enables one MMS
to use another MMS’s services without, first, having to reproduce them,
and second, having to know in detail how they work. We will show how it

5

addresses the issue of trust, and eliminates the need to verify every single
result (which can be painfully burdensome).

1.5 Organization of the Paper

In section 2, we give definitions for the underlying theory necessary to the
presentation of our framework. In section 3, we give a simple framework
for communication between MMSs. In section 4, we discuss additional
obstacles in achieving communication in real cases, and show how to refine
the framework presented in section 3 to address some of those obstacles.
Finally, we conclude in section 5.

2 Biform Theories and Interpretations

At the heart of this work lies the notion of a “biform theory”, which
is the basis for ffmm, a Formal Framework for Managing Mathematics
[13]. Informally, a biform theory is simultaneously an axiomatic and an
algorithmic theory.

In this section we define concepts necessary to understand the rest
of this paper. Most of the definitions given here are updated versions of
definitions given in [13].

2.1 Logics

A language is a set of typed expressions. The types include ∗, which
denotes the type of truth values. A formula is an expression of type ∗. A
logic is a set of languages with a notion of logical consequence. If K is a
logic, L is a language of K, and Σ ∪ {A} is a set of formulas of L, then
Σ |=K A means that A is a logical consequence of Σ in K.

2.2 Transformers and Formuloids

Let Li be a language for i = 1, 2. A transformer Π from L1 to L2 is an
algorithm that implements a partial function π : L1 ⇀ L2. For E ∈ L1,
let Π(E) mean π(E), and let dom(Π) denote the domain of π, i.e., the
subset of L1 on which π is defined. For more on transformers, see [12, 13].

A formuloid of a language L is a pair θ = (Π,M) where:

1. Π is a transformer from L to L.
2. M is a function that maps each E ∈ dom(Π) to a formula of L.

6

M is intended to give the meaning of applying Π to an expression E.
M(E) usually relates the input E to the output Π(E) in some way; for
many transformers, M(E) is the equation E = Π(E), which says that Π
transforms E into an expression with the same value as E itself.

The span of θ, written span(θ), is the set {M(E) | E ∈ dom(Π)}
of formulas of L. Thus a formuloid has both an axiomatic meaning—its
span—and an algorithmic meaning—its transformer. The purpose of its
span is to assert the truth of a set of formulas, while its transformer is
meant to be a deduction or computation rule.

2.3 Biform Theories

A biform theory is a tuple T = (K, L, Γ) where:

1. K is a logic called the logic of T .
2. L is a language of K called the language of T .
3. Γ is a set of formuloids of L called the axiomoids of T .

The span of T , written span(T), is the union of the spans of the axiomoids
of T , i.e.,

⋃
θ∈Γ span(θ). A is an axiom of T if A ∈ span(T). A is a theorem

of T , written T |= A, if span(T) |=K A. A theoremoid of T is a formuloid θ
of L such that, for each A ∈ span(θ), T |= A. Obviously, each axiomoid of
T is also a theoremoid of T . An axiomoid is a generalization of an axiom;
an individual axiom A can be represented by any axiomoid (Π,M) such
that dom(Π) = {E} and M(E) = A.

T can be viewed as simultaneously both an axiomatic theory and an
algorithmic theory. The axiomatic theory is represented by

Taxm = (K, L, {M | (Π,M) ∈ Γ for some Π}),

and the algorithmic theory is represented by

Talg = (K, L, {Π | (Π,M) ∈ Γ for some M}).

Let Ti = (K, Li, Γi) be a biform theory for i = 1, 2. T2 is an extension
of T1, written T1 ≤ T2, if L1 ⊆ L2 and Γ1 ⊆ Γ2. T2 is a conservative
extension of T1, written T1 � T2, if T1 ≤ T2 and, for all formulas A of L1,
if T2 |= A, then T1 |= A. Note that ≤ and � are partial orders.

2.4 Translations and Interpretations

Let Ki be a logic and Ti = (Ki, Li, Γi) be a biform theory for i = 1, 2. A
translation from T1 to T2 is a transformer Φ from L1 to L2 that respects

7

types, i.e., if E1 and E2 are expressions in L1 of the same type and
Φ(E1) and Φ(E2) are defined, then Φ(E1) and Φ(E2) are also of the same
type. T1 and T2 are called the source theory and the target theory of
Φ, respectively. Φ is total if Φ(E) is defined for each E ∈ L1. Φ fixes a
language L if Φ(E) = E for each E ∈ L.

An interpretation of T1 in T2 is a total translation Φ from T1 to T2

such that, for all formulas A ∈ L1, if T1 |= A, then T2 |= Φ(A). An
interpretation thus maps theorems to theorems. A retraction from T2 to
T1 is an interpretation Φ of T2 in T1 such that T1 ≤ T2 and Φ fixes L1.

Lemma 1. Let Φ1 be a retraction from T2 to T1 and Φ2 be a retraction
from T3 to T2. Then Φ1 ◦ Φ2 is a retraction from T3 to T1.

Proof. Let Φ = Φ1◦Φ2. We first need to prove that Φ is an interpretation.
Φ is clearly total. Assume T3 |= A. Then T2 |= Φ2(A) since Φ2 is an
interpretation of T3 in T2. In turn, T1 |= Φ1(Φ2(A)), i.e., T1 |= A since Φ1

is an interpretation of T2 in T1. Hence, Φ is an interpretation of T3 in T1.
By transitivity of ≤, since T1 ≤ T2 and T2 ≤ T3, T1 ≤ T3.
Finally, we need to prove that Φ fixes L1. Let E ∈ L1 ⊆ L2 ⊆ L3.

Φ2(E) = E since Φ2 is a retraction from T3 to T2 and E ∈ L2. Similarly,
Φ1(Φ2(E)) = Φ1(E) = E since Φ1 is a retraction from T2 to T1 and
E ∈ L1. Hence Φ(E) = E and Φ fixes L1. 2

Proposition 1. If Φ is a retraction from T2 to T1, then T1 � T2.

Proof. Let A be a formula of the language of T1 such that T2 |= A. We
must show that T1 |= A. By definition, (1) Φ is a interpretation of T2 in
T1 and (2) Φ fixes the language of T1. (1) implies that T1 |= Φ(A), and
(2) implies Φ(A) = A. Therefore, T1 |= A. 2

3 A Simple Communication Framework

We now present a simple communication framework, based on the theoret-
ical notions presented in the previous section, that addresses the problem
presented in Figure 1. The framework formalizes the notions we men-
tioned in the introduction: interface, service, connection, request, and an-
swer. As we will show after this section, the framework does not address
some important practical obstacles to effective communication between
MMSs. A refined framework, which is more practical and which general-
izes the simple framework here, is presented in section 4.

An interface is a pair I = (T,S) where:

8

1. T is a biform theory called the theory of I.
2. S is a set of theoremoids of T called the services of I.

As a theoremoid of T , a service of I is a formuloid whose span is a set of
theorems of T and whose transformer is a sound deduction or computation
rule for T .

Let Ii = (Ti,Si) be an interface for i = 1, 2. A connection from I1 to
I2 is a pair C = (export, import) where:

1. export is a translation from T1 to T2.
2. import is an interpretation of T2 in T1.

I1 and I2 are respectively called the client interface and the server inter-
face of C. export is for transporting problems from T1 to T2; it need not
be meaning preserving. import is for transporting solutions from T2 to T1;
it must be meaning preserving.

An informed request is a tuple R = (I1, I2, C, E, θ) where:

1. Ii = (Ti,Si) is an interface for i = 1, 2.
2. C = (export, import) is a connection from I1 to I2.
3. E is an expression of the language of T1.
4. θ = (Π,M) ∈ S2.

The reason to call such a request informed is that it explicitly depends
not only on the interface I2 but on the theoremoid θ as well: we assume
that I1 “knows” about θ. We will come back to this point in section 4.

If A = import(M(export(E))) is defined, it is the answer to R; other-
wise the answer to R is undefined. When A is defined, it is a theorem:

Proposition 2. Let R and A be as above. If A is defined, then T1 |= A.

Proof. Assume A is defined. Since θ is a theoremoid of T2, T2 |=
M(export(E)), and then since import is an interpretation of T2 in T1,
T1 |= import(M(export(E))). 2

The basic problem (Figure 1) is now addressed as shown in Figure 2.
All that is necessary to perform this type of communication are interfaces
for both systems, and a connection between the two interfaces.

This takes care of the question of trust (should A believe the answer
it receives from B?), so crucial to the general problem at hand. Whether
an answer is correct depends on whether a translation is an interpretation
and a service is a theoremoid. Thus an answer is trustworthy if the mech-
anisms for verifying interpretations and theoremoids are trustworthy.

9

E
export
−−−−→ E′

?

y yθ

answer ←−−−−−
import

M(E′)

Fig. 2. Communication between two MMSs

Example using Decision Procedures

Suppose Shol is a higher-order interactive theorem proving system with
several implemented theories and Sfol is a first-order automated theorem
proving system with several implemented theories equipped with decision
procedures. Suppose further that the underlying logic of Shol is a version
of simple type theory and the underlying logic of Sfol is a version of first-
order logic. This example will show how the framework outlined above
can be used to give Shol access to the decision procedures in Sfol.

One of the theories of Shol is a theory COF of a complete ordered field
which has one model up to isomorphism, namely, the real numbers with
the primitive elements 0 and 1 and the primitive operations +, ∗, and <.
An exceedingly rich theory, COF is adequate for developing real analysis.
However, several standard decision procedures for theories related to COF
are not implemented in Shol but are implemented in Sfol.

Two of the theories of Sfol are PA, a formalization of first-order Peano
arithmetic, and RCF, a formalization of the first-order theory of real closed
fields (see [10] for a precise description of these two theories). The theore-
moids of PA include θ+, a decision procedure for additive number theory
(Presburger arithmetic), and θ∗, a decision procedure for multiplicative
number theory (sometimes called Skolem arithmetic). The theoremoids of
RCF include θtarski, a decision procedure for real closed fields. The frame-
work, with appropriate interfaces and connections, enables these decision
procedures to be used within COF.

For example, suppose that we would like to use the decision procedures
of PA in COF. Let I1 = (COF,S1) be an interface of Shol and I2 = (PA,S2)
with {θ+, θ∗} ⊆ S2 be an interface of Sfol. Also let C = (export, import) be
the connection from I1 to I2 where export translates “first-order natural
number formulas” of COF to formulas of PA and import is a standard
interpretation of PA in COF (which exists because the natural numbers
in COF satisfy Peano’s axioms for natural number arithmetic). C offers a
way of deciding in COF many statements about the natural numbers using
the two decision procedures θ+ and θ∗, both of which are nontrivial to
implement. As an illustration, if the request R = (I1, I2, C, E, θ+) is made

10

where E is a formula in COF that expresses the Presburger statement

∀ a, b, c : N . a ≡ b mod n ⇔ a + c ≡ b + c mod n,

then the answer might be something like E ⇔ true.

4 A Refined Communication Framework

There are several obstacles to effectively employing the simple framework
presented in the previous section. In this section, three obstacles involving
connections and one obstacle concerning requests are addressed.

4.1 Obstacles involving Connections

The first obstacle to effectively employing the simple framework is that
constructing appropriate connections between interfaces is a challenging
task, especially when the biform theories of the interfaces are based on
different logics. The export translation of a connection must satisfy a
syntactic condition, but the import interpretation must satisfy both a
syntactic and semantic condition. As a general principle, it is easier to
construct a translation or interpretation Φ if the “primitive basis” of its
source theory T1 (i.e., the primitive symbols and axiomoids of T1) is small.

The second obstacle is that translating an expression E using the
export translation or the import interpretation of a connection may result
in an expression much larger than E. As a general principle, it is easier
to construct a translation or interpretation Φ without this kind of size
explosion if its target theory T2 contains a rich set of defined symbols.

The third obstacle is that the theory S of an MMS behind the biform
theory T of an interface is likely to be enriched with defined symbols over
time. Defining a symbol in S will have the effect of extending T to a new
theory T ′. However, an interpretation Φ of T will not be an interpretation
of T ′ because Φ will not be defined on expressions of T ′ containing the
new defined symbol. As a result, any connection from an interface of the
form (T,S) will be broken by the definition of the new symbol.

4.2 Conservative Stacks

The three obstacles described above can be addressed by using a “conser-
vative stack” in place of a biform theory in the definition of an interface.
The definitions of interface, connection, informed request, and answer are
then redefined. The resulting refined framework is a generalized version
of the simple framework.

A conservative stack is a pair of sequences Σ = (τ, ρ) where:

11

1. τ = 〈T0, . . . , Tn〉 is a finite sequence of biform theories such that, for
all i with 0 ≤ i < n, Ti ≤ Ti+1. Tn is called the theory of Σ.

2. ρ = 〈Φ1, . . . , Φn〉 is a finite sequence of translations such that, for all
i with 0 < i ≤ n, Φi is a retraction from Ti to Ti−1.

Notice that, by Proposition 1, the sequence ρ of retractions implies that
τ is a “stack” of conservative extensions, i.e., T0 � · · ·� Tn.

An interface is a pair I = (Σ,S) where Σ is a conservative stack and
S is a set of theoremoids of the theory of Σ called the services of I.

Let Ii = ((τi, ρi),Si) be an interface with τi = 〈T i
0, . . . , T

i
ni
〉 for i =

1, 2. A connection C from I1 to I2 is a tuple (T 1, export, U2, T 2, import, U1)
where:

1. T 1 and U1 are members of τ1.
2. T 2 and U2 are members of τ2

3. export is a translation from T 1 to U2.
4. import is an interpretation of T 2 in U1.

Let Φi be the composition of elements of ρi from T i
ni

to T i for i = 1, 2.
By Lemma 1, Φi is a retraction from T i

ni
to T i for i = 1, 2.

Notice that (export ◦Φ1, import ◦Φ2) is a connection from (T 1
n1

,S1) to
(T 2

n2
,S2) in the simple framework and that is not necessary that T1 = U1

or T2 = U2.
An informed request is a tuple R = (I1, I2, C, E, θ) where:

1. Ii is an interface for i = 1, 2 as defined above.
2. C is a connection from I1 to I2 as defined above.
3. E is an expression of the language of T 1

n1
, the theory of I1.

4. θ = (Π,M) ∈ S2.

If A = import(Φ2(M(export(Φ1(E))))) is defined (where Φ1 and Φ2 are
defined as above), it is the answer to R; otherwise the answer to R is
undefined. When A is defined, it is a theorem:

Proposition 3. Let R and A be as above. If A is defined, then U1 |= A.

Proof. Assume that A is defined. Since θ is a theoremoid of T 2
n2

, the
theory of I2, T 2

n2
|= M(export(Φ1(E))), and since Φ2 is a retraction from

T 2
n2

to T 2, T 2 |= Φ2(M(export(ϕ1(E)))). Since import is an interpretation
of T 2 in U1, we conclude that U1 |= A. 2

This refined framework addresses all three of the obstacles discussed
above. First, the refined framework facilitates the construction of a con-
nection of a translation or interpretation Φ between I1 and I2 by allowing

12

the source theory of Φ to be chosen from the lower part of the conservative
stack of I1. Second, the refined framework facilitates the construction of a
translation or interpretation Φ between I1 and I2 without a size explosion
by allowing the target theory of Φ to be chosen from the upper part of the
conservative stack of I2. And finally, if a conservative stack Σ is extended
to a larger conservative stack Σ′, then Σ can be freely replaced with Σ′

without compromising any existing interfaces or connections.

4.3 Specifying Requests and Services

In the above framework, we assumed that system A “magically” knows
that it wants to use service θ of system B. However, in a more general
setting, one would want to specify a request (e.g., evaluate this computa-
tion), pass on that specification to some entity able to match that request
to an available service.

To solve this problem, we need to go up one level: instead of deal-
ing with expressions of L1, we need to deal with some specification Spec
corresponding to some function f : L1 → L1 (a computational trans-
former) associated with a “virtual service” θ1. Given Spec, the task then
becomes one of finding an informed request such that the diagram pre-
sented in Figure 3 commutes. In theory, this is what we understand the
LS Matcher of the Logic Broker [2, 3] of Armando and Zini is somehow
supposed to perform, although its task is never defined precisely.

E
export
−−−−→ E′

θ1

y yθ2

answer ←−−−−−
import

M(E′)

Fig. 3. The specification matching problem

First, we need to shift our focus somewhat. Let us define reachable
services as those computational theoremoids θ2 of L2 that can be given a
complete specification in some meta-language Spec. We could, for exam-
ple, use casl [5], Z [19] or Specware [18] for this task. In other words, we
would like to define services (and requests) implicitly, allowing noncon-
structive definitions as well. Note that we specifically exclude those theo-
remoids that cannot be finitely axiomatized in some meta-language. Sym-
metrically to reachable services, we define (brokered) requests as those
virtual services θ1 of L1 which can be specified completely in Spec.

13

We then need to solve the specification matching problem: given a
pair (S1, S2) of specifications for θ1 and θ2, does there exist a connection
C such that Figure 3 commutes.

Even in the simplest possible case where both systems are the same,
and thus import and export can be taken to be the identity, this problem is
still quite difficult, unless great pains are taken to specify each system’s
services in a very uniform manner. However, the situation is far from
hopeless: even though there are many different ways to specify that, for
example, a particular function is a primality verification function (or an
implementation thereof), the task of deciding that two such specifications
are equivalent is considerably simpler than actually providing a provably
correct implementation!

5 Conclusion

In this paper we have presented a mathematically rigorous framework for
communicating mathematics between MMSs. This framework gives pre-
cise meanings to notions such as (biform) theories, interfaces, services,
connections, requests, and answers. It addresses the issue of trust, which
has been identified as a central issue in intersystem communication in re-
lated papers, by using interpretations (meaning-preserving translations)
to communicate answers. It also provides facilities for conservatively ex-
tending theories, allowing them to evolve as needed without needing to
rebuild whole new interfaces or to drastically update connections.

We have not discussed in this paper how biform theories are obtained.
For this, we refer the reader to [13].

We have defined precisely the problem of specification of services, and
of logical specification matching. We are aware that any useful implemen-
tation of the ideas detailed in this paper would need to include such a
facility, and we are working in that direction.

References

1. A. Adams, M. Dunstan, H. Gottliebsen, T. Kelsey, U. Martin, and S. Owre. Com-
puter algebra meets automated theorem proving: Integrating Maple and pvs. In
R. J. Boulton and P. B. Jackson, editors, Theorem Proving in Higher Order Logics,
TPHOLs 2001, volume 2152 of LNCS, pages 27–42. Springer-Verlag, 2001.

2. A. Armando and D. Zini. Towards interoperable mechanized reasoning systems:
the logic broker architecture. In A. Corradi, A. Omicini, and A. Poggi, editors,
WOA 2000 — Dagli oggetti agli agenti: tendenze evolutive dei sistemi software,
volume 1195 of Atti di Congressi, pages 70–75. Pitagora Editrice Bologna, 2000.

14

3. A. Armando and D. Zini. Interfacing computer algebra and deduction sys-
tems via the logic broker architecture. In M. Kerber and M. Kohlhase, editors,
Symbolic Computation and Automated Reasoning, Proceedings of the Eight Sym-
posium on the Integration of Symbolic Computation and Mechanized Reasoning
(CALCULEMUS-2000), pages 49–64. A.K. Peters, 2001.

4. A. Asperti and B. Wegner. mowgli — a new approach for the content description
in digital documents. In Proceedings of the Nineth International Conference on
Electronic Resources and the Social Role of Libraries in the Future, 2002.

5. E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. D. Mosses, D. Sannella,
and A. Tarlecki. casl: The Common Algebraic Specification Language. Theoretical
Computer Science, 2002.

6. C. Ballarin. Computer Algebra and Theorem Proving. PhD thesis, Cambridge
University, 1999.

7. C. Ballarin, K. Homann, and J. Calmet. Theorems and algorithms: An inter-
face between Isabelle and Maple. In International Symposium on Symbolic and
Algebraic Computation, pages 150–157, 1995.

8. C. Ballarin and L. C. Paulson. A pragmatic approach to extending provers by
computer algebra - with applications to coding theory. Fundamenta Informaticae,
39(1–2):1–20, 1999.

9. P. G. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Specification and inte-
gration of theorem provers and computer algebra systems. In Fourth International
Conference On Artificial Intelligence and Symbolic Computation (AISC’98), vol-
ume 1476 of LNCS. Springer-Verlag, 1998.

10. C. C. Chang and H. J. Keisler. Model Theory. North-Holland, 1990.
11. S. Dalmas, M. Gaëtano, and S. M. Watt. An OpenMath 1.0 implementation. In

Proceedings of ISSAC-97, pages 241–248, 1997.
12. W. M. Farmer and M. v. Mohrenschildt. Transformers for symbolic computation

and formal deduction. In S. Colton, U. Martin, and V. Sorge, editors, Proceedings
of the Workshop on the Role of Automated Deduction in Mathematics, CADE-17,
pages 36–45, 2000.

13. W. M. Farmer and M. v. Mohrenschildt. An overview of a formal framework for
managing mathematics. Annals of Mathematics and Artificial Intelligence, 2003.
In the forthcoming special issue: B. Buchberger, G. Gonnet, and M. Hazewinkel,
eds., Mathematical Knowledge Management.

14. J. Harrison and L. Théry. A skeptic’s approach to combining hol and Maple.
Journal of Automated Reasoning, 21(3):279–294, 1998.

15. D. J. Howe. Importing mathematics from hol into Nuprl. In J. Von Wright,
J. Grundy, and J. Harrison, editors, Ninth International Conference on Theorem
Proving in Higher Order Logics TPHOL, volume 1125 of LNCS, pages 267–282.
Springer-Verlag, 1996.

16. M. Kerber, M. Kohlhase, and V. Sorge. An integration of mechanised reasoning
and computer algebra that respects explicit proofs. Technical Report CSRP-96-9,
1996.

17. M. Kohlhase. OMDoc: An open markup format for mathematical documents (ver-
sion 1.1). Technical report, Carnegie Mellon University, 2002.

18. Y. V. Srinivas and R. Jullig. Specware: Formal support for composing software.
In Mathematics of Program Construction, pages 399–422, 1995.

19. J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. 1996.

15

